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Abstract—The proliferation of advanced analytics and artificial
intelligence has been driven by huge volumes of data that
are mostly generated at the edge. Simultaneously, there is a
rising demand to perform analytics on edge platforms (i.e.,
near-sensor data analytics). However, conventional architectures
of such platforms may not execute the targeted applications
in an energy-efficient manner. Emerging near and in-memory
computing paradigms can increase the energy efficiency of edge
platforms by relying on emerging logic and memory devices.
More importantly, these paradigms enable the possibility of
performing computations on unconventional platforms, namely
flexible computing systems. In this paper, we explore the benefits
of in-memory computing at the edge on a flexible substrate
enabled by thin-film transistors (TFTs) and resistive RAM
(RRAM). As a case study, we consider bio-signal processing
application workloads, i.e., compressive sensing and anomaly
detection. We model the device, circuit, and architecture of
our targeted platform and evaluate the corresponding system-
level performance. Preliminary results indicate that in-memory
computing enabled by flexible electronic devices enables a new
class of edge platforms with lower power consumption, compared
to that of rigid TFT devices.

Keywords: RRAM, Thin-Film Transistor, Flexible Electronics,
Edge Computing.

I. INTRODUCTION

Electronic and computing systems are ubiquitous nowadays

and are deeply integrated in our daily activities. The abundance

of these devices has led to the generation of huge volumes

of data that have been the fuel of a new class of abundant-

data applications. These applications apply complex analytics

on such large amounts of data, e.g., artificial intelligence

(AI), to provide new classes of services [1]. There is a rising

demand to push these services on deeply embedded systems

for more personalized AI applications, and perform near-

sensor data analytics. A key feature for such systems is to

execute corresponding workloads very close to the sensors. In

this regard, flexible electronics can be a promising path.

Recent years have witnessed massive improvements in

fabricating various electronic components using devices on

flexible substrate [2], such as sensors [3], energy storage,

and even new application frontiers (e.g., textile [4]). One

of the most promising devices for flexible electronics, is

thin-film transistor (TFT) [5], [6]. Various TFT technologies

exist, like polycrystalline silicon based TFTs [6], oxide-based

TFTs [7],carbon nanotube based TFTs [8], and organic TFTs

[9]. These devices have weaker characteristics than conven-

tional Si-CMOS—i.e., higher driving voltage, lower current,

higher delays, and larger dimensions—which renders building

a computing system with logic and memory devices a ma-

jor challenge. Conventional computing systems separate both

computing and memory and sequentially fetch instructions and

data from memory to perform any operation. With the higher

delays of flexible electronics, conventional computing may not

be a feasible approach. Indeed, one has to leverage the benefits

of new computing paradigms, that embraces parallelism and

can merge computing and memory in very close proximity, to

enable computing on flexible electronics.

Neuromorphic [10] and in-memory [11] computing signif-

icantly improve energy consumption by reducing (or totally

eliminating) the data transfer from one memory array to com-

pute units. These computing paradigms are proliferating nowa-

days as they are naturally enabled by new non-volatile mem-

ory technologies such as resistive RAM (RRAM), magneto-

resistive RAM (MR-RAM), phase-change RAM (PCRAM),

etc. [12]. These memory devices, i.e., RRAM, have been

recently demonstrated on a flexible substrate [13], [14], which

paves the way to integrate them with flexible TFTs and build

a full neuromorphic computing unit.

In this paper, we explore the prospects of flexible neuromor-

phic computing systems and introduce a modeling method-

ology to analyze the system-level functionality and potential

benefits. Figure 1 illustrates the introduced flexible computing

system. Using device models calibrated by experimental mea-

surements, we design all corresponding circuits where their

characteristics (latency, power, area) are fed into a system-level

simulation infrastructure to deduce the total execution time and

energy consumption when running application workloads. We

have explored two workloads for personalized healthcare to

assess the feasibility of the proposed design, viz. compressive

sensing and anomaly detection of an electrocardiograph (ECG)

signal. Vector-matrix multiplication is a major operation for

both workloads, which can naturally be adopted in neuromor-

phic computing system.

This paper starts in Section II by presenting a brief overview

on the state-of-the-art in flexible device technologies, with

specific emphasis on flexible TFT (FTFT) and flexible RRAM
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Figure 1: Flexible Computing System

(FRRAM) and device characteristics used in the design of the

flexible system. In Section III, we discuss the architectural

modeling of the TFT and RRAM array designed using flexible

device models, and the corresponding customization carried

out on the NVSIM tool [15] and MNSIM tools [16]. In Section

IV we analyze area, latency and power of two applications.

Finally, we conclude the paper in Section V.

II. TECHNOLOGY ENABLERS

In this section, we discuss the two considered devices,

namely flexible thin film transistors (FTFT) and flexible

RRAM (FRRAM), which are required for the targeted flexible

computing system. Additionally, we briefly discuss recent

demonstrations of computing circuits on a flexible substrate.

A. Flexible Thin Film Transistor (FTFT)

TFTs are fabricated by forming thin layers of materials on

various substrates. For realizing bendable or flexible FTFT

devices, we require flexible dielectric and semiconducting

materials, as well as a flexible substrate on which the layers are

formed. Various FTFT implementations exist, which are based

on amorphous-Si [17], organic materials [18], oxides [19], and

carbon nanotube [20].

Amporhous-Si based FTFTs can operate with a supply

voltage of 1 − 10V, a threshold voltage of 3.24V, field-effect

mobility of 0.46cm2/V.s, sub-threshold swing of 1.31V/dec,

and on-off ratio of over 108. [17]. Organic FTFTs can have

a higher mobility (1.0cm2/V.s) and lower threshold voltage

(0.53V) [18]. In this paper we use oxide-based FTFTs as

they offer high carrier mobility, low process temperature, good

transparency and good stability, compared to amorphous-Si

and organic FTFTs. In particular, we model a ZnO-based

FTFT (Figure 2a) based on measured experimental data. This

FTFT uses a bottom-gate structure with layers of chromium

(10nm) and gold (40nm) on a flexible polyimide substrate.

On top of this, an Al2O3 layer is deposited as the gate

dielectric. A 70nm-thick ZnO layer is created next, that forms

the active channel. For the source and drain contacts, 10nm-

thick titanium layer is used, followed by 30nm-thick platinum

capping. The fabricated device has channel dimensions of

W = 25µm, and L = 20µm. Figures 2(b) and 2(c) show

Figure 2: (a) Schematic of Flexible TFT, (b) Transfer characteristics,
and (c) Output characteristics of the ZnO TFT device

the transfer and output characteristics of the device at drain

voltage of VD = 1V—tThe device exhibits a very high on/off

current ratio of > 10
8.

In addition to oxide FTFTs, carbon nanotube based TFTs

(CNT-TFT) provide superior carrier mobility and very good

mechanical flexibility, and usually exhibit p-type characteris-

tics [20]—we will consider CNT-TFT in our future work.

B. Flexible RRAM (FRRAM)

Similar to conventional RRAM, FRRAM is a metal-

insulator-metal stack. FRRAM, however, is fabricated on a

flexible substrate, but still retains similar properties of RRAM.

A ITO/HfOx/ITO based RRAM on a flexible polyethylene

terephthalate (PET) substrate has an on/off resistance ratio of

40, set and reset voltages of 0.4V and 0.2V respectively, and

good mechanical stability [21]. A transparent FRRAM with

a TiO2 dielectric, fabricated on flexible ITO/PET substrate,

demonstrated a stable switching behavior (on/off ratio of 10,

set/reset voltage of 2V) and good bending endurance [22].

In [13], authors use aerosol-jet-printed technology to create

Ag/MoS2/Ag RRAM cells in a crossbar structure, which ex-

hibits low switching voltage (< 0.2V), high on-off resistance

ratio (107), switching energy of 4.5fJ/bit. A multiple of such

FRRAM cells were integrated to demonstrate a 4×4 crossbar,

which can successfully withstand 1000 bending cycles under

various bending radii.

Figure 3: (a) Schematic diagram, (b) photo image, and (c) micro-
scopic image of a 2 × 2 WSe2 RRAM with Ag electrodes (70µm
line width) [14]
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In this paper we use a FRRAM model using parameters

from a WSe2-based device fabricated using aerosol jet print-

ing [14]. The device exhibits forming-free, unipolar behavior,

< 1V switching voltage, on/off ratio of > 100, and set and

reset voltages of 0.7V and 0.3V, respectively. This FRRAM

uses Ag (silver) as the top/bottom contacts. An FRRAM array

is also demonstrated. Figures 3(a)-(c) show the schematic

diagram, a photo image, and a zoomed-in microscopic image

of a fabricated 2 × 2 WSe2 RRAM array. The size of a cell

is basically limited by the width of the printed electrodes

(70 × 70 µm for Ag) [14]. Figure 4a shows the DC-sweep

characteristics for the modeled FRRAM with a set current

of 2µA, where this FRRAM exhibits non-volatile behavior.

Under this scenario, a unipolar behaviour is observed with a

reset voltage (current) of 0.3V (80µA), that is, an operating

power of 24µW (Figure 4(b)). A retention time in excess of

2.5 hours at room temperature is observed, when the device

is in the stable LRS state, with > 100 on/off resistance ratio

(Figure 4(c)).

Figure 4: (a)DC sweep of WSe2 RRAM with Ag electrodes at set
current of 2µA, (b) retention curve of the WSe2 RRAM [14]

C. Flexible Electronics Circuits and Systems

In recent years, there has been an increase in the number

of circuit demonstrations of flexible electronics.

Basic circuit constructs, such as ring oscillators, adders,

and even data-storing elements such as SRAM have been

demonstrated [23], [24], [25], [26]. The ring oscillator in [24]

achieved 16ps delay with the accompanying SRAM operating

at 0.6V, where both n-type and p-type FTFTs were fabri-

cated using extremely thin silicon-on-insulator technology.

Full systems in FTFTs may not require both types. For

instance, the single-bit adder used single-wall p-type CNT-

FTFT [25], whereas the 128-bit SRAM macro used n-type a-

IGZO FTFTs [26] for the cell and all peripheral circuitry (both

digital and analog). This SRAM consumes 100µW with read

(write) latency of 280µs (110µs).

Additionally, various demonstrations showcased full small-

scale systems built entirely on a flexible substrate. A signal

conditioning and data-storing circuit was fabricated and in-

tegrated with a temperature sensor [27]. While this circuit

was a simplistic one—a J-K flip-flop and an analog differ-

ential amplifier—it showcased the possibility of near-sensor

processing. This can be attached to other bendable sensors that

have been demonstrated in several applications, such as pH

sensing [3], X-ray detector [28], and general biosensors [29].

Moy et al. [30] demonstrated a flexible electroencephalo-

gram sensing and signal-processing systems on a flexible

substrate. They have used an amplifier, followed by compres-

sive sensing to scale down the acquired signal. Compressive

sensing here is achieved via sampling and integration of the

input signal. An in-memory computing circuit on a flexible

substrate has been recently demonstrated [31] that implements

an 8× 8 crossbar array fabricated on a PES substrate, where

the FRRAM had 10
7 on/off ratio, 105s retention, and 3V/0.5V

set/reset voltages.

While further improvements in flexible technology will

enable scalable systems, it is important to evaluate—at design

time—the operating conditions of such systems via proper

modeling and simulation infrastructure that can leverage cur-

rent device modeling frameworks (e.g., [32]).

III. DEVICE AND ARCHITECTURE MODELING

To analyze a complete system using flexible electronics, we

need to model both logic operations and memory functionality

using flexible devices. We introduce an exploration framework,

illustrated in Figure 5, that is tailored towards analyzing neuro-

morphic or in-memory flexible computing systems (Figure 6).

The framework starts by modeling the considered devices, i.e.,

FTFT and FRRAM. In particular, we tune parameters of the

IGZO-based flexible TFT model [33], based on experimental

data, and extract the FRRAM parameters from the measured

data of the fabricated device reported in [14]. We have

also used device data of ZnO-based TFT device on a rigid

substrate [34] and a RRAM device used in TFT-based RRAM

memory macro design [35]. These device models are then used

to design basic constructs, i.e., memory arrays, as well as digi-

tal and analog circuitry, that constitute the required modules in

a full system. We then feed the characteristics of these modules

(power, latency and area) to a system simulator that deduces

the total energy and time of the examined computing system.

We also leverage a memory simulator to rapidly estimate the

access time and energy of various memory-block sizes.

Figure 5: Our evaluation framework
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Figure 6: Memory macro for neuromorphic computing

A. Circuit Design

As shown in Figure 6, a neuromorphic circuit comprises a

number of modules, which are as follows:

• memory array with 1T-1R cell structure

• access decoder and multiplexers

• a number of digital-to-analog converters (DAC)

• read circuit with a data-storing register

All circuits are designed using Verilog-a model of a rigid

ZnO-based TFT [35], which only supports n-type devices. To

account for FTFTs, we tune the results of this model using

the measured data (Figure 2).

1) Memory array design: The basic memory array is

designed using RRAM cells with access transistors in one-

transistor-one-rram (1T1R) configuration. In this paper, we

use two different cell structures, i.e., a rigid ZnO-based

TFT stacked with HfO2 RRAM [35], and FTFT adjacent to

FRRAM (Section II). The peripheral circuits constitute access

decoder, multiplexers, DACs, comparators and registers.

2) Access decoder and multiplexers: These components use

a set of NOR gates, with a NOT gate at each NOR output [35].

Figure 7 shows the schematics of NOT and NOR (or NOR2

using two logic inputs) gates, using n-type TFTs only, where

we have used the same transistor sizing as in [35].

Figure 7: N-type TFT-based schematics of— (a) NOT, (b) NOR2

3) DAC and read circuitry: We build a comparator using

n-type TFTs only, akin to the design introduced in [36], to be

used in both DAC and to transfer the analog aggregated current

for each bitline to a digital value. We use a fixed device length

L=1µm, keeping W/L (device width-to-length) ratios of all

TFTs same as the comparator design in [36]. As illustrated in

Figure 8, the comparator cascades three amplification stages

(each stage uses a differential amplifier circuit) to ensure

sufficient DC gain in order to overcome offset of the next PFL

stage (having positive feedback analog latch). The PFL stage,

only used in the read circuit, enables speedup in comparison

of inputs by using two n-type analog inverters adjacent to

two analog latches, respectively. This stage also improves

output regeneration by cross-coupling devices with inputs

of analog inverters (for more details on circuit operation,

please refer to [36]). The final stage that constitutes the four

logic inverters implements a fully dynamic digital latch. The

capacitors provide dynamic memory to the last set of inverters.

The comparator is activated when enable, EN in Figure 8, goes

high to low. It consumes a power of 1.84mW at 30µs latency,

and has an area overhead of 1100µm2—results obtained from

simulation on Cadence Virtuoso.

Figure 8: Comparator design constituting 3 amplifiers, a positive
feedback analog latch (PFL), 4 inverters with a TFT-capacitor pair

B. Architectural Modeling

To enable rapid system exploration, it is important to

quickly deduce the energy and latency of the module that

can significantly vary among architectures, i.e., the memory

array. We have modified NVSIM [15] and integrated it to

our framework, and model various TFT (or FTFT) based

RRAM macros. NVSIM [15] can estimate the access latency,

energy and even area of non-volatile memories, assuming Si-

CMOS devices for memory peripherals. However, it does not

support TFTs, which have much larger technology feature
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sizes (≥ 1µm) or has only n-type or p-type device realizations.

We summarize the alterations made to NVSIM below.

• We have added a new technology node needed to match

the feature size of the ZnO-based TFT device (1µm) and

ZnO-based FTFT device (25µm).

• We have modified the decoder design of TFTs to account

that only n-type transistors are used. We altered the design

to be based on NOR gates, instead of NAND gates. We

have also tuned the gate sizing and delay.

• We have changed all the p-type pullup networks to n-type

pullup networks as required in TFT based design.

• We have updated the formula to calculate various device

capacitances consistent with TFT device geometries.

• We have included the calculations for static power that is

predominant in TFT based static logic design.

We modelled various TFT- and FTFT-based macros. The

ZnO-based TFT has carrier mobility of 8.5cm2/Vs, dielectric

oxide thickness of 35nm, sub-threshold swing of 592mV/dec,

and threshold voltage of 4.039V. The corresponding val-

ues for the ZnO-based flexible TFT are 5.3cm2/Vs, 40nm,

485mV/dec, and 7V respectively—the electrical parameters for

the rigid TFTs and FTFTs do not vary significantly.

Results for various memory array sizes are summarized in

Table I for both rigid and flexible devices. We have validated

the results for the rigid devices against the corresponding

results obtained through circuit simulation using Cadence

Virtuoso with the Verilog-a device models.

C. System Simulation

For the system-level simulation of neuromorphic or in-

memory flexible computing systems, we need to map the target

applications to a computing fabric defined by the application

needs. We have used MNSIM [16] to model and simulate the

system, with proper customization as required for the devices

used in our designs.

Figure 6 illustrates the full system simulated in MNSIM.

DACs convert digital input signals to analog voltages that are

fed into the RRAM array. The read circuit converts the column

currents to voltages, digitizes them using threshold detectors,

and stores the output vector in a register.

MNSIM models a multi-layer neural network by cascading

a number of neuromorphic macros (Figure 6), each realized

using one or more RRAM arrays, with necessary interfaces. A

basic m×m 1T1R array (Figure 6) can be used to multiply a

vector V = {v1, v2, . . . , vm} with anm×m co-efficient matrix

G = {gij} to generate the result vector I = {I1, I2, . . . , Im}:

I1×m = V1×m ×Gm×m

Table I: Simulation results for various subarray sizes

Array TFT [34] & RRAM [37] FTFT [33] & FRRAM [14]

Size Latency Power Energy Latency Power Energy

(ns) (mW) (pJ) (us) (mW) (nJ)

8× 8 1.48 26.8 39.6 11.30 11.0 124.0

16× 16 2.75 29.9 81.8 29.70 8.3 247.0

32× 32 2.91 60.8 177.0 42.60 13.3 569.0

64× 64 3.11 108.6 338.0 90.00 11.12 1001.0

where vi is an input analog voltage, gij is the conductance

value of the RRAM cell in row i and column j, and Ii is

the current flowing out of column i. The conductance values

are often discrete, and may be initialized by applying set and

reset pulses across the cell. Such in-memory vector-matrix

multiplication is essential to realize neuromorphic operations.

As shown in the figure, the voltages vi are directly applied

to the bit lines, and all the source lines of the cells in a

column are wired together to aggregate the currents Ik =
Σ1≤i≤m(vi ∗ gik). Also, all the Vsel lines driving the access

transistors are simultaneously enabled. Comparator circuits

convert the aggregated current value to a digital signals as

explained earlier.

We have modified MNSIM to account for that targeted

devices as follows.

• We have incorporated the array latency, power, and area

from NVSIM.

• We have fed the area, latency and power consumption

of the decoder and comparator circuits using the values

obtained from circuit simulation in Cadence Virtuoso.

IV. CASE STUDY:HEALTH MONITORING AT THE EDGE

We analyze two workloads related to health monitoring,

viz. compressive sensing [38] and anomaly detection [39],

which require vector-matrix multiplication during computa-

tion. In [38], a sparse binary sensing approach is reported,

which is based on multiplying a vector with a sparse binary

matrix containing at most d non-zero entries in each column.

Experiments with MIT-NIH arrhythmia ECG database show an

optimum value of d = 12 for matrices of size 512× 64 (88%
compression). We have carried out system-level simulation of

a neuromorphic array of size 512 × 64, for both rigid and

flexible TFTs. The results of simulation are summarized in

Table II, which shows the area, latency and power consumption

for the various constituent subsystems. FTFT-based system

occupies reasonable footprint and execution time (despite

being > 100× larger than rigid TFTs). Furthermore, FTFT

consumes less power than TFTs.

We also consider another application in the area of anomaly

detection, where a neuromorphic computing circuit performs

cardiac arrhythmia analysis and classifies five different beat

types, one normal and four anomalous, in real-time [39].

They use a 3-layer feed-forward neural network, which can

be realized using two RRAM arrays of sizes 300 × 210 and

210×5 to achieve 91% classification accuracy. For simulating

this system, we use four 512 × 64 arrays in the first layer,

connected in cascade with another array of size 256× 8. We

simulate the two layers comprising of individual arrays, and

consider the interfacing circuitry as well in the calculation.

Table II shows the results for both rigid TFT and FTFT.

V. CONCLUSION

Flexible circuit technologies can support the ubiquity of

computing systems. Despite the relatively weak performance

of these devices versus commensurate devices on a rigid
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Table II: Area, latency and power analyses

TFT Metric Array Decoder DAC Read Total

Workload 1: Compressive Sensing [38] (512× 64)

Rigid
Area

(mm2)
0.002 0.0056 0.563 0.070 0.64

Time

(µs)
0.003 0.0016 30.0 30.0 60.0

Power

(mW )
786 21 942 118 1870

Flexible
Area

(mm2)
16.4 0.557 140.8 17.6 175.29

Time

(µs)
105.0 85.2 106500 106500 213190

Power

(mW )
0.0033 1.54 68.6 8.58 78.7

Workload 2: Anomaly Detection [39] (300× 210× 8)

Rigid
Area

(mm2)
0.008 0.0251 2.53 0.29 2.85

Time

(µs)
0.005 0.0026 60.0 60.0 120.0

Power

(mW )
3190 87.9 4240 531.0 8049

Flexible
Area

(mm2)
66.62 6.275 632.5 72.5 777.9

Time

(µs)
129.0 102.0 213000 213000 426231

Power

(mW )
0.0152 7.05 309.0 38.6 354.67

substrate, emerging in-memory computing paradigms and

flexible logic and memory devices can both enable full

flexible computing systems. We have explored the potential

of neuromorphic computing using FTFTs and FRRAMs via

a framework capable of simulating application workloads

on systems that leverage experimentally-calibrated flexible

device models. System analyses for two healthcare-targeted

workloads—compressive sensing and anomaly detection in

ECG signals—show that systems with flexible devices con-

sume lower power than a rigid counterpart. Advancement in

technologies for flexible applications will ensure improvement

in area and performance, thereby enabling new frontiers in

edge computing.
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