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Abstract—We study the problem of safety verification of direct
perception neural networks, where camera images are used as
inputs to produce high-level features for autonomous vehicles to
make control decisions. Formal verification of direct perception
neural networks is extremely challenging, as it is difficult to
formulate the specification that requires characterizing input as
constraints, while the number of neurons in such a network
can reach millions. We approach the specification problem by
learning an input property characterizer which carefully extends
a direct perception neural network at close-to-output layers, and
address the scalability problem by a novel assume-guarantee
based verification approach. The presented workflow is used to
understand a direct perception neural network (developed by
Audi) which computes the next waypoint and orientation for
autonomous vehicles to follow.

Index Terms—formal verification, neural network, dependabil-
ity, autonomous driving

I. INTRODUCTION

Using deep neural networks has been the de facto choice

for developing visual object detection function in automated

driving. Nevertheless, in the autonomous driving workflow,

the neural networks can also be used more extensively. An

example is direct perception [2]; one trains a neural network

to read high-dimensional inputs (such as images from camera

or point clouds from lidar) and produce low-dimensional

information called affordances (e.g., safe maneuver regions or

the next waypoint to follow) which could be used to program

a controller for the autonomous vehicle. One may use direct

perception as a hot standby system for a classical mediated

perception system that extracts objects and identifies lane

markings before affordances are produced.

In this paper, we study the safety verification problem for a

neural network implementing direct perception, where the goal

is to ensure that under certain input conditions, the undesired

output values never occur. An example of such a kind can

be the following: “For every input image where the road in

the image strongly bends to the right, the output of the neural

network should never suggest to strongly steer to the left”.

Overall, the safety verification problem for direct perception

networks is fundamentally challenging due to two factors:

• (Specification) To perform safety verification, one

premise is to have the undesired property formally

specified. Nevertheless, it is practically impossible to

characterize input specifications from images such as

“road strongly bends to the right” and represent them as

constraints over input variables.

• (Scalability) Neural networks for direct perception often

take images with millions of pixels, and the internal

structure of the network can have many layers. This

challenges any state-of-the-art formal analysis framework

in terms of scalability.

Towards these issues, we present a workflow for safety veri-

fication of direct perception neural networks by simultaneously

addressing the specification and the scalability problem. For

the ease of understanding, we use Figure 1 to explain the con-

cept. First, we address the specification problem by learning

an input property characterizer network, where the input of

the network is connected to close-to-output layer neurons of

the original direct perception network. In Figure 1, the input

property characterizer takes output values from the neurons
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in the original deep perception

network. For the previously mentioned specification, the input

property characterizer outputs true if an input image has “road

strongly bending to the right”. By doing so, the characterization

of input features is aggregated to an output of a neural network.

Subsequently, the safety verification problem is approached by

asking if it is possible for the input-characterizing network to

output true, but the output of the direct perception network

demonstrates undesired values. As both the deep perception

network and the input-characterizing network have shared

neuron values, safety verification can be approached by only

verifying close-to-output layers without losing soundness. In

Figure 1, safety verification only analyzes the sub-network
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can be decided

by static analysis (which guarantees an overly conservative

bound). However, using such a bound allows to have input

images that are not possible to be seen in the operating

design domain (ODD)1. Thus we are advocating an alternative

1In training neural networks, the value for each pixel in an image is
commonly re-scaled such that the re-scaled value is in the interval [0, 1].
Starting verification using an input domain of [0, 1]dl0 with dl0 being the
number of input image pixels, the result of formal verification always creates
counter-examples in formal verification where counter-example images are
so distant from what can be observed in practice (such as images without
textures) and are rejected by experts.
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Fig. 1. High-level illustration how to perform safety verification while tackling specification and scalability issues.

assume-guarantee based approach where one first creates an

outer polyhedron by aggregating all visited neuron values

computed by the training set. We use the created polyhedron

as a starting point to perform formal verification, by assuming

that for every possible input data in the ODD, the computed

neuron activation pattern is contained in this polyhedron.

The assumption thus requires to be monitored in runtime

by checking if any computed neuron value falls outside the

polyhedron. As an example, we consider the bound of n17
1 to

be used in verification in Figure 1. By observing the minimum

and the maximum of all visited values {0, 0.1,−0.1, . . . , 0.6},
[−0.1, 0.6] is an over-approximation over all visited values,
and one shall monitor in runtime whether the computed value

of n17
1 has fallen outside [−0.1, 0.6].2

The rest of the paper is organized as follows. Section II

presents the required definitions as well as the workflow for

verification. Section III discusses extensions to a statistical

setup when the input property characterizer is not perfect.

Lastly, we summarize related work in Section IV and conclude

with our preliminary evaluation in Section V.

II. VERIFICATION WORKFLOW

A deep neural network is comprised of L layers where

operationally, the l-th layer for l ∈ {1, . . . , L} of the net-
work is a function g(l) : R

dl−1 → R
dl , with dl being the

dimension of layer l. Given an input in ∈ R
d0 , the output

2Note that such a monitoring is needed regardless of formal verification,
as neurons at close-to-output layers represent high-level features, so an
image in operation that leads to unexpectedly high or low neuron feature
intensity (indicated by falling outside the monitored interval) can be hints for
incomplete data collection or indicators for the system stepping out from the
ODD.

of the l-th layer of the neural network f (l) is given by the

functional composition of the l-th layer and the previous layers

f (l)(in) := ◦
(l)
i=1g(i)(in) = g(l)(g(l−1) . . . g(2)(g(1)(in))).

A. Characterizing Input Specification from Examples

Let Inφ ⊆ R
d0 be the set of inputs of a neural network

that satisfies the property φ. We assume that both φ and Inφ

are unknown (e.g., the road is bending left in an image), but

there exists an oracle (e.g., human) that can answer for a given

input in ∈ R
d0 , whether in ∈ Inφ.

Let (In, Cφ) be the list of training data and their associated
labels (generated by the oracle) related to the input property φ,

where for every (in, c) ∈ (In, Cφ), in ∈ R
d0 , c ∈ {0, 1}, we

have (in, 1) ∈ (In, Cφ) if in ∈ Inφ and (in, 0) ∈ (In, Cφ) if in 6∈
Inφ. The perfect input property characterizer extending the l-th

layer is a function h
φ
l which guarantees that for every (in, c) ∈

(In, Cφ), h
φ
l (f

(l)(in)) = c. The generation of h
φ
l can be done

by training a neural network as a binary classifier, with 100%
success rate on the training data. The following assumption

states that as long as function h
φ
l performs perfectly on the

training data, h
φ
l will also perfectly generalize to the complete

input space. In other words, we can use h
φ
l to characterize φ.

Assumption 1 (Perfect Generalization). Assume that h
φ
l also

perfectly characterizes φ, i.e., ∀in ∈ R
d0 : h

φ
l (f

(l)(in)) = 1 iff

in ∈ Inφ.

Definition 1 (Safety Verification). The safety verification

problem asks if there exists an input in ∈ Inφ such that f (L)(in)
satisfies ψ, where the risk condition ψ is a conjunction of

linear inequalities over the output of the neural network. If

no such input in exists, we say that the neural network is safe

under the input constraint φ and the output risk constraint ψ.
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When Assumption 1 holds, for safety verification it is

equivalent to ask whether there exists an input in ∈ R
d0 such

that h
φ
l (f

(l)(in)) = 1 and f (L)(in) satisfies ψ. From now on,
unless explicitly specified, we consider only situations where

Assumption 1 holds.

B. Practical Safety Verification

a) Abstraction by omitting neurons before the l-th layer.:

The following result states that one can retain soundness for

safety verification, by considering all possible neuron values

that can appear in the l-th layer.

Lemma 1 (Verification by Layer Abstraction). If there

exists no n̂l ∈ R
dl such that g(L)(g(L−1) . . . (g(l+1)(n̂l))

satisfies ψout and h
φ
l (n̂l) = 1, then the neural network is

safe under input constraint φ and output risk constraint ψ.

Proof. The lemma holds because for every input in ∈ R
d0 of

the network, f (l)(in) ∈ R
dl .

Obviously, the use of Rdl in Lemma 1 is overly conservative,

and we can strengthen Lemma 1 without losing soundness,

if we find S ⊆ R
dl which guarantees that f (l)(in) ∈ S for

every input in ∈ R
d0 of the network. Obtaining such a set S

can be achieved by abstract interpretation techniques [6], [21]

which perform symbolic reasoning over the neural network in

a layer-wise manner.

Lemma 2 (Abstraction via Input Over-approximation). Let

S ⊆ R
dl guarantee that f (l)(in) ∈ S for every input in ∈

R
d0 of the network. If there exists no n̂l ∈ S such that

g(L)(g(L−1) . . . (g(l+1)(n̂l)) satisfies ψout and h
φ
l (n̂l) = 1,

then the neural network is safe under input constraint φ and

output risk constraint ψ.

b) Assume-guarantee Verification via Monitoring.: If the

computed S , due to over-approximation, is too coarse to prove
safety, one practical alternative is to generate S̃ which only
guarantees f (l)(in) ∈ S̃ for every input in ∈ In in the training

data. In other words, S̃ over-approximates the neuron values
computed based on the samples in the training data.

If using S̃ is sufficient to prove safety and if for any input
in, checking whether f (l)(in) ∈ S̃ can be computed efficiently,
one can conditionally accept the proof by designing a run-

time monitor which raises a warning that the assumption

f (l)(in) ∈ S̃ used in the proof is violated. Admittedly, S̃ can
be an under-approximation over {f (l)(in) | in ∈ R

d0}, but
practically creating an over-approximation only based on the

training data is useful and can avoid unstructured input such

as noise which is allowed when using Rd0 .

III. TOWARDS STATISTICAL REASONING

The results in Section II are based on two assumptions of

perfection, namely

• (perfect training) the input property characterizer per-

fectly decides whether property φ holds, for each sample

in the training data, and

in ∈ Inφ in 6∈ Inφ

h
φ
l (f

(l)(in)) = 1 α β

h
φ
l (f

(l)(in)) = 0 γ 1−α− β− γ

TABLE I
PROBABILITY BY CONSIDERING ALL POSSIBLE CASES DUE TO DECISIONS
MADE BY THE INPUT CHARACTERIZER (WHETHER h

φ

l
(f (l)(IN)) = 1)

AND THE GROUND TRUTH (WHETHER IN ∈ INφ).

• (perfect generalization) the input property characterizer

generalizes its decision (whether property φ holds) also

perfectly to every data point in the complete input space.

One important question appears when the above two as-

sumptions do not hold, meaning that it is possible for the

input property characterizer to make mistakes. By considering

all four possibilities in Table I, one realizes that even when

a safety proof is established by considering all inputs where

h
φ
l (f

(l)(in)) = 1, there exists a probability γ where an input in

should be analyzed, but in is omitted in the proof process due

to h
φ
l (f

(l)(in)) being 0 (i.e., in ∈ Inφ and h
φ
l (f

(l)(in)) = 0).

Therefore, one can only establish a statistical guarantee with

(1− γ) probability over the correctness claim3, provided that
all data points used in training h

φ
l are also safe

4.

IV. RELATED WORK

Formal verification of neural networks has drawn huge

attention with many results available [13], [8], [3], [5], [9],

[11], [6], [4], [1], [14], [20], [19], [21]. Although specifications

used in formal verification of neural networks are discussed

in recent reviews [7], [15], the specification problem in terms

of characterising an image set is not addressed, so research

results largely use inherent properties of a neural network such

as local robustness (as output invariance) or output ranges

where one does not need to characterize properties over a

set of input images. Not being able to properly characterizing

input conditions (one possibility is to simply consider every

input to be bounded by [−1, 1]) makes it difficult for formal
static analysis to achieve any useful results on deep perception

networks, regardless of the type of abstraction domain being

used (box, octagon, or zonotope). Lastly, our work is motivated

by zero shot learning [12] which trains additional features

apart from a standard neural network. The feature detector is

commonly created by extending the network from close-to-

output layers.

V. EVALUATION AND CONCLUDING REMARKS

We have applied this methodology to examine a direct

perception neural network developed by Audi. The network

acts as a hot standby system and computes the next waypoint

3Note that for parts where in !∈ Inφ and h
φ

l
(f (l)(in)) = 0, no

problem occurs as the safety analysis guarantees the desired property when

h
φ

l
(f (l)(in)) = 1.
4In other words, for every (in, c) ∈ (In,Cφ), if h

φ

l
(f (l)(in)) = 0 and

c = 1, then f (L)(in) does not satisfy ψ.
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and orientation for autonomous vehicles to follow. As the

close-to-output layers of the network are either ReLU or

Batch Normalization, and as ψ is a conjunction of linear

constraints over output, it is feasible to use exact verification

methods such as ReLUplex [8], Planet [5] or MILP-based

approaches [3], [9] as the underlying verification method. We

developed a variation of nn-dependability-kit5 to read models

from TensorFlow6 and to perform formal verification via a

reduction to MILP. Using assume-guarantee based techniques

that take an over-approximation from neuron values produced

by the training data7, it is possible to conditionally prove some

properties such as “impossibility to suggest steering to the far

left, when the road image is bending to the right”. However,

under the current setup, it is still impossible to prove intriguing

properties such as “impossibility to suggest steering straight,

when the road image is bending to the right”. We suspect that

the main reason is due to the inherent limitation of the neural

network under analysis.

In our experiment, we also found that for some input

properties such as traffic participants in adjacent lanes, it is

very difficult to construct the corresponding input property

characterizers by taking neuron values from close-to-output

layers (i.e., the trained classifier almost acts like fair coin

flipping). Based on the theory of information bottleneck for

neural networks [18], [16], a neural network from high di-

mensional input to low dimensional output naturally eliminates

unrelated information in close-to-output layers. Therefore, the

input property can be unrelated to the output of the network.

Although we are unable to prove that the output of the network

is safe under these input constraints, it should be possible to

construct a counter example either by capturing more data or

by using adversarial perturbation techniques [17], [10].

To achieve meaningful formal verification, in our experi-

ments, we also realized that it is commonly not sufficient to

only record the minimum and maximum value for each neuron,

as boxed abstraction can lead to huge over-approximation. In

certain circumstances, we also record the minimum and max-

imum difference between two adjacent neurons in a layer (in

Figure 1, we record n17
i+1−n

17
i
where i ∈ {1, 2, 3, 4}). Modern

training frameworks such as TensorFlow support computing

differences of adjacent neurons with GPU parallelization8,

thereby making monitoring possible.

Overall, our initial result demonstrates the potential of using

formal methods even on very complex neural networks, while

it provides a clear path to engineers to resolve the problem

related to how to characterize input conditions for verification

(by also applying machine learning techniques). Our approach

of looking at close-to-output layers can be viewed as an

abstraction which can, in future work, leads to layer-wise

5https://github.com/dependable-ai/nn-dependability-kit/
6https://www.tensorflow.org/
7The data is taken from a particular segment of the German A9 highway,

by considering variations such as weather and the current lane.
8Computing the neuron difference, when neuron values are stored in an 1D

tensor n can be done in numpy using a single instruction diff(n), and in
TensorFlow using n[1 :]− n[: −1].

incremental abstraction-refinement techniques. Although our

practical motivation is to verify direct perception networks, the

presented technique is equally applicable to any deep network

for vision and lidar systems where input constraints are hard

to characterize. It opens a new research direction of using

learning to assist practical verification of learning systems.
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