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Abstract—The complexity of the operating environment and
required technologies for highly automated driving is unprece-
dented. A different type of threat to safe operation besides the
fault-error-failure model by Laprie et al. arises in the form of
performance limitations. We propose a system theoretic approach
to handle these and derive a taxonomy based on uncertainty,
i.e. lack of knowledge, as a root cause. Uncertainty is a threat
to the dependability of a system, as it limits our ability to
assess its dependability properties. We distinguish uncertainties
by aleatory (inherent to probabilistic models), epistemic (lack
of model parameter knowledge) and ontological (incompleteness
of models) in order to determine strategies and methods to
cope with them. Analogous to the taxonomy of Laprie et al.
we cluster methods into uncertainty prevention (use of elements
with well-known behavior, avoiding architectures prone to emer-
gent behavior, restriction of operational design domain, etc.),
uncertainty removal (during design time by design of experiment,
etc. and after release by field observation, continuous updates,
etc.), uncertainty tolerance (use of redundant architectures with
diverse uncertainties, uncertainty aware deep learning, etc.) and
uncertainty forecasting (estimation of residual uncertainty, etc.).

Index Terms—safety, uncertainty, autonomous vehicles, cyber-
netics, systems modeling, taxonomy

I. INTRODUCTION

Assuring system safety of highly automated driving vehicles

is an unprecedented challenge in engineering. Complex tasks

like interpretation of the surrounding world, which previously

were handled by a human driver, have to be mastered au-

tonomously by the self-driving car. Novel technologies like

machine learning for perception or Lidar sensors are used in

these systems. The system environment which is characterized

by an open context, i.e. unpredictability of the operational

domain [1], and limited knowledge about the achievable

performance of the system components results in a high degree

of complexity that has to be dealt with.

Established safety engineering practices and standards like

ISO2626:2018 [2] focus on functional safety and well known

internal malfunctions of the system. These malfunctions arise

due to a deviation of the actual behavior to a well-defined

function specification. In complex autonomous systems it is

infeasible to provide a complete function specification and

fully analyze the implemented behavior for deviations. This
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leads to multiple gaps in the overall engineering lifecycle that

have to be overcome for a safety argumentation [1], [3]. The

root cause for the identified gaps is a lack of knowledge,

i.e. uncertainty. This aspect is addressed by the safety of the

intended functionality (SOTIF) ISO/PAS21448 standard [4] in

the form of sufficient reduction of unknown unsafe scenarios.

While uncertainty has been considered as a residual risk in

the failure of hardware components, it was not incorporated

as a general lack of knowledge over the whole engineering

lifecycle. Several methods to handle this novel kind of uncer-

tainty have been developed. These include machine learning

with uncertainty estimations [5], [6] or saliency maps [7] that

can be used for implementation and during runtime. Other

aspects of the lifecycle are for example addressed by safety

analysis incorporating uncertainty via evidence theory [8] or

verification with probabilistic formal methods [9], [10]. For the

overall confidence to release a product assurance cases can be

enriched with belief modeling [11]. These methods provide

specialized solutions for problems regarding uncertainty in

their respective domain. Some of these methods are comple-

mentary, while others are redundant. However, in the overall

engineering lifecycle it is not yet clear how these methods

should be meshed together to sufficiently address the gaps

due to uncertainty.

In this work, we define an initial taxonomy for uncertainties

in order to derive this overall strategy. Our work is based

on the taxonomy for dependability that has been defined by

Laprie et al. [12], [13]. The taxonomy of Laprie builds on the

foundations of system theory and is thus generalized to all

application domains. It distinguishes between the properties

(availability, reliability, etc.), threats (fault, error, failure) and

means to dependability (fault prevention, removal, tolerance

and forecasting) and provides a general framework to engineer

dependable systems. However, it does not adequately address

the impact of uncertainty on dependability, which is a major

challenge encountered in autonomous systems and leads to

ambiguity when applying the fault-error-failure model. There-

fore, we adopt the system theoretic approach to define an

appropriate taxonomy. A core element of our taxonomy is a

distinction between different types of uncertainty. Analogous

to faults, the means to handle these uncertainties are included,

which can be used to classify existing methods and derive a

holistic strategy.
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II. SYSTEMS APPROACH TO UNCERTAINTY

In order to formalize the uncertainties encountered in the

development of autonomous systems, we adopt the system

theoretic viewpoint from cybernetics. We refer to the higly

automated driving vehicle being developed as System under

Development (SuD). The control loop of interest for us is

between the organization developing the SuD (controlling

system) and the SuD embedded in its operating environment

(controlled system). This viewpoint is analogue to the cogni-

tive system engineering approach by Rasmussen [14] and the

system theoretic accident model and processes (STAMP) by

Leveson [15].

The information for developing the SuD is obtained by

domain analysis, which acts as an observation channel for the

cybernetic control loop (Fig. 1). From the domain analysis

developers derive the needs and requirements for the SuD.

The developing organization then implements the system and

deploys it in the operating environment. The implementation

acts as the influencing channel of the control loop. By feed-

back through prototypes and field observation, the control loop

is continuously iterated.

Fig. 1: The cybernetic point of view of a development process

consists of the controlled system: system under development

(SuD) embedded in its environment and the controlling sys-

tem: development organization.

The controlling system exists of several subsystems like

people, tools or infrastructure. These are in a complex and

symbiotic relationship. For our viewpoint, the detailed in-

teraction are not of interest. We are mostly interested in

the mental and codified models within the organization. The

mental models are formed on an individual basis and represent

the state of knowledge of each person, which also contains

tacit knowledge, i.e. knowledge that cannot be codified into

information [16]. The individual knowledge is made explicit

by transformation into information within the codified models

by using processes, methods and tools. The codified models

are used for several purposes like communication of mental

models between developers or implementation of the system.

A fundamental principle of the cybernetic control loop is

the good regulator theorem formulated by Ashby [17], [18]. It

states that every good regulator of a system must be a model

of that system in order to achieve a good outcome (i.e. a

SuD fulfilling its purpose). The controlling system needs to be

able to predict the influence of its controlling actions on the

controlled system with a model. This shows the importance of

the models, as these have to be accurate to perform the correct

actions. Uncertainty can be attributed to inaccurate or wrong

model.

A. System models

It is crucial to understand what a model is composed of

and which properties it has to fulfill in order to be useful. A

formal basis for models has been formulated by Rosen [19].

He stresses the importance of the modeling relation (Fig. 2):

an isomorphic encoding ǫA,B and decoding δA,B of relevant

properties of the physical system into formal systems. The

causality in the physical system is thereby mapped to logic

inferences in the model. Such models can be mathematical

equations, SysML diagrams or, in the context of safety engi-

neering, failure analysis models (e.g. fault tree analysis).

Fig. 2: Modeling relation between a physical system consisting

of two ideal point masses (planet 1 and 2) and two formal

systems as models.

Multiple modeling relations between physical and formal

systems can be established, i.e. there are multiple models

available for a system. These are different representations

tailored to the specific needs of the modeler. Since our focus

is on the uncertainty aspect of modeling, it is important to

distinguish between deterministic and probabilistic models.

From the former a singular outcome can be inferred for a given

input, while for the latter only statements about probabilistic

outcomes can be inferred. On a very fine granular level the

physical world itself becomes inherently probabilistic due to

quantum mechanics. For these physical processes only prob-

abilistic models are applicable. However, on a macroscopic

level deterministic relations dominate causality and it is the

choice of the modeler to choose either a deterministic or

probabilistic representation of a physical system as a model.

To give an example, consider a reality where only two

planets exist, with a homogeneous mass distribution (i.e. they

can be treated as point masses). These exert a gravitational

force on each other and influence each other’s movement

through space and time resulting in elliptic orbits. We will

show how a deterministic as well as probabilistic model can

be built for the same physical system.
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The behavior of this system can be described by Newton’s

laws (Fig. 2: model A). The mathematical formulas for gravita-

tional forces and motion result in a set of differential equations.

These represent a deterministic model that allows inferring the

causality of motion of the bodies. Given the starting conditions

of initial position and velocity, every future state of the system

can be inferred. In principle, it would be possible to also apply

this to arbitrarily complex many-body problems. Regardless

of the complexity of the problem, calculating the future state

of the entire universe is always possible with a hypothetical

Laplace demon [20]. An entity that knows the entire present

state of the universe with unlimited calculation capacity to

exactly predict the future state. In reality, however there are

practical (availability of information, computation capacity,

etc.) as well as theoretical (Gödel’s incompleteness theorem,

quantum mechanics, free will, etc.) limits to determinism [21].

Another way to describe the system of two planets is to

adopt the frequentist point of view (Fig. 2: model B). This

means, to build a probabilistic model by repeated observation

of the positions. With an infinite amount of observations, the

exact probabilities to find either of the two bodies within a

spatial frame can be inferred from the obtained probability

density functions.

Both models, the deterministic and probabilistic, fulfill the

modeling relation and allow to draw conclusions about the

behavior of the system. Each model has its own purpose and

is valid for a given set of behavior that the modeler wants to

describe. While the deterministic one is useful to e.g. calculate

the trajectory for satellites, the probabilistic one is useful e.g.

for predicting the chance of meteor impacts.

This example illustrates that the property of determinism

and probability also have to be attributed to the model and not

only to the system itself. Only when dealing with systems that

are strongly influenced by the theoretical limits of determinism

the probabilistic nature becomes inherent. Models can also be

a mixture of deterministic and probabilistic elements and it is

the choice of the modeler, which representation of the system

best fits his needs.

III. TYPES OF UNCERTAINTIES

Uncertainties refer to the notion of unknown or insufficient

knowledge [22]. As a generic concept of the unknown, incom-

plete or imperfect knowledge, it has been classified in various

contexts in the literature [23]–[26]. In our system theoretic

approach to developing highly automated driving vehicles, we

focus on the importance of models to represent our knowledge.

Depending upon the origins of uncertainties in our models,

we distinguish between aleatory, epistemic and ontological

uncertainties.

A. Aleatory Uncertainty

Aleatory uncertainty can be regarded as randomness of a

process represented by a system model.

Aleatory uncertainty is considered to be irreducible for a

given choice of a probabilistic model and is quantified by

probabilistic distributions [26].

As an example, we continue with the physical system

consisting of two planets of the previous section. We are

interested in the probabilistic spatial distribution of the point

masses. We therefore use model B of Fig. 2, which provides a

probability that a planet is found in a given spatial frame. With

this probabilistic model of spatial distribution, the probabilities

to find a point mass in a certain frame depict a mere belief

and the crisp location at a given instant is subject to aleatory

uncertainty.

B. Epistemic Uncertainty

Epistemic uncertainty is associated to lack of knowledge

about the system model and the inexact encoding of physical

system to models.

An important aspect of epistemic uncertainty is that we lack

in knowledge but we are aware of it. This can also be referred

to as the known-unknown of the model [27]. Another character-

ization of epistemic uncertainty can be attributed to conditional

entropy [28], [29], i.e. the difference of information contained

in the model with respect to the physical system. A model is

an abstracted encoding of a system, hence a mere projection

of reality. Due to the abstraction, not every detail is encoded

in the model and thereby conditional entropy is induced.

We extend the concept of epistemic uncertainty to our

universe of point masses and start with the deterministic model

first. This model allows exact calculation of the motion of the

planets. For the idealized point masses the model is completely

accurate and there is no uncertainty in this model. However,

real world scenarios are more complex than point masses. Now

consider the planets with a homogeneous mass distribution

are replaced by a heterogeneous body with an uneven surface.

Newton’s laws still hold, but a model with idealized point

masses does not accurately describe the physical system any-

more. The causality in the physical system are not completely

encoded into the formal system model. The lack of knowledge

due to the inaccurate model leads to an epistemic uncertainty.

A more accurate model based on a spatial integral over the

attracting forces would allow a more accurate description and

reduce the epistemic uncertainty. However, this would require

complete information of the actual mass distribution, which

might not be available.

Now consider the probabilistic model representation. The

probabilistic distribution of the point masses is an aleatory

uncertainty for the given model. However, the probabilities can

usually not be determined exactly. With a frequentist approach,

we calculate the probabilities based on our past observations.

The gap between the actual and observed probabilities rep-

resents the epistemic uncertainty of the probabilistic model.

With each new observation, our distribution parameter (e.g.

means and variance for a Gaussian distribution) become more

credible. Hence, our knowledge increases and the epistemic

uncertainty decreases with every observation.

C. Ontological Uncertainty

Ontological uncertainty can be defined as a condition of

complete ignorance in the model of a relevant aspect of the
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system.

This can also be referred to as the unknown-unknown [27],

the state of we do not know that we do not know. The

term ontological uncertainty is based on ontology, i.e. is the

study of existence. We thereby refer to a lack of knowledge

about the actual existence of relevant aspects in our model

representation.

Again, we use the point mass universe to explain the concept

of uncertainty. We assumed that there are only two planets

and our past experience with the universe also supports this

hypothesis. However, at some point we observe a behavior of

the planets that contradicts the prediction by the models due

to the influence of a third planet. This challenges our prior

beliefs about the universe. The probabilistic and deterministic

model are completely inaccurate. The possibility that there are

phenomena in the universe which are neglected by our models

is represented by the ontological uncertainty. In order to for-

mulate a new model that provide the necessary representation

of the universe, we need to reformulate our models to include

the influence of the third point mass.

Previous work only distinguishes between aleatory and epis-

temic uncertainty [26]. However, we consider that in the field

of highly automated driving vehicles, a further distinction into

ontological uncertainty is valuable, as they require different

means for reduction. The completeness and correctness of

models are generally challenged in the early stages of research

and development of novel systems. For autonomous systems

operating in an open context the ontological uncertainty can

never be completely disregarded. Therefore, it should be

included in the safety case that it has been properly addressed.

Segregating the epistemic and ontological uncertainty in

a model can be challenging, as they constitute of blurred

boundaries. A general rule of thumbs is a distinction between

model accuracy (epistemic) and model correctness (ontologi-

cal). Subjectively these uncertainties can be distinguished by

the surprise factor when we observe new behavior. Mathemati-

cally the conditional entropy between the system and its model

can be used as a formal expression for the surprise factor [28],

[29].

IV. MEANS OF UNCERTAINTIES

In order to develop dependable systems, the impact of

aleatory, epistemic and ontological uncertainties on the overall

dependability has to be minimized. Analogous to the taxonomy

for dependability given by Laprie et al. [12], [13], we use a

similar taxonomy for means to cope with uncertainties (Fig. 3).

In this uncertainty taxonomy, we classify the means into

uncertainty prevention, tolerance, removal and forecasting:

• Uncertainty prevention can e.g. be achieved by avoiding

complexity in the system. This can be done by using

simple architectures not prone to emergent behavior or

restriction of the operational design domain (ODD).

• Uncertainty removal can be done during development

by e.g. a safety analysis including epistemic/ontological

Fig. 3: Uncertainty occurring in system models are classified

into aleatory, epistemic and ontological. To build dependable

system in the presence of these uncertainties the means pre-

vention, tolerance, removal and/or forecasting are necessary.

uncertainty or during use by e.g. field observation to

monitor ontological events.

• Uncertainty tolerance can typically be obtained by using

redundant architectures (e.g. overlapping field of views

of sensors) or using components that can detect uncer-

tainty (e.g. machine learning with epistemic uncertainty

outputs).

• Uncertainty forecasting is based on estimating the present

level and future occurrence of uncertainties. These are

relevant to make a decision about the release of a prod-

uct by e.g. arguing about a sufficiently low ontological

uncertainty.

This taxonomy can be used to define a strategy to deal with

uncertainty on system and component level. As a general rule

of thumb, uncertainty prevention should be prioritized as this

eliminates the need for further measures. Uncertainty removal

should be especially considered in design processes to identify

weaknesses in the architecture. However, due to the open

context it will not be possible to sufficiently reduce uncertainty

by only focusing on prevention and removal. Uncertainty

tolerance within the system is required to cope with unforeseen

scenarios.

In order to systematically address the gaps due to un-

certainty, we aim to use the different types to evaluate the

capability of various means. Especially ontological uncertainty

is difficult handle and is the main contributor to the long tail

validation challenge of highly automated driving [30], [31].

Methods like uncertainty tolerance are hardly able to cope

with this type, due to the limit of knowledge that can be

incorporated into the implemented system. Instead, methods

like uncertainty removal during use are better suited. To

demonstrate how the different types of uncertainty can be

addressed by the means, we explore uncertainty removal as

an example by extending a safety analysis with uncertainty in

the next section.

V. UNCERTAINTY REMOVAL

Safety analysis are an integral part of safety engineering to

verify that the design fulfills desired properties. An established

method is the fault tree analysis (FTA) [32]. In this section,

we first give a brief introduction to FTA. It can be challenging
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to include epistemic and ontological uncertainties explicitly

within the FTA’s failure model. By using more sophisticated

analysis models, we show that we can include these types of

uncertainty.

A. Fault tree analysis

FTA is a graphical model based on a Boolean fault propa-

gation and is used to identify shortcomings like single point

faults in the system. Different extensions to the basic method

have been introduced to deal with more complex aspects of

analysis [33], [34]. As a deductive analysis tool, FTA starts

with identifying undesirable top events. This top down process

is continued until root causes (basic events) are identified

which cannot be further decomposed. The propagation of basic

events to the undesired top event is modeled by Boolean gates.

While FTA is quite popular and in widespread uses, it also

has some shortcomings. For autonomous systems, the failure

oriented nature of FTA limits the ability to include human

factors or nominal performance of the system. Further, the

cause and effect relationship between events is deterministic,

which cannot model more diverse and uncertain relations in the

systems. Advances to model this probabilistically in FTA mod-

els have been made [35]. However, these still contain several

limitations to be able to model more generalized dependencies

and uncertain relationships which are encountered in complex

systems.

B. Safety analysis with uncertainty

In order to deal with the shortcomings of FTA regarding the

different types of uncertainty we propose an analysis method

based on evidence theory [36] in combination with Bayesian

networks (BN) [8]. Evidence theory incorporates the different

types of uncertainty and the Bayesian network representation

allows to use a graphical model that supports in construction

of the mental model by the developers.

The BN is a Directed Acyclic Graph (DAG) that consists

of nodes and edges. Every node is a random variable, which

represents an element of the system or its context. The edges

represent a directed causal relationship between two nodes.

The edge direction runs from the parent node (pa) towards

the child node (ch). Together, node and edge represent the

structure of the probabilistic network. The effect of parent

node on child node is determined by conditional probabilities

P (pa|ch). In the following, we demonstrate how all three

types of uncertainties can be modeled in a BN with a simple

example.

Consider we want to develop a perception chain consisting

of a camera with a machine learning algorithm that classifies

objects. When developing this system we assume that only

cars or pedestrians will be encountered, and hence only these

will be included in the model used by the perception chain.

However, we also believe in the possibility of existence of

other objects that will be encountered in the real world and

include an unknown object state in our root node (Fig. 4).

This unknown object state of the ground truth represents

the ontological uncertainty in our analysis. The probabilities

Fig. 4: Bayesian Network of an object perception chain.

The ground truth node represents the actual object and the

perception node the classified object as output.

TABLE I: Conditional probability table (CPT) of

P (perception|groundtruth). Epistemic uncertainty about the
performance of the classification is encoded in the probabilities

of the state car/pedestrian. Ontological uncertainty about the

possibility of further objects is included in the unknown state

of the ground truth.

Perception
Ground Truth car pedestrian car/pedestrian none

car 0.9 0.005 0.05 0.045
pedestrian 0.005 0.9 0.05 0.045
unknown 0 0 0.2 0.7

Pcar = 0, 6, Pped = 0, 3, Punknown = 0, 1 represent how

likely we will encounter these objects in the real world. This

probabilistic distribution represents the aleatory uncertainty of

our world model.

At the end of the perception chain, we classify the encoun-

tered objects to car, pedestrian or none. We also include a state

about car/pedestrian. This state is not an actual output of the

classifier. It represents our epistemic uncertainty in assessing

the performance of the perception chain to correctly classify

the objects. The conditional probability table (CPT, Tab. I) of

the perception node in the BN encodes this epistemic uncer-

tainty by the corresponding probabilities in the car/pedestrian

column.

The advantage of the BN approach is that it can be scaled

up to model the complete system and allows hierarchical

refinement analogous to FTA. For each node and CPT the

corresponding aleatory, epistemic and ontological uncertainty

can be included as required. However, the number of param-

eters that need to be elicited in the CPT grows exponentially

with the number of parent nodes and their states. Using BN

for larger systems, hence, can become cumbersome. However,

several techniques to deal with this problem are available [37]–

[39].

In this example, we have shown a clear distinction between

epistemic uncertainty (decision between existing states) and

ontological uncertainty (objects not included in the perception

model). This distinction is essential for uncertainty removal,

as it allows identification of fitting measures. The epistemic

uncertainty can be reduced by further observation and re-

finement of the existing perception models (i.e. increase of

our knowledge about the perception chain performance). In

contrast, the ontological uncertainty requires a more thorough

domain analysis and extension of the perception model.

With this kind of analysis, it can also be demonstrated that

redundant architectures with diverse uncertainties can be used
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to build uncertainty tolerant systems. The BN approach also

allows including dependencies by common parent nodes to

identify common causes for uncertainties.

VI. CONCLUSION AND OUTLOOK

We presented a system theoretic viewpoint of uncertainty

and derived a distinction between aleatory, epistemic and on-

tological types. Due to the different nature of these types, they

have to be addressed by fitting methods. In order to provide

a framework to define an overall strategy for methods suited

to deal with these uncertainties, we classify the means into

prevention, removal, tolerance and forecasting. As an example

for applying the types of uncertainty, we have shown a safety

analysis method by using a Bayesian network approach with

evidence theory which can be used for uncertainty removal.

We intend to apply this system-theoretic viewpoint to all

steps of development process and use it as guidance to decide

which means are best suited to handle the three types of

uncertainty. Thereby, we want to build a safety argument

that uncertainties are properly managed and do not pose an

unacceptable level of risk.
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