
Autonomous System Design Initiative Paper

Making the Relationship between Uncertainty

Estimation and Safety Less Uncertain

Vincent Aravantinos

Autonomous Intelligent Driving GmbH

Munich, Germany

vincent.aravantinos@aid-driving.eu

Peter Schlicht

Volkswagen Group Research

Wolfsburg, Germany

peter.schlicht@volkswagen.de

Abstract—Uncertainty estimation is an intense subject of
research in object detection. A commonly mentioned motivation
is the usage of object detection in safety-critical applications.
However, the precise connection between uncertainty estimation
and safety engineering is seldom done: how shall uncertainty esti-
mation really support safety engineering? How does uncertainty
relate to classical safety engineering activities? Which problems
does uncertainty estimation solve? Which new challenges does it
pose? This paper sketches those connections more precisely and
provides perspectives for future work in this direction.

Index Terms—Deep Learning, Uncertainty, Safety

I. INTRODUCTION

Usage of probabilities is prevalent in robotics [1]: it belongs

to the fundamental tools of data fusion [2], it is essential

for behavior prediction [3] and it propagates all along the

chain of the classical sense-plan-act architecture [4]. It is

therefore essential that any technology contributing to one

of those blocks is able to generate not only a result, but a

probability distribution of results. Obtaining such a distribution

for deep neural networks (DNNs) is the subject of uncertainty

estimation.

Uncertainty in deep learning is an intense subject of research

[4]–[8]: defining uncertainty (ex. depending on the causes

of this uncertainty: see aleatoric vs epistemic uncertainty),

assessing uncertainty (ex. using Bayesian networks or Monte

Carlo dropout), and assessing uncertainty efficiently have been

and, to a certain extent, remain challenges.

As mentioned, estimating uncertainty is essential for prob-

abilistic robotics thus making it essential to have DNNs

generating such uncertainties. Another commonly mentioned

motivation is the usage of uncertainty estimation for safety,

especially in object detection to support safety-critical appli-

cations. This paper focuses only on this usage of uncertainty

estimation.

The main objective of this work is to make more explicit

the connection between uncertainty estimation and safety

engineering. Indeed, we argue that this connection is still

unclear as of the moment of writing. According to [4],

“epistemic uncertainty is required to understand examples

which are different from training data”. But nothing more is

mentioned. According to [7]: “Current state-of-the-art object

detectors cannot determine whether a prediction is a true or

false positive. This is undesirable for safety-critical systems

like autonomous driving in which a wrong detection can have

fatal consequences.” Again, there are no more explanations

about the matter. In [8], the authors are even more assertive:

“Quantifying the uncertainty associated with the prediction of

neural networks is a prerequisite for their deployment and use

in safety-critical applications.”

In summary, despite a clear “gut feeling” that uncertainty

can help in the development of safety-critical systems, it is

is still very vague how uncertainty relates to safety. How

does it connect to classical safety engineering notions like

failure modes? How does it connect to safety diagnostic and

mechanisms? What are the parallels between uncertainty and

the content of current standards? It is of course expected that

no current standard will prescribes how to develop deep neural

networks, however, there must be some parallels or similarities

in rationales that can for sure be identified.

In this paper, we attempt to sketch more concretely those

connections and parallels. We first introduce preliminaries of

both worlds: in Section II, we define uncertainty and present

current techniques to estimate this uncertainty; in Section III,

we introduce basics of safety engineering, as relevant for

the comparison. Section IV addresses combining both worlds

by establishing parallels and connections between them. Sec-

tion V highlights challenges that those parallels highlight and

which we identify as avenues for future work: what is still

missing to ensure that uncertainty estimation indeed fulfills

the promises for the development of safety critical systems?

II. UNCERTAINTY

The progress in the field of Deep Learning has brought

Deep artificial neural network seem to be the tool of choice for

realizing perception also for safety-critical applications such

as autonomous driving. Those systems have to act in an open

world and coexist and cooperate with humans. One challenge

in this respect is the limited information, those perception

systems can access. This has three major reasons:

1) intrinsic uncertainty in the world (random effects, non-

predictable influences)

2) the limited sensing of autonomous systems even if we

allow car-to-car communication (e.g. occlusion)

3) uncontrollable and hard to model behavior of others (e.g.

pedestrians in traffic)

This limitation in information forcibly means that autonomous

systems have to deal with uncertainty.

978-3-9819263-4-7/DATE20/ c©2020 EDAA 1139



Autonomous System Design Initiative Paper

What adds to this is the imperfection of the DNNs them-

selves: besides the given uncertainty in the environment (the

aleatoric uncertainty), perception systems do have model-

specific inaccuracies leading to what is called the epistemic

uncertainty.

As humans do as well, we would expect an autonomous

agent to act more defensively or doubt its perception in sit-

uations dominated by measurably higher uncertainty in order

to raise the safety of its actions. This gives strong motivation

into estimating the amount of uncertainty in perception DNNs,

which is usually done by measuring or propagating dispersion

metrics on the DNN output interpreted as an estimated prob-

ability distribution over the possible classes.

For the sake of simplicity, we will stick to the case of

a classification DNNs in this section, but the arguments

generalize well to dense classification tasks like semantic

segmentation, regression tasks or combinations thereof (like

object detection).

Classification models usually output Softmax vectors

wherein the class specific neuron activation values (logits) ac
for classes c = 1, .., n are transformed to a class probability

vector (vc)c=1,..n where vc =
exp (ac)∑

c=1,..,n
exp (ac)

.

Interpreting this as a probability distribution over the

possible classes allows for first uncertainty estimates u =
u((vc)c=1,..n):

• most naively, the probability of the winning class yields

an uncertainty estimate (i.e. u = 1−max((vc)c=1,..n))
• more statistically rigorous uncertainty estimates come

from the variance u = var((vc)c=1,..n) or the standard

deviation = std((vc)c=1,..n).
• other uncertainty estimates stem from measuring the

difference between most and second most proba-

ble class of the output: u = max((vc)c=1,..n) −
max ({vc, c = 1, ..n} \ {max((vc)c=1,..n)})

• those measures can be combined to improve the quality

of the estimated uncertainty [9]

The above estimates tend to suffer from the fact that classifi-

cation DNNs - even though being interpretable as probabilistic

models - are not trained towards outputting realistic probability

vectors: usually, we provide the Ground Truth in form of

one-hot encoded vectors, i.e. as Dirac Delta distributions that

put all probability to the correct class. As we minimize the

class specific deviation from the Ground Truth in supervised

training, we motivate DNNs into reporting their output over-

confidently. This effect can mitigated through two different

approaches:

1) Network calibration - see [10] for an overview. One quite

direct calibration approach is rescaling of the logits.

This is sometimes referred to as temperature scaling

and introduces another hyperparameter into the model

development process. It can either be learnt or fine-

tuned on a particular tuning set. Experiments show

some improvement of the resulting uncertainty estimate

- measured for example by means of quantifying the

performance of the uncertainty estimate as a detector of

wrong classifications. One possible metric for this is the

Area under Curve for the Receiver Operator curve or

the Precision Recall curve.

2) An alternative to calibration of DNNs lies with sampling

approaches. Within those, some noise signal is applied

either to the input or to intermediate activations within

the network at inference. Inferring the network multiple

times while sampling from those noise sources allows

for better uncertainty estimates stemming from the aver-

aged Softmax outputs: Droupout layers randomly switch

off connections within a DNN. Gal has shown that

sampling from a DNN with active dropout layers yields

more realistic uncertainty estimates [5]. Alternatively,

there are approaches of a latent probability space be-

ing learned alongside the training process. This latent

space is expected to encode the experienced uncertainty

through adding noise to particular layers close to the

model output. [11]

A downside of the sampling approaches for measuring the

DNN uncertainty is their impact on the need for computing

power and the increased latency on embedded devices. Postels

et al propose some possible solution by introducing a sample-

free method of uncertainty estimation which essentially prop-

agates the noise coming from Dropout layers in an efficient

way through the remaining network [8].

III. SAFETY ENGINEERING

Safety engineering is a long-standing discipline described

both in academic literature and in numerous standards and

norms. In this paper, we will mainly refer to automotive

standards, especially the ISO26262 [12] (emerging standards

like SOTIF [13] might also be considered) but most concepts

should apply equally to other approaches to safety engineering

as used in other industries, ex. railway or aeronautic [14].

A. System level

A first point to make, which characterizes a frequent mis-

conception in the ML community: safety engineering is, before

all, a system engineering discipline. A system is typically an

entire car, plane or train. This is to oppose to a neural network,

which is only a very small subpart of the entire system. As a

consequence, it is impossible to devise techniques “to make a

neural network safe”: the entire system is safe or not, but not

a single part of it.

From a methodological perspective, this means that safety

engineering typically starts by considering hazards at the level

of the entire system, then deriving safety goals from a “HARA”

(Hazard Analysis and Risk Assessment). Safety goals are

basically safety-specific system-level requirements, associated

with some so-called integrity level defining how much rigour

shall be put in the fulfilment of those requirements: in the ISO-

26262, such integrity levels are graded from A (lowest level)

to D (highest level). From safety goals, one derives a safety

concept (essentially an architecture of the system guaranteeing

that the safety goals are reached), which is itself made more

and more concrete until we reach the level of designing

1140 Design, Automation And Test in Europe (DATE 2020)



Autonomous System Design Initiative Paper

particular pieces of software and hardware with dedicated

refined safety requirements. Only then do we encounter the

possibility of having to consider safety requirements for a

neural network. Since this paper focuses however on neural

networks, we will not cover all those early phases but it is

essential to be aware of them to understand what can be solved

or not at the level of a neural network.

This paper therefore positions itself at the same level of

safety standards usually applying at the level of components,

ex. software or hardware. In the ISO-26262, this corresponds

to parts 5 (hardware) and 6 (software). In aeronautics, this

corresponds to the DO-178C [14] for software.

B. Safety measures and safety mechanisms

Once we reach the component level, we have safety re-

quirements imposing both which failures are safety-critical

and which integrity level they shall have. There are then

different (complementary) ways to reach those integrity levels.

Some such ways are to apply at design time and some

others at run-time. Typical examples at design time (“safety

measures”) include using safety-related design patterns, ex.

redundancy, which enables to reduce failure rates on condition

of independence. Other examples are purely process-related,

ex. for software: “statement coverage is highly recommended

to assess the coverage of tests for ASIL-A” or “MC/DC (Mod-

ified Condition/Decision Coverage is highly recommended to

assess the coverage of tests for ASIL-D”, etc.

Design-time methods typically have the objective of reduc-

ing (or even completely eliminating) failures before the system

is deployed. Runtime methods, on the other hand, target

failures once the system is deployed. Typically, if no safety

measure can provably reduce the risk of failure sufficiently

that the desired integrity level is reached, then one needs to

find alternative ways (“safety mechanisms”) to address the

failures. In such a case, the objective is not to prevent the

failure from happening, but rather to 1. detect it and 2. react

to it. The failure rate per se is not diminished but one can

define mechanisms ensuring that the (risky) consequences of

the failure are being circumvented.

Defining such mechanisms requires to:

1) list out all the fault models (i.e., types of faults) that can

entail the unwanted failure,

2) for all those fault models, design diagnostic mechanisms

enabling to detect whether a fault occurred or not,

3) for every potential fault occurrence, design reaction

mechanisms to ensure that, either the fault does not re-

sult into a failure, or the failure is clearly communicated

to the handling components at a higher level.

Various fault diagnostic mechanisms can be found, particularly

for hardware, in the appendix D of the ISO26262:5 [12].

C. Systematic and random failures

Note that diagnostic mechanisms are typically encountered

to mitigate so-called random failures. Random failures are

typically encountered for hardware: the same hardware tested

twice in the same situation can randomly generate a different

outcome. Of course both situations are never exactly the same,

but the extent of our knowledge makes both situations non

distinguishable (ex. we cannot know the state of every atom

in the world at every instance in order to compare both

situations). Software failures on the other hand are typically

so-called systematic failures: the same software – at least at

an algorithmic level – shall return the same outcome given the

same input and the same internal state (and this state shall be in

control of the engineer – which is not the case for hardware).

An ideal way of assessing whether an integrity level is

reached is to estimate the frequency of occurrence of a failure.

This is typically doable for random failures but very hard for

systematic ones. Indeed, failure rates of random failures are

(very approximately) obtained by letting the system run a long

time and simply measuring how often it fails. Even though it

is in principle doable for systematic failures, it does not make

much sense: when a systematic failure is encountered, it is

reproducible and there is zero acceptable reason for not fixing

it. It is therefore very hard to obtain some reasonable statistical

estimation of a failure rate for systematic failures and, so far,

those have been tackled essentially by process-based measures:

in the absence of a simple way to actually estimate the failure

rate, standards typically skip this estimation and just define

a set of processes to follow depending on the ASIL, ex., as

mentioned above, for software: “statement coverage is highly

recommended to assess the coverage of tests for ASIL-A”.

IV. COMBINING BOTH WORLDS

We now assume that the neural network is used to fulfill a

safety-critical requirement (say, some ASIL-D requirements).

This section aims at mapping uncertainty estimation to parts

of safety engineering where it makes the most sense.

Clearly, in the methods highlighted in the previous section,

the closest form of safety measure/mechanism to which uncer-

tainty estimation can relate is runtime safety mechanisms: just

like for, say, hardware random faults, uncertainty estimation

can be considered as diagnostic method to identify, at runtime,

when a particular fault might trigger. It can also be used to

arbitrate between different, possibly contradicting, inputs in

the form of a voter mechanism.

Let us now investigate this analogy. As mentioned earlier,

to define such a safety mechanism, one must: 1. list out all

potential fault models, 2. design detection mechanisms, 3.

react to fault detections.

A. Fault models for DNNs

A first step is to analyze the DNN and list out potential

fault models. Note that once the industry becomes more

mature, it will be possible to sketch typical fault models

in a standard, as is done for instance for hardware in the

ISO26262. For now, it is still unclear whether safety concepts

for autonomous driving or ADAS need to rely on the functions

fulfilled by DNNs, and if so how (is a false positive safety

critical? is confusing a car for a tree safety critical? etc.).

Furthermore, those functions are even not yet stable across

industries (ex. 2D image-based detectors vs 3D Lidar-based

Design, Automation And Test in Europe (DATE 2020) 1141



Autonomous System Design Initiative Paper

ones). As a consequence, it is unlikely to expect, like for

hardware, that a typical list of fault models for DNNs appear

in the standard anytime soon; therefore, any development of

DNNs for safety-critical applications nowadays shall include

an activity explicitly investigating the fault models of the

DNNs.

Note that fault models depend actually only on the function

that a DNN has to fulfill (ex. “detect pedestrians in a Lidar

point cloud”) and not on the fact that we use DNNs or not.

As a consequence, even if rule-based algorithms were used to

fulfill the function, the same faults could occur and would be

relevant (but one would handle them typically differently: by

inspecting the rules of the algorithm to understand how the

fault might occur).

Example 1: Assume that a DNN is used as a 3D object

detector taking as input Lidar and camera data and returning

3D bounding boxes (x, y, yaw, w, h, l) paired with a

classification (pedestrian, bicycle, car).

Typical faults considered in the ML literature are: false

negative, false positive, bad classification, wrong yaw, wrong

size, wrong position. In practice, the fault models shall depend

on the safety requirements. Even though this paper assumes

that the safety requirements are done separately and therefore

makes it impossible to actually define the fault models, expe-

rience makes it clear that a fault model as simple as “false

negative” will not be enough. Typically, safety requirements

include tolerance margins and would distinguish different

faults depending on their impact. Therefore, a more realistic

list of fault models could be:

• instead of just “false negative”: false negative for a

pedestrian, false negative for a bicycle, etc.

• idem for false positives,

• instead of just “bad classification”: “car mistaken for a

pedestrian”,“pedestrian mistaken for a car”, etc.

• instead of just “wrong yaw”: “yaw wrong by less than

5°”, “yaw wrong by less than 10°” (those are not exclu-

sive: one might want to consider both failure modes but

with different integrity levels), etc.

• idem for position and size.

It shall be clear from these examples that, in order to be useful

for safety, measuring the performance of a DNN goes way

beyond a simple F1-score.

A first lesson to learn based on these examples is that, from

a safety perspective, obtaining a continuous uncertainty is not

relevant: faults are boolean, either we have a fault or we do

not. The continuous value is then only a tool to assess the

presence/absence of the fault.

B. Uncertainty as a detection mechanism

At that stage, the connection to uncertainty is obvious:

uncertainty estimation is a safety mechanism that (potentially)

allows to detect the occurrence of a given fault. As a conse-

quence, a DNN estimating uncertainty shall do so according

to the fault models defined in earlier phases.

From a safety engineering perspective, there is still a lot of

work to do to obtain a proper detection mechanism thought:

1) How to react to the fault itself: this is typically some

architectural work, which has to be done independently

of the ML engineers.

2) It shall be assessed how much the detection mechanism

detects faults: How often does it indeed detect faults?

How many of these faults still go undetected? This is

called the “diagnostic coverage” in the ISO26262.

3) Once this diagnostic coverage is assessed, one can

analyze whether the integrity level is reached or whether

further measures shall be taken.

Points 1 and 3 are independent of the detection mechanism

itself and are therefore not of interest for uncertainty estima-

tion and for this paper. Points 2 however rise challenges for

uncertainty estimation that might be of interest for the research

community. We explore those in Section V.

C. Usage of uncertainty in the reaction mechanism

Once a fault is detected (using uncertainty or not), one

needs to react to the fault to mitigate it. A particular form of

fault can involve different components providing contradicting

outcomes. In such a case, one typically needs a voter to

arbitrate between both results. Even if uncertainty is not used

for the fault detection, it could be used as a mechanism to

mitigate the fault. In this paper, we focus on fault detection.

The usage of uncertainty for voter mechanisms is however to

be explored further.

D. Note on the pseudo-randomness of DNNs’ failures

As mentioned earlier, runtime safety mechanisms are mostly

encountered for random failures. DNNs are however software

and shall therefore only be subject to systematic failures. How

can we then understand that uncertainty is then used in a way

that is usually employed for random failures more than for

systematic ones? We explore this question in that section.

Classical connections between machine learning and safety

engineering is to consider DNNs as software and thus to tackle

essentially the sources of systematic failures in a similar man-

ner as is classically done for software. Various recent works

acknowledge this and attempt therefore to transpose some

techniques from software engineering to neural networks, see

ex. [15]–[18].

We argue that deep neural networks, despite being software,

also exhibit a form of random failure. Indeed, given two very

similar inputs, ex. an image with a pedestrian and the same

image in which the same pedestrian is slightly shifted, a deep

neural network might generate two different results. Of course,

this does not literally exhibit a random failure: both inputs are

different, so there is in principle no reason to assume that

the outputs shall be the same, from a pure algorithmic point

of view. However, as explained earlier, we can argue that the

same holds for random failures in hardware: even if a piece of

hardware fails for what seems to be the exact same situation

as when it did not fail, the reality was actually not exactly the

same when executed (not all atoms were exactly in the same

state).

1142 Design, Automation And Test in Europe (DATE 2020)



Autonomous System Design Initiative Paper

The main similarity however is that, in both cases, the

differences between how the system reacts to two very similar,

yet different, situations is not completely in our hands: we

do not know how a piece of hardware will react to a small

change in the atoms of a given situation, just as we do not

know how a (esp. deep) neural network will react to two very

similar but yet different images (at least, as long as explainable

AI remains a non-solved endeavor). This is very different for

classical “rule-based” algorithms, for which we know the logic

processing some inputs.

This situation can be summarized by the following quote

from [19]:

If our knowledge of an event that has already hap-

pened is incomplete then we need to reason about it

in the same way as we reason about uncertain events

yet to happen.

Note: this analogy is the reason why talked so far of “fault

model” for DNNs instead of “failure mode”. This choice might

be of course disputable.

V. CHALLENGES

If one wants to use uncertainty estimation for safety, it is

essential to guarantee that this estimation indeed does what

it is intended to do: provide an estimation of how “wrong”

the network can be. More precisely, we need a way to assess

how realistic the uncertainty estimation indeed is. There are

two different levels to address this: one at the uncertainty

estimation level, the other one at the fault detection level.

A. Uncertainty realism

Picture the following situations: imagine we use two dif-

ferent 3D object classifiers. Both classifiers provide some

uncertainty estimation over the classification in the form of

a real number between 0 and 1. Suppose we provide as input

a point cloud in which a pedestrian is present. Both classifiers

identify the pedestrian but they assign different uncertainties.

How can we decide which one provides the “best” uncertainty?

Which of both uncertainties is the most reliable?

There are various directions to tackle this.

1) Uncertainty “realism”: Various approaches attempt at

assessing how realistic uncertainty is [20], [21]. Those ap-

proaches are interesting but very hard since no ground truth

is available.

2) Statistics: A first possibility is to take inspiration from

statistics: this is not the first time in History that one tries

to estimate some probability distribution. This has been the

subject of statistics for a long time.

In statistics, the typical way of obtaining such a probability

distribution is to rerun the “experiment” in order to obtain

new samples, for which we would get new outcomes because

experiments are non-deterministic (at least those considered

in the realm of statistics). Out of the multiple outcomes,

one could then infer a probability distribution (typically using

classical statistical tests). Here again, the question of selecting,

among various possible models, which one is the best, is a

very classical problem in statistics, called “model selection”

[22]. Typically a model is considered better than another if

it fits better the data and if it is simple enough (a form

of Occam’s razor to avoid overfitting), see for instance the

Bayesian Information Criterion (BIC [23]).

In the case of DNNs, it is however quite different: re-

running the DNN in the same situation shall always return

the same result, so that we do not actually obtain a distribu-

tion. Current approaches to uncertainty estimation attempt to

reproduce a similar situation by sampling different DNNs. But,

contrarily to experiments just mentioned, such experiments do

not provide any guarantee since the various sampled outcomes

are provided by the DNNs themselves. In conclusion, it is

actually very hard to assess what the uncertainty provided by

DNNs actually represents.

Parallels with classical statistics remain to be explored.

3) Uncertainty labelling: A pragmatic possibility is to try

to label uncertainty, as much as possible. For instance, one

could request labelled data where not only a bounding box

is provided, but a bounding box paired with some intervals

around the borders. Such intervals could represent both the

uncertainty of the “labeler” or uncertainty due to sensor

limitation (in which case the uncertainty can be automatically

assigned, ex. camera resolution). This would not handle epis-

temic uncertainty but would provide maybe more ground to

aleatoric uncertainty.

Whether used during training or not (not all uncertainty

estimation methods are able to take this form of training data

into account), having such a labelled data could at least provide

a test set allowing for proper validation of the uncertainty.

4) Fault detection: All the previous directions attempt at

validating the uncertainty estimations themselves, i.e., some

real number between 0 and 1 in the easiest case, or some

probability distribution in the most complex case. However, if

the purpose of uncertainty estimation is only to detect faults,

then we only want to know if the estimation passed a particular

threshold. As a consequence, the best way to make sure that

the uncertainty estimation is usable for safety might not be

trying to validate the uncertainty itself but rather to measure

how often does this uncertainty enables to find a fault. This

would simplify the task a lot and be sufficient to answer the

needs from a safety engineering perspective. It would allow

to get rid of questions like “what is the meaning of a given

uncertainty number in reality?”.

If such a direction was to be pursued, the overall assessment

would be much simpler: one would need to define appropriate

thresholds based on the fault models as described in Section

IV-A and run tests on a test set in order to obtain a diagnostic

coverage for the given method. It is then enough to identify

how many faults were detected and how many were not.

We consider this direction to be actually the most promising.

VI. CONCLUSION

In this paper, we tried to make more precise how and

why uncertainty estimation can be useful for safety. To do

so, we recalled both uncertainty estimation and the relevant

methods from safety engineering. We presented analogies

Design, Automation And Test in Europe (DATE 2020) 1143



Autonomous System Design Initiative Paper

between uncertainty estimation and safety mechanisms. We

highlighted in particular the similarity with random hardware

failures and took therefore inspiration of the hardware part of

the ISO26262 (part 5, [12]) to sketch how to use uncertainty

estimation for safety engineering, in particular to detect faults.

This analogy conducted us to identify follow-up challenges in

this area: it is not enough to detect a fault, one should also

estimate the diagnostic coverage of this detection mechanism.

This opens new follow-up research directions for uncertainty

estimation and safety engineering.

REFERENCES

[1] S. Thrun, “Probabilistic robotics,” Commun. ACM, vol. 45,
no. 3, pp. 52–57, Mar. 2002. [Online]. Available:
http://doi.acm.org/10.1145/504729.504754

[2] D. L. Hall and J. Llinas, “An introduction to multisensor data fusion,”
Proceedings of the IEEE, vol. 85, no. 1, pp. 6–23, Jan 1997.

[3] D. Ridel, E. Rehder, M. Lauer, C. Stiller, and D. Wolf, “A literature
review on the prediction of pedestrian behavior in urban scenarios,”
in 2018 21st International Conference on Intelligent Transportation

Systems (ITSC), Nov 2018, pp. 3105–3112.

[4] A. Kendall and Y. Gal, “What uncertainties do we need in
bayesian deep learning for computer vision?” in Advances in

Neural Information Processing Systems 30, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 5574–5584.
[Online]. Available: http://papers.nips.cc/paper/7141-what-uncertainties-
do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf

[5] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, University of
Cambridge, 2016.

[6] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in International

conference on machine learning, 2016, pp. 1050–1059.

[7] M. T. Le, F. Diehl, T. Brunner, and A. Knol, “Uncertainty estimation for
deep neural object detectors in safety-critical applications,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 3873–3878.

[8] J. Postels, F. Ferroni, C. Huseyin, N. Navab, and F. Tombari, “Sampling-
free epistemic uncertainty estimation using approximated variance prop-
agation,” submitted to International Conference on Computer Vision,
2019.

[9] M. Rottmann, P. Colling, T. Hack, F. Hüger, P. Schlicht, and
H. Gottschalk, “Prediction error meta classification in semantic
segmentation: Detection via aggregated dispersion measures of softmax
probabilities,” CoRR, vol. abs/1811.00648, 2018. [Online]. Available:
http://arxiv.org/abs/1811.00648

[10] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration
of modern neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
1321–1330.

[11] S. Kohl, B. Romera-Paredes, C. Meyer, J. De Fauw, J. R. Lesam,
K. Maier-Hein, S. A. Eslami, D. J. Rezende, and O. Ronneberger, “A
probabilistic u-net for segmentation of ambiguous images,” in Advances
in Neural Information Processing Systems, 2018, pp. 6965–6975.

[12] “Iso 26262: Road vehicles – Functional safety,” 2011.

[13] “Iso/pas 21448: Road vehicles – Safety of the Intended Functionality,”
2019.

[14] “Rtca do-178c: Software considerations in airborne systems and equip-
ment certification,” 2012.

[15] V. Aravantinos and F. Diehl, “Traceability of deep neural networks,”
CoRR, 2018. [Online]. Available: http://arxiv.org/abs/1812.06744

[16] C.-H. Cheng, F. Diehl, Y. Hamza, G. Hinz, G. Nührenberg, M. Rickert,
H. Ruess, and M. Troung-Le, “Neural networks for safety-critical
applications - challenges, experiments and perspectives,” 2017.

[17] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of iso 26262:
Using machine learning safely in automotive software,” 2017.

[18] A. Senyard, E. Kazmierczak, and L. Sterling, “Software engineering
methods for neural networks,” in Tenth Asia-Pacific Software Engineer-
ing Conference, 2003., Dec 2003, pp. 468–477.

[19] N. Fenton and M. Neil, Risk Assessment and Decision Analysis with
Bayesian Networks, 1st ed. Boca Raton, FL, USA: CRC Press, Inc.,
2012.

[20] J. Sicking, A. Kister, M. Fahrland, S. Eickeler, F. Hüger, S. Rüping,
P. Schlicht, and T. Wirtz, “A systematic approach for the assessment of
neural network uncertainties,” to appear.

[21] J. T. Horwood, J. M. Aristoff, N. Singh, A. B. Poore, and M. D. Hejduk,
“Beyond covariance realism: a new metric for uncertainty realism,”
in Signal and Data Processing of Small Targets, I. S. for Optics and
Photonics, Eds., 2014.

[22] P. Lahiri, Model selection, I. of Mathematical Statistics, Ed., 2001.
[23] H. S. Bhat and N. Kumar, “On the derivation of the bayesian information

criterion,” 2010.

1144 Design, Automation And Test in Europe (DATE 2020)


