
Autonomous System Design Initiative Paper

Fail-Operational Automotive Software Design
Using Agent-Based Graceful Degradation

Philipp Weiss
philipp.weiss@tum.de

Technical University of Munich

Andreas Weichslgartner
andreas.weichslgartner@audi.de

Audi Electronics Venture GmbH

Felix Reimann
felix.reimann@audi.de

AUDI AG

Sebastian Steinhorst
sebastian.steinhorst@tum.de

Technical University of Munich

Abstract—Ensuring fail-operational behavior is critical to en-
able autonomous driving. With the absence of a driver as a
fallback in a failure scenario it will not be sufficient to use state-
of-the-art fail-safe approaches. Here, instead of costly hardware
redundancy, graceful-degradation can be used by repurposing
the allocated resources of non-critical applications for safety-
critical applications. However, solving the mapping problem
with a state-of-the-art design-time analysis leads to semi-static
solutions, where the mapping is fixed and the task activation is
chosen at run-time. Therefore, such solutions are unsuited for
future automotive architectures that will be highly customizable
and which will include frequent software updates. In this paper
we introduce and analyze the effectiveness of an agent-based
approach that finds application mappings at run-time, ensures
the fail-operational behaviour of safety-critical applications by
using graceful degradation, and reconfigures itself after ECU
failures. Our results indicate that the number of tolerated ECU
failures until a safety-critical application fails can be significantly
improved without adding any redundant hardware resources.

I. INTRODUCTION

In many applications for autonomous driving, a safe state can

not be reached by deactivation and isolation. Thus, existing

fail-safe and fail-silent technologies are not sufficient. In a

fail-safe system the focus is to enable a safe shutdown state

in case of a failure, while in a fail-operational system the

safety-critical functionality has to maintain operational. Thus,

for a fail-operational behaviour, redundancy of the correspond-

ing components is required [1]. However, adding redundant

hardware resources to keep safety-critical applications fail-

operational is costly. Combined with the increased resource

demand of autonomous driving functions, hardware costs would

increase significantly.

At the same time, the automotive industry sees itself

confronted with an increasing amount of customer needs and

requirements. Automotive software systems will be highly

customizable and customers will demand the latest functionality

by over-the-air software updates. Automotive companies have to

integrate more and more applications into their E/E architecture

while each system will consist of a unique and customized

configuration.

As a consequence and to cope with increasing costs and

complexity, applications are being integrated on more powerful

multicore control units. This leads to a consolidation of existing

electronic control units (ECUs) and a more centralized E/E

architecture [2]. We expect this trend to continue, such that

With the support of the Technische Universität München – Institute for
Advanced Study, funded by the German Excellence Initiative and the European
Union Seventh Framework Programme under grant agreement n◦ 291763.

ts1tn2tn1

e2

tn2,a

e3

ts1,a

e1

tn1,aIV-B: Allocation

IV-C: Reservation

e1

tn1,a

e2

ts1,ptn2,a

e3

ts1,a

e2

ts1,atn2,d

e3

ts1,a

e1

tn1,aIV-D: Degradation

e2

ts1,atn2,d

e3

ts1,aIV-E: Reconfiguration

e1

tn1,a ts1,p

Figure 1: The safety-critical task ts1 and the two non-critical

tasks tn1 and tn2, each being part of a distinct application, are

deployed on three ECUs using our agent-based approach as

will be described in Section IV. The task states are depicted

in green (active), yellow (passive) and red (failed/deactivated).

future E/E architectures might consist of only a few, powerful

central controllers.

By contrast, from a software perspective, this trend leads to

a decentralization. In comparison to state-of-the-art monolithic

ECU software, future software will be designed modular. Such

a modular design will allow dynamic shifting of software

components at run-time, including activation and deactivation

of components on different ECUs. This perspective allows new

strategies to enable fail-operational behaviour.

Instead of using active redundancy, where a task replica is

actively executed, or passive redundancy, where the system

is oversized such that sufficient resources are available once

a passive task is started, graceful degradation can be applied.

Here, passive redundant tasks with higher priority can reuse the

allocated resources of tasks with lower priority. Once a passive

task with higher priority is started, lower priority tasks are

disabled to free resources. This way, non-critical functionality

of an automotive system can be degraded in a failure scenario

to keep safety-critical functionality [3]. The advantage of such

an approach is that existing hardware resources in the system

can be repurposed at run-time to lower the hardware costs.

State-of-the-art design-time methods such as presented in

[3] are not applicable for highly customizable automotive

978-3-9819263-4-7/DATE20/ c©2020 EDAA 1169

Autonomous System Design Initiative Paper

systems as they require a re-evaluation for every change
in the software system. Furthermore, for each single failure
combination, a configuration for an optimal mapping and task
activation has to be evaluated and stored. With customizable
and frequently updated software, an evaluation of every unique
system configuration will not be possible.

To cope with the high amount of possible configurations,
we need to make the system self-aware, which can be enabled
by applying agent-based strategies. In an agent-based system,
the control of the system is decentralized, such that there is
no single-point of failure. In the field of dynamic mapping, an
agent has the responsibility to find the mapping of a single
application or task at run-time. In this paper, we combine
graceful degradation with an agent-based system and make the
following contributions:

• In the domains of dynamic mapping approaches and
graceful degradation we analyze related work in Section
II and identify that combining both approaches has not
been considered in literature yet.

• Based on the system model introduced in Section III, we
present our agent-based approach, which is depicted in
Figure 1, to find task mappings and activations at run-
time in Section IV. By using graceful degradation, the
fail-operational requirements of safety-critical applications
can be satisfied. Here, the dynamic nature of the agent-
based system allows an easy reconfiguration to re-establish
the fail-operational behaviour after ECU failures.

• We use our in-house developed simulation framework to
evaluate the approach in Section V.

II. RELATED WORK

The related work for our approach can be mainly separated in
the two domains of graceful degradation and dynamic mapping
approaches. To the best of our knowledge there is no work
that combines the aspect of graceful degradation with an agent-
based or a dynamic mapping approach.

A. Graceful degradation

In [4], a utility function is defined to capture the utility
of a system in different degradation modes. Furthermore,
a framework is introduced that aims at finding properties
of systems to enable graceful degradation. The authors in
[5] present a degradation-aware reliability analysis in which
degradation modes are used to differ between tasks of different
safety levels. A design space exploration is used to optimize the
reliability of the degradation modes. At run-time, an algorithm
observes the resource states and chooses the next valid task
mappings. The authors in [3] present a design-time analysis
to find a valid mapping of mixed-critical applications. The
algorithm respects fail-operational requirements and degrades
the system based on priorities.

Both approaches in [5] and [3] use a design-time analysis
and, hence, are restricted regarding the applicability on highly
customized automotive systems.

B. Dynamic mapping

The authors in [6] introduce a decentralized mapping
algorithm for NoC architectures, where tasks are mapped by
predecessor tasks. The mapping algorithm considers constraints

such as computational capacities and optimizes the routing
based on the chosen goal function. In [7], the authors present
an agent-based run-time mapping algorithm for NoC-based
systems. In this work cluster agents and global agents negotiate
with each other and use heuristics to find an optimized mapping
for tasks. The authors in [8] investigate different heuristics and
use a centralized manager processor to optimize task mappings
at run-time. In addition to pure dynamic approaches there is
research on hybrid mapping schemes, which combine design-
time analysis and run-time reconfiguration as presented by the
authors in [9]. The authors also consider the aspect of task
migration, where resources have to be allocated at run-time to
migrate the task. Instead of using a reactive scheme, the authors
in [10] change the mapping at run-time by proactively migrating
tasks to prevent imminent hazards. By contrast, in our approach,
we find task mappings to establish passive redundancy, in order
to react to failures.

In summary, the discussed state-of-the-art hybrid mapping ap-
proaches are restricted for use in highly customized automotive
systems as they contain a design-time analysis. Centralized
approaches such as in [8] introduce single-point-of-failures
into the system. Furthermore, none of the existing dynamic or
hybrid mapping approaches support graceful degradation and,
hence, they are inapplicable to achieve efficient fail-operational
behaviour of safety-critical applications.

III. SYSTEM MODEL

We model our system by an architecture, which includes a
set of ECUs E. We assume that all ECUs communicate via an
Ethernet gateway such that a direct communication between
each ECU is possible. Each of the ECUs e ∈ E has a CPU
budget C(e) and each of the bi-directional links l ∈ L, that
connects an ECU e with the gateway, has a bandwidth budget
BW (l).
Our system software consists of a set of applications a ∈

A, where each application a can be modeled by an acyclic,
directed, bipartite application graph Ga(Va, Ea). The vertices
Va = Ta ∪Ma consist of a set of tasks t ∈ Ta and a set of
messages m ∈Ma. The edges in Ea connect a message with
a task. Each message has exactly one predecessor and at least
one successor.

Furthermore, we assume that the resource consumption of the
CPU c(t) per task is known. Similar we assume the bandwidth
requirement bw(m) of a message m as given.

Our mixed-critical system consists of a set of safety-critical
applications AS and a set of non-critical applications AN . We
assume that the safety-critical applications have to fulfill fail-
operational requirements and, thus, have to be robust against
single failures. In this paper we consider permanent ECU
failures. An application is considered to behave fail-operational
if all of its tasks are still operational and able to properly
communicate after the failure of any ECU. If at least one task
of an application fails, its application can not operate correctly
and all of its remaining tasks can be deactivated.

IV. AGENT-BASED DEGRADATION

To cope with the high amount of customized configurations
in future automotive architectures, we investigate the effective-
ness of applying agent-based strategies on task level to achieve
a gracefully degrading system behaviour.

1170 Design, Automation And Test in Europe (DATE 2020)

Autonomous System Design Initiative Paper

In contrast to active redundancy, where redundant tasks

would actively run and use CPU resources, passive redundant

tasks only reside on the memory. Only when they are activated

and replace a failed task, they will require the same amount

of resources. Thus, it has to be ensured that on startup of

the passive redundant task sufficient resources are available.

Instead of allocating the required resources without using them,

graceful degradation can be used to deactivate other less critical

tasks in order to free the required amount of resources. With this

approach the system looses some of its non-critical functionality.

On the other hand, this allows to save costs as our graceful

degradation approach completely avoids the computational

overhead which would be induced by active redundant tasks.

The fault-tolerant time interval (FTTI) describes the time that

a fault can be present in the system before a hazard occurs and

has to be determined for each safety goal according to the ISO

26262 [11]. We assume that all tasks can be restarted within

their assigned FTTI and, thus, focus on the aspect that sufficient

resources have to be provided once a passive redundant task

is activated in order to ensure a predictable system behaviour.

From a timing perspective, to achieve the restart within the

FTTI, it is necessary for a redundant task to operate on the

same data as the active task. For passive redundant tasks, a

snapshotting approach has to provide the active task’s status

in a periodic fashion such that a restart within the FTTI can

be ensured.

A. Agent-based system

With our agent-based methodology on task level we provide

a way to ensure that all safety-critical tasks in the system

have a passive redundancy and, once they are started, sufficient

resources are provided to execute the task. Furthermore, the

approach ensures that the communication with preceding and

succeeding tasks is maintained. To mitigate multiple failures,

the system is able to reconfigure and re-establish the redundancy

of safety-critical tasks. The system has a predictable behaviour

as the mapping ensures the reservation of sufficient resources

for the passive redundant tasks, such that they are able to start

in a failure scenario by disabling non-critical tasks.

In our approach both active and passive tasks are wrapped

with an agent, which is in the following referred to as a passive

or active task agent. The task agents are responsible for the

proper execution of their respective task and for fulfilling their

fail-operational requirements. The task agents themselves are

always active and able to react on failures. We also use the

task agents to find a valid mapping for both the active and the

passive tasks. To achieve a dynamic behaviour, the task agents

are able to move on the system from one ECU to another.

Furthermore, each of the ECUs is running an ECU agent,

which starts the task agents on startup. In addition, they handle

the requests from task agents to start a new redundant task

agent or to move to the corresponding ECU. Note that, in

contrast to a design-time optimization, agent-based approaches

can dynamically and continuously optimize the mapping with

respect to metrics such as link load at run-time.

The flow of our agent-based approach to find task mappings

and activations at run-time is depicted in Figure 1 and includes

the following steps:

• Allocation IV-B: In the initial mapping process the active

task agents allocate resources to find a valid mapping.

• Reservation IV-C: The task agents reserve resources at

other agents, which determines how the system will be

degraded.

• Degradation IV-D: As an immediate failure reaction

passive tasks are started and the system is being degraded.

• Reconfiguration IV-E: By repeating the reservation pro-

cess, the fail-operational behaviour can be re-established.

B. Resource allocation

Initially, the ECU agents start all task agents depending

on a configuration. On startup, the active task agents send

requests to the ECU agents to allocate CPU resources and link

resources for their incoming messages. The amount of allocated

CPU resources calloc(t, e) and link resources bwalloc(m, l) is

stored at the corresponding ECU agent. If it is not possible to

allocate enough resources for a mapping on the current ECU,

the task agents will request other available ECU agents. As

soon as a valid mapping could be found, a task agent moves

to the corresponding ECU and starts its task. Succeeding task

agents wait on their predecessors to find a valid mapping in

order to allocate the correct link resources for their incoming

messages. This allocation process ensures that the allocated

CPU resources of all tasks in the system do not exceed the

CPU budget of any ECU:

∀e ∈ E :
∑

a∈A

∑

t∈Ta

calloc(t, e) ≤ C(e) (1)

Similar it is ensured that the allocated bandwidth of all

messages do not exceed the bandwidth budget of any link:

∀l ∈ L :
∑

a∈A

∑

m∈Ma

bwalloc(m, l) ≤ BW (l) (2)

C. Resource reservation

Any safety-critical task agent will start a redundant passive

task agent on a different ECU. The responsibility of the passive

task agents is to ensure that sufficient resources are freed in

case the task has to be activated. For that, task agents can

reserve resources, that have been previously allocated, at non-

critical task agents or so far unused resources at ECU agents.

The agents at which the resources are reserved promise to free

the resources if requested. If a passive task agent has to activate

its task, it claims the reserved resources at the corresponding

agents. Once a promising agent frees the claimed amount of

resources it deactivates its task. Similar to the allocation process

succeeding passive task agents wait on their predecessors to

find a valid mapping and allocate a route to it.

Furthermore, active task agents have to reserve a second

route to preceding passive task agents (next to the allocated

routes to the preceding active task agents) to ensure that a valid

route is available at any time. On the other hand, assuming

that only one ECU fails at a time, passive task agents only

have to reserve one route to either the preceding passive or

the preceding active task agents. If the active task agent and

the preceding active task agent have the same mapping, they

would both fail at the same time. In this case the passive task

agent only needs to reserve a route to the preceding passive

Design, Automation And Test in Europe (DATE 2020) 1171

Autonomous System Design Initiative Paper

Figure 2: Simulation framework performing simulation of the example described in Figure 1. The plots show the CPU utilization

of the three ECUS e1 (red), e2 (green), and e3 (blue). The table on the right displays the situation at the end of the simulation.

After the failure of ECU e3 at 8000ms, task ts1 restarted on ECU e2, leading to the shutdown of tn2. As ts1 requires slightly

less resources than tn2, the change can be examined in the plot.

task agent. If the active task agent and the preceding active

task agents have different mappings, only one of them can fail

at a time. Thus, for the case that the active task agent fails,

the passive task agent only needs to reserve a route to the

preceding active task agent.

D. Degradation

Once an ECU failure is detected, passive task agents, that

lost their active task agent, immediately claim their resources,

update the allocation status at the ECU agent, and start their

task. Promising task agents, whose resources are being claimed,

free the resources and deactivate their task. In addition, the

allocation and reservation status at all task agents and ECU

agents is updated, such that the allocated or reserved resources

of failed agents are not lost.

E. Reconfiguration

For any task agent that lost its redundant counterpart or a

resource reservation, the procedure from Section IV-C can be

repeated. Here, the advantage of the agent-based approach is

that no additional algorithm is required.

With this approach, the task agents ensure together the

fail-operational behaviour of their application. The task-based

reservation of resources has two specific advantages. First, the

decision about which tasks are shut down in a degradation

scenario does not have to be met in the time critical phase

after a failure. Second, this approach allows to predict the

system behaviour. If all passive task agents of an application

reserved the required resources, a fail-operational behaviour

can be guaranteed.

F. Example

In our example in Figure 1, a safety-critical and two non-

critical tasks are deployed on three ECUs using our agent-based

approach. After each task agent found an ECU and allocated

the resources, the safety-critical task agent responsible for

ts1,a starts a passive task agent on e2. This passive task agent

reserves the required resources at the task agent responsible

for tn2,a. After the failure of ECU e3, the passive task ts1,p

on ECU e2 is immediately started and its task agent claims its

resources at the task agent of tn2,a, who deactivates its task.

In the last step, the fail-operational behaviour of task ts1,a is

re-established by starting another passive task agent on e1 and

repeating the reservation process.

V. EVALUATION

We have implemented the approach described in Section

IV in our in-house developed time-discrete and event-based

simulation environment. The framework has been developed

to simulate an automotive hardware architecture and system

software according to our model as described in Section III.

We use this framework to evaluate our agent-based approach

from Section IV.

A. Simulation framework

The system parameters describing the hardware architecture

and system software can be provided by a specification which

uses the XML schema for specifications from the OpenDSE

framework [12]. For the simulation environment we chose a

process-based Discrete-Event Simulation (DES) architecture

based on the SimPy framework [13].
To dynamically activate, deactivate, and move tasks on the

platform at run-time, we implemented a middleware which is

based on SOME/IP [14], an automotive middleware solution.

This middleware includes a decentralized service-discovery to

dynamically find services in the system and a publish/subscribe

scheme to publish and subscribe to events. In addition, this

middleware allows remote procedure calls. All tasks in the

system communicate via this middleware and are modelled as

clients and/or services. Tasks that have outgoing edges in our

1172 Design, Automation And Test in Europe (DATE 2020)

Autonomous System Design Initiative Paper

application graph Ga are offered as a service to the system,
which also publish their messages as subscribable events. Tasks
that have ingoing edges behave as clients that request the
corresponding services and subscribe to the events. This service-
oriented approach allows a dynamic reconfiguration of the
system software at run-time, such that tasks can be restarted
on other ECUs and still be found by their subscribers.

Hardware access to a CPU or Ethernet link is managed by
interchangeable schedulers. For the simulation, a static-priority
preemptive scheduler was used for access to CPUs and a static-
priority non-preemptive scheduler for access to Ethernet links.
Tasks in the system are either triggered periodically if they
are the anchor task of an application otherwise on the arrival
of incoming messages. Once a task is triggered, it is being
scheduled for execution on the CPU. After it has been granted
access to the resource, it keeps the resource busy and sends out
its messages as soon as it has finished execution. The unicast
messages are put on the link and forwarded by the central
switch. On arrival at its destination, succeeding tasks which
are waiting for the message are triggered.

Furthermore, we implemented the proposed agent-based
system from Section IV in our simulation framework. The
agents use the same middleware and network interface for
communication as the tasks in our system. Note that the major
load imposed by the agents onto the system is happening
during the initialization phase when all agents allocate and
reserve resources. Furthemore, the size of the agent messages is
relatively small, mostly consisting of a few bytes, compared to
the message size of typical automotive applications. During the
normal execution phase the agents do not impact the system as
they are only triggered by ECU failures, where the system has
to immediately react on the failure and be reconfigured. With
example applications implemented, a more detailed analysis of
the overhead imposed by the agents on the system is possible.

To simulate ECU failures, the framework offers the possibil-
ity to shut down ECUs. ECU failures are detected with periodic
heartbeats and watchdogs. Each ECU has a running service to
offer its heartbeat, whose periodic event is subscribed by the
watchdogs of other ECUs.

Figure 2 shows our simulation framework performing the
simulation of the example from Figure 1, which has been
described in Section IV-F. From the CPU utilization on the three
ECUs and the status information shown, it can be observed
that tn2 was shut down on ECU e2 and instead ts1 has been
restarted, which was formerly running on ECU e3.

B. Results

To evaluate our agent-based approach we used a simulation
setup of 6 ECUs and 25 applications, of which each consisted
of at least 10 tasks. We used the OpenDSE framework [12] to
generate synthetic applications with workloads based on typical
automotive applications. All applications had a period of 10 ms
and the message sizes were set to 1500 bytes. The link speed
of all links was set to 100 Mbit/s. To obtain feasible mappings
in the initial mapping process, the combined CPU usage of all
applications was set to 90% of the available system resources.
We equalized the sum of required required computational
resources c(t) within each application in order to obtain a
better comparison. Although the actual workload is varied

0 1 2 3 4 5 6
0

20

40

60

80

100

Number of failed ECUs f

Q
o
S
S
[%

]
@
P
S
=

24
%

None Deg Deg+Rec

Figure 3: Simulated results with |A| = 25, ∀a ∈ A : |Ta| ≥ 10,
|E| = 6, PS = 24% and 50 runs per configuration. Our agent-
based approach using both degradation and reconfiguration
improves the percentage of operational safety-critical applica-
tions QoSS and the amount of ECU failures tolerated by the
safety-critical applications significantly.

with a random distribution at run-time, we use the required
computational resources c(t) as the worst-case estimation for
our allocation and reservation process.

Each configuration was run 50 times and the results (Figure 3
and Figure 4) show the corresponding mean values and standard
deviation. We conducted the simulations with an Intel Xeon
Gold 6130 CPU consisting of 16 cores running at 2.1 GHz and
128GB of RAM. The simulations were run for a simulation
time of 6000 ms. To simulate the failures we successively shut
down a random ECU every 1000 ms. On average a single
simulation run with a setup of 6 ECUs and at least 250 tasks
took about 119.7 s on one of the cores.

For our evaluation we define the metric

QoSS(f) =
|AS,f |

|AS |
, f ∈ [0; |E| − 1] (3)

where AS,f is the set of safety-critical applications which are
running after the f -th failure and QoSS(f) the percentage of
operational safety-critical applications after the f -th failure.

Similar, we use the notation AN,f and QoSN (f) =
|AN,f |
|AN,0| for

the non-critical applications. Furthermore, we define PS = AS
A

as the percentage of safety-critical applications in the system.
Our simulation results show that the amount of tolerated

ECU failures increases significantly with our agent-based
approach using both degradation and reconfiguration (Figure
3). In this scenario, the first degradation of the safety-critical
system occurs in the majority of the cases after the 5-th ECU
failure compared to one failure tolerated by the approach
without reconfiguration and zero failures tolerated without
any replication.

Furthermore, we can observe that with increasing percentage
PS of safety-critical applications in the system, less failures
can be tolerated until a safety-critical application fails (Figure
4a). This is plausible as an increasing amount of safety-critical
applications has to share the same amount of resources. It can
be also noticed that configurations with higher PS reach a
QoSS close to 0% earlier while there would be still resources
available. This comes from the fact that with more safety-
critical tasks in the system, less passive task agents are able

Design, Automation And Test in Europe (DATE 2020) 1173

Autonomous System Design Initiative Paper

0 1 2 3 4 5 6
0

20

40

60

80

100

a) Number of failed ECUs f

Q
o
S
S

[%
]

PS = 24% 32% 40% 48%

0 1 2 3 4 5 6
0

20

40

60

80

100

b) Number of failed ECUs f

Q
o
S
N

[%
]

PS = 24% 32% 40% 48%

Figure 4: Simulated results with |A| = 25, ∀a ∈ A : |Ta| ≥ 10, |E| = 6 and 50 runs per configuration. With an increasing
percentage of safety-critical applications PS in the system, the percentage of operational safety-critical applications QoSS
decreases earlier and less ECU failures can be tolerated by the safety-critical system. There is no measurable impact of PS on
the percentage of operational non-critical applications QoSN .

to reserve resources. Once a passive task agent was not able
to reserve sufficient resources it is shut down and will not be
restarted. Thus, even if resources would become available with
the shutdown of other safety-critical applications after the next
ECU failure, no new passive task agents are started.

There is no observable impact of PS on the percentage
of operational non-critical applications QoSN (Figure 4b) as
the curves behave relatively similar. We explain this with the
fact that the tasks of an application are distributed in the
system and that an ECU failure leads with a high probability
to the shutdown of multiple applications. This effect overlaps
the number of applications that are being shut-down due
to degradation. We conclude that in a system with highly
distributed tasks the degradation has little impact on QoSN (f)
as the non-critical applications would fail anyway.

Overall, the results indicate that our presented approach is
able to significantly improve the tolerance of safety-critical
applications against ECU failures. This improvement depends
on the percentage of resources allocated by all safety-critical
applications in the system. With our current approach a
theoretical maximum of 50% CPU resources can be allocated
by safety-critical applications in order to tolerate at least one
fault as the remaining 50% have to be reservable by passive task
agents. Concerning the link resources, assuming fully utilized
links, a theoretical maximum of 33.33% of the resources can
be allocated by safety-critical applications as the link resources
have to be reserved twice by the task agents. Note that our
graceful degradation approach is only restricted with regards
to the maximum reservable resources, but completely avoids
the computational and communication overhead which would
be induced by using active redundancy.

VI. CONCLUSION

In this paper we have introduced an agent-based approach
utilizing graceful degradation to ensure fail-operational be-
haviour of safety-critical automotive applications. The system
finds task mappings and activations at run-time and is able to
predict if the fail-operational behaviour of an application can
be guaranteed. Furthermore, the agent-based system is able
to reconfigure itself after ECU failures and re-establish fail-
operational behaviour. In an experimental evaluation we have

shown that the number of tolerated ECU failures until a safety-
critical application fails, can be improved significantly without
using additional hardware resources. This approach is a first
step towards a fully adaptive system behaviour to cope with
an increasing number of customized software configurations.

REFERENCES

[1] A. Kohn et al., “Fail-operational in safety-related automotive multi-core
systems,” in 10th IEEE International Symposium on Industrial Embedded
Systems (SIES). IEEE, 2015.

[2] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf,
“Future automotive systems design: Research challenges and opportunities:
Special session,” in Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2018.

[3] K. Becker and S. Voss, “Analyzing graceful degradation for mixed critical
fault-tolerant real-time systems,” in 18th International Symposium on
Real-Time Distributed Computing (ISORC). IEEE, 2015, pp. 110–118.

[4] C. P. Shelton, P. Koopman, and W. Nace, “A framework for scalable
analysis and design of system-wide graceful degradation in distributed
embedded systems,” in Proceedings of the 8th Int. Workshop on Object-
Oriented Real-Time Dependable Systems (WORDS). IEEE, 2003.

[5] M. Glaß, M. Lukasiewycz, C. Haubelt, and J. Teich, “Incorporating
graceful degradation into embedded system design,” in Proceedings of
the Conference on Design, Automation and Test in Europe. IEEE, 2009.

[6] A. Weichslgartner, S. Wildermann, and J. Teich, “Dynamic decentralized
mapping of tree-structured applications on NoC architectures,” in
Proceedings of the Fifth ACM/IEEE International Symposium. IEEE,
2011.

[7] M. Faruque, R. Krist, and J. Henkel, “Adam: Run-time agent-based dis-
tributed application mapping for on-chip communication,” in Proceedings
of the 45th Annual Design Automation Conference. IEEE, 2008.

[8] E. L. de Souza Carvalho, N. L. V. Calazans, and F. G. Moraes, “Dynamic
task mapping for MPSoCs,” IEEE Des. Test, vol. 27, no. 5, 2010.

[9] B. Pourmohseni, S. Wildermann, M. Glaß, and J. Teich, “Predictable
run-time mapping reconfiguration for real-time applications on many-
core systems,” in Proceedings of the 25th International Conference on
Real-Time Networks and Systems. ACM, 2017.

[10] E. Rambo et al., “The information processing factory: A paradigm for
life cycle management of dependable systems,” in Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS). IEEE, 2019.

[11] ISO 26262, Road vehicles - Functional Safety - Part 1-9, 1st ed.,
International Organization for Standardization, 2011.

[12] F. Reimann, M. Lukasiewycz, M. Glaß, and F. Smirnov., OpenDSE –
Open Design Space Exploration Framework, 2019. [Online]. Available:
http://opendse.sourceforge.net/

[13] SimPy Discrete Event Simulation Library for Python, 2019. [Online].
Available: https://simpy.readthedocs.io

[14] Scalable service-Oriented MiddlewarE over IP (SOME/IP), 2019.
[Online]. Available: http://some-ip.com/

1174 Design, Automation And Test in Europe (DATE 2020)

