
Autonomous System Design Initiative Paper

DeepRacing: A Framework for Autonomous Racing

1st Trent Weiss
Department of Computer Science

University of Virginia

Charlottesville, VA, USA

ttw2xk@virginia.edu

2nd Madhur Behl
Department of Computer Science

University of Virginia

Charlottesville, VA, USA

madhur.behl@virginia.edu

Abstract—We consider the challenging problem of high speed
autonomous racing in realistic dynamic environments. DeepRac-
ing is a novel end-to-end framework, and a virtual testbed for
training and evaluating algorithms for autonomous racing. The
virtual testbed is implemented using the realistic Formula One
(F1) Codemasters game, which is used by many F1 drivers for
training. We present AdmiralNet - a Convolution Neural Network
(CNN) integrated with Long Short-Term Memory (LSTM) cells
that can be tuned for the autonomous racing task in the highly
realistic F1 game. We evaluate AdmiralNet’s performance on
unseen race tracks, and also evaluate the degree of transference
between the simulation and the real world by implementing end-
to-end racing on a physical 1/10 scale autonomous racecar.

I. INTRODUCTION

Vision-based solutions are believed to be a promising

direction for autonomous driving due to their low sensor

cost, and recent developments in deep learning. End-to-end

models for autonomous driving have attracted much research

interest [1, 2, 3], because they eliminate the tedious process

of feature engineering. Algorithms for end-to-end driving are

being trained and evaluated in both simulation [4, 5], and in

some cases on real vehicles [6]. However, there is a lot of

progress to be made as these studies primarily use simulators

with simplified graphics and physics [TORCS [7], Udacity [8]]

and therefore, the obtained driving results lack realism.

Demonstrating high-speed autonomous racing can be con-

sidered as a grand challenge for vision based end-to-end

models. Autonomous racing can be considered an extreme

version of the self-driving car problem, making progress here

has the potential to enable breakthroughs in agile and safe

autonomy. To succeed at racing, an autonomous vehicle is

required to perform both precise steering and throttle maneu-

vers in a physically-complex, uncertain environment, and by

executing a series of high-frequency decisions. Autonomous

racing is also highly likely to become a futuristic motorsport

featuring a head-to-head complex battle of algorithms [9].

For instance, Roborace [10] is the Formula E’s sister series,

which will feature fully autonomous race cars in the near

future. Autonomous racing competitions (such as F1/10 racing,

Autonomous Formula SAE [11]) are, both figuratively and lit-

erally, getting a lot of traction and becoming proving grounds

for testing perception, planing, and control algorithms at high

speeds.

We present DeepRacing, a novel end-to-end framework

for training and evaluating algorithms specifically for au-

tonomous racing. DeepRacing uses the Formula One (F1)

Codemasters game as a virtual testbed. This game is highly

realistic - both in physics and graphics - and is used by

many real world F1 drivers for training. Our DeepRacing

C++ API enables easy generation of training data under a

variety of racing environments, without the cost and risk

of a physical racecar, and racetrack. This allows anyone to

use the high fidelity physics and photo-realistic capabilities

of the F1 game as a simulator, and without hacking any

game engine code. The DeepRacing framework is open-source

https://github.com/linklab-uva/deepracing.

In addition we present AdmiralNet - a CNN integrated with

a LSTM that can be tuned for the autonomous racing task in

the F1 game. We conduct comprehensive case studies using

the F1 simulation environment. We also evaluate the degree

of transference between solutions in simulation and the real

world. Our evaluation demonstrates the ability to train and

test end-to-end autonomous racing algorithms using both the

F1 game, and the physical testbed.

A. Contributions of this paper

The paper has the following contributions:

1) This is the first paper to demonstrate and enable the

use of a highly photo-realistic Formula 1 Codemasters c©

game, with a high fidelity physics engine as a test-bed

for developing autonomous racing algorithms, and testing

them in a closed-loop manner. This framework will be

made publicly available.

2) We implement and evaluate a deep neural network

(DNN) called AdmiralNet. AdmiralNet builds upon the

NVIDIA’s PilotNet [12] architecture but uses optical flow,

and a combination of CNN and an LSTM to learn spatio-

temporal aspects of racing.

3) We implement and test AdmiralNet both in the F1 simu-

lation, and on a real 1/10 scale autonomous F1 racecar.

II. RELATED WORK

Autonomous racing can be considered a superset of au-

tonomous driving, and as such, there is a lot of literature on

methods for end-to-end autonomous driving. We divide the

related work into simulation testbeds and autonomous driving

methods and provide a brief reprise on both.

A. Autonomous driving simulators

There are several examples of video games being used as a

simulator to aid development of autonomous driving. Several

are based on the popular Grand Theft Auto (GTA) game [13],

utilizing the high fidelity graphics of Rockstar Games’ c©

978-3-9819263-4-7/DATE20/ c©2020 EDAA 1163



Autonomous System Design Initiative Paper

state-of-the-art rendering engine. However, while being photo-

realistic, this game is known for flaws in the underlying

physics engine, since it was not intended to be used as a

simulator. This technique also requires a modification to the

underlying game engine code in order to extract data (steering,

acceleration, etc.) attached to each game screenshot. This

modification ran afoul of Rockstar’s copyright protections, and

both of these projects infamously received cease and desist

letters from Rockstar Games to pull the code from public

domain. While creating DeepRacing, we ensured that our F1

2019 simulator requires no such “hacking” of the unaderlying

game engine. It uses public APIs for screen capturing as well

as a stream of UDP packets that the F1 game broadcasts.

End-to-end driving was showcased in the car racing game

TORCS [7] using Reinforcement Learning but its physics and

graphics lack realism.Microsoft AirSim [14] and CARLA [15]

are examples of open-source autonomous driving simulators

but they are are largely restricted to urban driving scenarios

and are not suited for development and testing of end-to-end

autonomous racing.

B. Autonomous Driving Architectures

In one of the earliest work on end-to-end autonomous

driving NVIDIA [12] presented the PilotNet CNN architecture.

PilotNet is a feed-forward style network that directly regresses

to a single steering value for each input image obtained

from a front facing dashboard camera. However, PilotNet

is limited by it’s inability to capture temporal information.

Each input image is run through the CNN separately with

no time-varying context around that image. This is not just

a limitation of PilotNet, but of CNNs in general. Fernando

et al [16] present a different approach that uses Long Short-

term Memory Cells [17] as a means of capturing a history of

the steering trajectory and encode temporal structure of the

problem. Xu et al[18] present a similar technique that uses

a Fully Convolutional Network (FCN) to extract a feature

representation of the input space, but limit their model to

classification among a discrete set of actions: go straight, stop,

left turn, and right turn.

Eraqi et al [19] use a novel combination of CNN and

a traditional auto-encoder approach. This network uses a

CNN for feature extraction and applies an encoding function

to translate the regression problem into a more manageable

classification problem. Eraqi also presents the novel concept

of a “sliding window”, a variable length temporal sequence

that is input into the LSTM, allowing the model to encode

temporal information at arbitrary lengths.

AdmiralNet extends the sliding window of Eraqi into the

prediction layer, allowing the LSTM model to learn how

the time-varying flow of pixels can predict future control

outputs using Optical Flow fields. This is described in detail

in section V. Chen et. al [5] also present a novel approach

that blends expert domain knowledge of highway driving by

defining a notion of image affordance that is then mapped to a

steering command. However, like PilotNet, their approach only

considers current image data and is limited to a fixed set of

affordance templates that are purpose-built for only highway

driving.

III. AUTONOMOUS RACING PROBLEM STATEMENT

The problem of autonomous driving distills to the task

of scene understanding through sensor measurements, e.g.

cameras, LIDAR point clouds, ultrasonic sensors, etc., and

producing control inputs for the car, typically steering angle

and throttle. Expressed mathematically, if the domain of the

vehicle’s entire sensor suite is X and the vehicle’s control

outputs is U, then the general problem of autonomous driving

is a mapping from:

X → U (1)

There is a great body of work centered around the special case

where U consists of only steering angles [12, 18]. We will call

this subset of the broader control domain u. Existing work

has focused on mapping what the car’s sensor suite is seeing

at the present time to a single steering angle, at the present

time. This is done in an end-to-end manner i.e. the DNN is

trained to directly map pixels to steering angles. Expressed

mathematically, a function of the form:

X → u (2)

However, this model of autonomous driving does a poor job of

capturing how expert drivers behave. For instance, a Formula

One racing driver does not simply analyze the pixels directly in

front of him and map those pixels directly to a single steering

angle and throttle pressure. An expert driver considers some

history of what he/she has previously seen. In our framework,

this is equivalent to a list of sensor readings taken in the

past: Xi−c, Xi−c+1, Xi−c+2, ..., Xi ∈ X, where the subscript

i represents the current time and c represents some number of

time-steps into the past. We call this list of sensor readings a

context window.

We apply the same thinking to the control outputs of the

race car. Expert racing drivers don’t just apply single control

commands one at a time, they apply smooth transitions to

the car’s control as a means to an end. An expert driver

surmises a “long” term intent for how they want the car to

behave some amount time into the future and then apply a

continuous control input to accomplish that end. For example,

continuously turning the steering wheel to the right as a

means of making the car turn right or smoothly pressing the

accelerator to get the car up to speed. These transitions need

not be “smooth” in the sense of being slow and steady, a

driver might slam on the brakes as a means of avoiding a

crash, but they still represent a continuous curve of control

inputs that are a means of accomplishing the drivers high-

level intent. Expressed mathematically, such a set of control

is: ~Ui+1, ~Ui+2, ~Ui+3, ...~Ui+p ∈ U, where ~Uk represents the

driver’s chosen control output at time k. These commands

start at the current timestep, i, and go forward into the future.

We call this list of forward-looking control outputs an intent

window, representing the set of commands the driver uses to

accomplish his intended goal.

The problem formulation is to show that this approach of

predicting long-term intent based on some amount of context

produces more accurate predictions of expert driver behavior

than statically mapping immediate sensor measurements to

control output.

1164 Design, Automation And Test in Europe (DATE 2020)



Autonomous System Design Initiative Paper

More specifically, AdmiralNet provides a mapping:

X
c
→ u

p (3)

Where c represents the size of the context window and p

represents the size of the intent window. We next describe our

F1 Codemasters c© virtual testbed that is used for approaching

the autonomous racing problem.

IV. DEEPRACING: F1 RACING SIMULATION

In order to train an end-to-end neural network to race

autonomously using the context and the intent described in the

previous section; we need a reliable way to generate annotated

training data. Obtaining such annotated data for real motor-

sport racing drivers is difficult since these data are often trade-

secrets and not available in the public domain. Furthermore, it

is not enough to only obtain training data, but also important to

close the loop and autonomously race in the same environment

to enable evaluation of end-to-end models, and reinforcement

learning approaches.

Consequentially, in order to generate training data under

realistic racing conditions, we use the F1 2019 racing game

released by Codemasters c©. This is the first time, the im-

mensely popular and photo-realistic F1 game has been used as

a platform for training autonomous race cars. Unlike the ill-

fated GTA simulator, the F1 simulation we present does not

involve modifying any game code or behavior but instead taps

into the UDP data stream broadcast by the game. The game

provides access to twenty major Formula One racetracks. The

driver can choose to race alone or with multiple opponents,

allowing for training data in more relaxed single-car scenarios

as well as more hectic multi-agent racing environments.

A. DeepRacing realism

Photo-realism and physics modeling: The game is extremely

photo-realistic, as shown in Figure 1, and is based on high-

fidelity simulated physics. Due to its realism, the F1 series was

the first game to be used in the Formula One eSports Series,

which debuted in 2017 [20]. The photo-realism in the driver’s

point-of-view combined with the physics realism of the game’s

engine provide a strong opportunity to gather training data as

close to real-world racing scenarios as one can get without the

cost and risk of a real race-car.

Deep customisation: The game facilitates a high degree

of customization including adjustable dead zones, linearity,

and saturation for vehicle control. Settings for aerodynamics,

traction, tyre choices, etc. are also highly customizable.

The F1 game advertises a telemetry stream of information

about the games’s current state over a UDP socket in a “fire

and forget” type broadcast on the host machine’s network

interface card. Each packet in the stream, is a snapshot of

the game’s state at the time that packet was generated.

We developed our own software infrastructure for both

grabbing screenshots of the driver’s perspective (the “ego”

vehicle) in the F1 game and automatically tagging them with

ground-truth values of the game’s state at the time that image

was captured. The state variables include, but are not limited

to:

1) Steering angle, throttle and brake of all vehicles (includ-

ing the ego vehicle)

2) Position and velocity of all vehicles (including the ego

vehicle)

3) Various state information about the ego vehicle such as

wheel speed, amount of fuel remaining, and tire pressure.

A full description of the F1 telemetry stream and all of

the information it provides is available on a Codemaster’s
TM

forum [21].

Finally, our test-bed setup also supports the ability to close

the loop by autonomously driving the F1 car in the game

using control inputs predicted by autonomous driving policies.

This is accomplished by pushing the steering and acceleration

control inputs back into the game via a virtual joystick API

built on top of vJoy [22].

We evaluate this closed-loop capability by utilizing “oracle”

data from the simulation framework and a simple pure-pursuit

controller to steer the car with ground-truth knowledge of the

track’s optimal raceline. We then measure the effectiveness

of this controller by the distance from the path followed by

the pure-pursuit controller to the optimal raceline. Note that

this evaluation is not intended to evaluate any particular au-

tonomous driving model, but is intended to show the accuracy

of our closed-loop framework for testing such models. This

closed-loop test shows a mean distance to the optimal raceline

of 0.928963 meters. The bottom-right side of figure 1 shows

a plot of the corresponding probability density function. The

top-right of figure 1 shows an optimal raceline overlaid with

the path followed by our pure pursuit control, the two paths

are almost indistinguishable.

This data collection and testing infrastructure, implemented

in C++, is called the DeepRacing API, the first closed-loop

environment of it’s kind for collecting training data, and testing

learned models on simulated F1 race-cars in the photo-realistic

F1 2019 game. The software itself is architected as an object-

oriented library that exposes a simple interface for allowing

user-written code to handle data captured by the underlying

infrastructure with the “hard work” of actually obtaining that

data handled automatically. This software will be released

under an Open-Source license.

V. ADMIRALNET: MAPPING CONTEXT TO INTENT

In this section we describe in detail the second research

contribution of this work - AdmiralNet - an end-to-end deep

neural network capable of learning to race autonomously both

in the F1 simulation and on real datasets. The key building

blocks in AdmiralNet’s architecture are:

1) Convolution Neural Networks

2) Recurrent Neural Networks

3) Optical Flow Fields

A. Optical Flow

Optical flow [23] is a spatio-temporal representation of a

pair of images, defined as a vector field over the image pixels

representing which direction and how quickly each pixel is

moving. Rather than having only the raw input images be the

input to our model, we compute the optical flow vector field

between adjacent pairs of images in the input sequence.This

transformation serves to represent how the pixels are flowing

through the scene, and can be interpreted as a first derivative

Design, Automation And Test in Europe (DATE 2020) 1165



Autonomous System Design Initiative Paper

Fig. 1. DeepRacing uses the Formula One Codemasters game as a virtual testbed for training and closed-loop testing for our autonomous racing deep neural
network - AdmiralNet. This is the first time the highly photo-realistic and high fidelity physics engine enabled game has been used as a simulation environment
without cracking and tweaking any game engine code.

TABLE I
COMPARISON BETWEEN STEERING ANGLE PREDICTIONS PILOTNET,

CNN-LSTM, AND ADMIRALNET. THE MODELS WERE TRAINED ON THE

DATA-SET FROM AUSTRALIAN GP, AND TESTED ON UNSEEN DATA-SETS

FROM BOTH AUSTRALIA, AND BAHRAIN TRACKS IN THE F1 GAME.

Australia Bahrain
Testing (RMSE) Testing (RMSE)

PilotNet 0.1699 0.3309
CNN-LSTM 0.1485 0.40255
AdmiralNet 0.0368 0.067

of the image. The intuition being that expert drivers don’t

simply map color information into steering commands, even

with temporal context, but rather they watch how objects are

flowing(moving) through the scene. E.g. seeing the edges of a

road flow to the right indicates that a right turn will soon be

necessary to stay on the road. Using optical flow vectors as the

input for a temporal-context task has been shown to perform

well for video classification [24]. Each optical flow vector

field is interpreted as a 2-channel image, 1 for the horizontal

component of the vector and 1 for the vertical component.

This vector-field representation of an image has the added

benefit of being invariant to changes in the distribution in the

color values of the image pixels themselves. What colors the

image contains is no longer the only input to our model, we

additionally use how the pixels are moving. We show that this

makes AdmiralNet more accurate on input distributions that

were not seen during the neural network training process.

B. AdmiralNet: CNN-LSTM for end-to-end autonomous rac-

ing

Our approach, named AdmiralNet as an improvment over

NVIDIA’s PilotNet, combines the static analysis capabilities of

a Deep Convolutional Neural Network (DCNN), the temporal

memory capabilities of a Long Short-Term Memory (LSTM)

cell(who’s internal state vector is initialized with zero-mean

gaussian noise), and the pixel flow encoding of Farneback’s

optical flow. Given a time sequence of past images, a context

window, we predict a time sequence of future steering angles,

an intent window. Much of the related work in this domain is

centered around combining CNNs and LSTM cells together,

with a CNN serving as an image encoder and an LSTM as

an image decoder. In particular, Eraqi [19] uses this technique

with a sliding window to build up temporal context. Admiral-

Net builds on this approach with two additional novel steps.

Firstly, we convert each image in an input sequence of

c images to an optical flow vector field with Farneback’s

algorithm. Each image and it’s corresponding flow field is

interpreted as a 3-channel input to a standard CNN. The

CNN acts as an image encoder that maps optical flow fields

(a form of image velocity) to deep feature vectors, enabling

the network to learn how the systems 0th order (greyscale

images) and 1st order (optical flow) dynamics influence the

driving behavior of the human example. In our case, the

CNN is NVIDIA’s PilotNet architecture, except with batch

normalization layers in between each convolutional layer. The

feature vector from this CNN is then applied to the input of an

LSTM cell. The resulting LSTM state is then projected into a

prediction of p control output vectors, each of dimension d, by

calling the LSTM p additional times. The outputs from these

p calls are taken as predictions of control outputs p timesteps

into the future.

Secondly, we extend Chi [25]’s method of 3D “spatio-

temporal convolution” by passing this sequence of flow fields

through a 3D convolutional network. However, unlike Chi,

we use 2D convolution over the optical flow fields to build

up the LSTM’s state vector, and then connect the output of

the 3D convolution only to the input of the LSTM for the p

additional calls after the context window, taking each of the

1166 Design, Automation And Test in Europe (DATE 2020)



Autonomous System Design Initiative Paper

Fig. 2. AdmiralNet architecture

.

output vectors as the sequence of d predicted control outputs.

For our experiments in Section VI, we only consider predicting

steering angle, so d = 1. However, this model is scalable to

predicting any number of control outputs. This combination of

an encoder and decoder network allows the model to learn how

the temporal dynamics of image flow map to future control

outputs. Intuitively, the network is learning how a history of

images and image velocities map to future control commands,

similar to how an expert driver will estimate a scene’s spatio-

temporal dynamics based on how a scene is flowing.

Figure 2 is a graphical description of our DCNN architec-

ture. This technique utilizes both the static ”feature extraction”

power of 2D and 3D DCNNs coupled with the temporal

context-saving power of an LSTM. We flatten the output of the

final convolutional layer into a vector of size 1152 and apply

it to the input of an LSTM for c timestamps. We then call the

LSTM p times with the output of the 3D convolution as it’s

input. The corresponding p outputs are taken as predictions of

a future steering trajectory.

VI. EXPERIMENTAL RESULTS

We present 3 case studies to evaluate AdmiralNet and

demonstrate its ability to correctly predict steering angles

for an autonomous race car both in the F1 simulator and

a real 1/10 scale autonomous racecar test-bed. The focus

on predicting steering is not a limitation of this work -

AdmiralNet can be easily extended to predict multivariate

outputs e.g. both steering and acceleration.

A. Result I: AdmiralNet in F1 simulator

We evaluate our approach on two data-sets obtained from

the Australian GP circuit in the F1 game. The training data-set

contains roughly 12000 raw annotated images. Another 12,000

images from a different lap of the same circuit are used as

the test-data. We train three different DNNs on the training

data-set and evaluate their performance on the test data-set.

Specifically, we train PilotNet, a standard CNN-LSTM, and

AdmiralNet with optical flow. All three networks were trained

for 100 epochs with a learning rate of 0.001 and a batch

size of 16. The steering values are normalized between −1
and 1 which correspond to rotating the steering the wheel

between [−180, 180] degrees. We train on a Mean Squared

Error between the predicted steering and the ground truth

steering. We use a context window of c = 10, except for

PilotNet, which is evaluated image-by-image, and separately

test a prediction window p = 1. We measure the effectiveness

of each of the evaluated models by the Root Mean Square

Error on the test-data. Table V-A shows the comparison

between the three networks for test data-set obtained from

Australia. We can see that AdmiralNet predicts the ground

truth normalized steering angles with the highest accuracy

compared to the CNN-LSTM, and compared to Nvidia’s

PilotNet. We compare the prediction performance of the same

three networks (trained on the Australia data-set) on an unseen

data-set from a different track altogether (the Bahrain F1

circuit). This is the real challenge for the networks since it has

never seen any images from the Bahrain track during training.

The performance is an indication of whether the network is

capturing driver behavior vs. learning artifacts of the tracks.

Table 1 summarizes the prediction RMSE for the different

networks trained. AdmiralNet outperforms both PilotNet and

CNN+LSTM networks by a siginificant margin, even on a

track never seen during training. Based on these results, we can

conclude that AdmiralNet with optical flow can successfully

capture expert driver behavior in the game.

B. Result II: On the physical F1/10 test-bed

We also conduct similar experiments on a 1/10 scale

physical autonomous race-car testbed. Our F1/10 testbed is

fully capable of implementing the entire end-to-end Admiral-

Net driving pipeline, from data gathering and annotation, to

running the trained AdmiralNet in real-time for controlling

the steering and acceleration of the car fully autonomously.

The car can reach speeds of up to 20mph indoors, and is a

realistic representation of a racecar. Figure 3 shows our F1/10

autonomous racing testbed. As shown in Figure 3, we integrate

a First Person View (FPV) camera and headset with the F1/10

autonomous racecar. We are able to drive the car manually

with a USB steering wheel and pedals, just like in the F1 game.

The setup enables tele-operation for the purposes of collecting

data to train the end-to-end DNNs. AdmiralNet requires that

each image frame from the front facing camera be annotated

with a steering angle and an acceleration value. We evaluated

AdmiralNet on this physical testbed as well and it has a lower

RMSE (0.14) than PilotNet (0.18) on the real world data-set.

VII. CONCLUSION AND DISCUSSION

The paper’s primary contribution is DeepRacing - a novel

end-to-end framework, and a virtual testbed for training and

evaluating algorithms for the hard challenge of autonomous

racing. The virtual testbed is implemented using a highly

realistic and professional Formula One game environemnt.

This is the first time that this F1 game has been used as

a testbed for end-to-end autonomous racing. Unlike, using

the GTA game as a simulator, our framework does not hack

any game engine code making it very easy to setup. We

also present AdmiralNet, a modified and improved version

of Nvidia’s PilotNet which uses CNN and LSTM layers with

optical flow image inputs. We show that AdmiralNet trained

with optical flow data, significantly out performs (by 80%)

other DNNs on unseen data-sets from the F1 game, and from

our 1/10 scale autonomous racing test-bed. We present results

which demonstrate the ability of AdmiralNet to generalize

Design, Automation And Test in Europe (DATE 2020) 1167



Autonomous System Design Initiative Paper

!htb

Fig. 3. The F1/10 autonomous race car setup. We can generate annotated HD images with steering and acceleration from the front camera automatically
using manual driving and a first person view headset. We use ROS to automatically synchronize and label the training images.

to both simulated and real-world image data-sets, including

testing on a real video of a F1 racing. Our open-source

DeepRacing framework will enable researchers to explore the

limits of vision based end-to-end autonomous racing, which is

increasingly getting a lot of attention from researchers in the

field.

REFERENCES

[1] Eder Santana and George Hotz. Learning a driving simulator. CoRR,
abs/1608.01230, 2016.

[2] Joel Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. Computer
vision for autonomous vehicles: Problems, datasets and state-of-the-art.
CoRR, abs/1704.05519, 2017.

[3] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end
learning of driving models from large-scale video datasets. CoRR,
abs/1612.01079, 2016.

[4] Etienne Perot, Maximilian Jaritz, Marin Toromanoff, and Raoul
De Charette. End-to-end driving in a realistic racing game with deep
reinforcement learning. In International conference on Computer Vision
and Pattern Recognition-Workshop, 2017.

[5] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving.
In The IEEE International Conference on Computer Vision (ICCV),
December 2015.

[6] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

[7] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing
car simulator. Software available at http://torcs. sourceforge. net, 4:6,
2000.

[8] A Brown et al. Udacity self-driving car simulator. In GitHub Repository.
2018.

[9] Walt Scacchi. Autonomous emotorsports racing games: Emerging
practices as speculative fictions. Journal of Gaming & Virtual Worlds,
10(3):261–285, 2018.

[10] Global championship of driverless cars. url=https://roborace.com/,
journal=Roborace.

[11] Skanda Koppula. Learning a cnn-based end-to-end controller for a
formula sae racecar. arXiv preprint arXiv:1708.02215, 2017.

[12] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. D. Jackel, and U. Muller. Explaining how a deep neural network
trained with end-to-end learning steers a car. CoRR, abs/1704.07911,
2017.

[13] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun.
Playing for data: Ground truth from computer games. CoRR,
abs/1608.02192, 2016.

[14] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. In
Field and Service Robotics, 2017.

[15] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017.

[16] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton
Fookes. Going deeper: Autonomous steering with neural memory
networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 214–221, Hawaii Convention Center HI, 2017.

[17] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with lstm. 1999.

[18] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end
learning of driving models from large-scale video datasets. CoRR,
abs/1612.01079, 2016.

[19] Hesham M. Eraqi, Mohamed N. Moustafa, and Jens Honer. End-to-end
deep learning for steering autonomous vehicles considering temporal
dependencies. CoRR, abs/1710.03804, 2017.

[20] Formula one esports series. F1 Esports, Nov. 2017. https://f1esports.
com/.

[21] Codemasters. F1 2017 d-box and udp output specification.
http://forums.codemasters.com/discussion/53139/f1-2017-d-box-
and-udp-output-specification.

[22] Shaul Eizikovich. vjoy. http://vjoystick.sourceforge.net/site/.
[23] Berthold KP Horn and Brian G Schunck. Determining optical flow.

Artificial intelligence, 17(1-3):185–203, 1981.
[24] Karen Simonyan and Andrew Zisserman. Two-stream convolutional

networks for action recognition in videos. In Advances in neural
information processing systems, pages 568–576, 2014.

[25] Lu Chi and Yadong Mu. Learning end-to-end autonomous steering
model from spatial and temporal visual cues. In Proceedings of the
Workshop on Visual Analysis in Smart and Connected Communities,
VSCC ’17, pages 9–16, NY, USA, 2017. ACM.

1168 Design, Automation And Test in Europe (DATE 2020)


