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Abstract—In this work, we present a scheme for implementing
learning on a digital non-volatile memory (NVM) based hardware
accelerator for Spiking Neural Networks (SNNs). Our design
estimates across three prominent non-volatile memories - Phase
Change Memory (PCM), Resistive RAM (RRAM), and Spin
Transfer Torque RAM (STT-RAM) show that the STT-RAM
arrays enable at least 2× higher throughput compared to the
other two memory technologies. We discuss the design and
the signal communication framework through the STT-RAM
crossbar array for training and inference in SNNs. Each STT-
RAM cell in the array stores a single bit value. Our neurosynaptic
computational core consists of the memory crossbar array and
its read/write peripheral circuitry and the digital logic for the
spiking neurons, weight update computations, spike router, and
decoder for incoming spike packets. Our STT-RAM based design
shows ∼20× higher performance per unit Watt per unit area
compared to conventional SRAM based design, making it a
promising learning platform for realizing systems with significant
area and power limitations.

Index Terms—Neuromorphic hardware, Spiking Neural Net-
works, crossbar arrays, STT-RAM

I. INTRODUCTION

Deep Neural Networks (DNNs), inspired by the architecture

of the brain, have become the state-of-the-art in carrying out

various cognitive processing tasks, especially those that are

needed at the edge [1]–[3]. However, training these networks

requires huge computational resources and takes long time

periods as the problem complexity grows [4]. While several

research studies have demonstrated neural network model

optimizations that can be carried out to realize them on energy

constrained platforms [5], SNNs, inspired by the event-driven

computation in the brain, have been shown to perform similar

tasks with less computations than current DNNs [6].

In order to accelerate DNNs and SNNs, there have been sev-

eral demonstrations of high throughput hardware accelerators

[7]–[14]. Most of these accelerator architectures are based on

minimizing the data transfer bottleneck between processor and

storage units, which limits the performance of conventional

von Neumann machines. However, these accelerators are based

on conventional SRAM memory, which are limited in the

memory density that can be achieved on-chip.

Emerging nanoscale Non-Volatile Memory (NVM) devices

have been shown to be suitable for in-memory computing

This work was supported in part by the Semiconductor Research Corpora-
tion and Cisco.

based on crossbar array architectures for designing neural

network accelerators [15]–[17], which offer higher on-chip

memory density, thereby reducing the number of off-array data

transfers. The main challenge in accelerators having analog

storage NVMs is that the memristive devices are sensitive to

process variations and peripheral circuit noise [18].

In this paper, we describe the design of a generic crossbar

array for realizing inference and training in SNNs. We use

NVM devices as binary storage units, i.e. storing two resistive

states of high (‘0’) or low (‘1’). This scheme avoids the use

of expensive data converters at the array periphery and the

neuronal dynamics can be realized with conventional digital

CMOS designs. It also avoids the issues pertaining to the

conductance variability of these NVM devices as seen in

analog memories. We evaluate our design for SNN inference

across three different NVM devices, namely STT-RAM, PCM,

and RRAM. The performance of the STT-RAM based design

shows nearly 2× and 5× improvement over PCM and RRAM

designs, respectively.

While 32-bit single precision floating point representation

is commonly used by most digital computing platforms today,

it has been shown that significant energy and speed benefits

can be achieved in the hardware if the computation can be

carried in lower bit-precision [19]. Several works for DNNs

have demonstrated inference engines with 1-bit to 8-bit fixed-

point formats [20]–[22]. Low-precision implementations are

beneficial especially for embedded and edge devices, which

run with a limited power budget and memory capacity. Train-

ing neural networks with lower precision is a challenging

problem, since the range of values required by the gradi-

ents spans over 5 to 6 orders of magnitude, which cannot

be supported in the low-precision fixed point representation.

There have been several efforts in training DNNs with lower

precision of 8-bit and 16-bit floating point representation by

applying algorithmic modifications to network training such

as transfer learning, stochastic rounding, etc. to achieve the

baseline 32-bit floating-point accuracy [23]–[25]. We use 16-

bit floating point representation in our work for realizing the

on-chip learning accelerator. We compare our STT-RAM based

hardware accelerator design with an equivalent SRAM based

design and show that STT-RAM design achieves nearly 20×

higher throughput per unit power and per unit area.

This paper is organized as follows. Section II gives a
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brief background on spiking neural network models and a

modified back-propagation learning rule used in this work.

This model was first discussed in [26], which also presented

a CMOS-based inference engine design. In Section III, we

present our SNN inference accelerator design and compare

the performance of three prominent NVM technologies -

STT-RAM, RRAM, and PCM. We then present the schemes

for realizing back-propagation based learning on the NVM

crossbar array in Section IV. Section V presents the overall

performance projections of our proposed architecture for car-

rying out forward pass, back-propagation, and weight updates.

Finally, Section VI concludes the work and presents some

future directions.

II. BINARY ACTIVATION SPIKING NEURAL NETWORKS

We use the Binary Activation SNN (BASNN) model de-

scribed in [26] to design our NVM based hardware accelerator.

This network model employs gradient descent based learning

rule to adjust the network weights and is one of the simplest

SNN models to realize on hardware. It has been demonstrated

to achieve close to the state-of-the-art SNN performance on

the MNIST dataset, with the best test accuracy being 99.4%
with a convolutional network. This algorithm uses a modified

spiking neuron model with binary activation function, where

the spike output (akj ) of a neuron j in layer k is given as:

akj (t) = yb

(

N
∑

i=1

ak−1i (t)wk
j,i + bkj

)

, (1)

where yb is the threshold function, with yb(x) = 1 only

if x > θ and θ is the spiking threshold for the membrane

potential [26]. The term within the brackets in (1) represents

the spiking neuron’s membrane potential for the time-step t.
The use of a straight-through estimator makes the neuronal

function differentiable during training [27]. The neuron’s ac-

tivation derivative is:

akj
′(vkj (t)) =

{

1

2θ
, 0 ≤ vkj (t) ≤ 2θ

0, otherwise
(2)

The process of training follows the conventional gradient

descent based weight update. This requires evaluating the gra-

dients of the loss function (L(w)) with respect to the network
parameters (w and b) using the chain rule for derivatives.

Finally, the weight update term which is proportional to the

loss gradient (η∂L/∂wk) is added to the current set of weights

for each layer. The loss function L adopted for training is the

squared hinge loss [26]. The process of weight update involves

the following set of expressions to be evaluated. Weight update

for each layer k, is given as,

∆wk = ηδk × (ak−1)T (3)

Here, ak−1 is the vector of spikes output from the previous

layer k − 1. The error gradient is represented by the vector

δk, which is iteratively calculated for each layer starting from

the last layer L = k + 1 as,

δ
k =

(

(wk+1)T × δ
k+1
)

◦ ak′ (4)
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Fig. 1. Neuro-synaptic crossbar array based hardware with 256 inputs lines,
32 output neurons and 8-bit synapses. Each output layer neuron on the post-
synaptic side of the array is connected to 8 bitlines and can access the
associated devices for the selected row (wordline).

For the last layer L, the gradient term is evaluated as,

δ
L = L′ ◦ (−Sd) (5)

Here, Sd is the desired set of spikes at the output layer of the

network.

As demonstrated in [26], the BASNN fully-connected feed-

forward network, with two hidden layers of 256 required

only 7-bit signed fixed-point synaptic precision to achieve

the floating-point baseline accuracy of 98.0% for the MNIST

dataset. We now discuss the design of a crossbar array based

architecture for accelerating SNN inference with 8 bits of

fixed-point precision for the weights, as introduced in [28].

III. MEMORY ARRAY DESIGN

Fig. 1 shows a single neuro-synaptic core with a crossbar

array of 256×256 NVM devices. The high resistance state

(HRS) of the device represents binary ‘1’ and low resistance

state (LRS) represents ‘0’. Each of these arrays can be tiled

together to realize larger and deeper networks for inference,

similar to some of the earlier designs [12], [15]. The input

spikes are applied to the respective rows and the post-synaptic

digital neurons are interfaced along the columns of the array.

The memory read and write peripheral circuits are also placed

along the columns (bitlines) of the array. Each synaptic weight

in our inference neurosynaptic core is represented in 8-bit
fixed-precision. Thus, as seen in Fig. 1, eight columns of

the array are connected to a single post-synaptic neuron. This

particular core can support 32 post-synaptic neurons. The rows
receiving a spike are read in a sequential manner in every

memory read cycle.

We evaluate the performance of a single neurosynaptic core

for inference with three different NVM devices - RRAM,

PCM, and STT-RAM. For each of these devices, we built
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TABLE I
READ AND WRITE CIRCUITS FOR NVM DEVICES DESIGNED IN 65 NM

NODE

Design parameters PCM STT-RAM RRAM

RSET (Ω) 10, 000 3000 60, 000
RRESET (Ω) 1000, 000 6000 500, 000

Read

Area (µm2) 21.18 41 21.18
HRS read power (µW) 2.95 1.42 2.34
LRS read power (µW) 3.07 1.51 2.67
Read latency (ns) 10 5 25

Write

Area (µm2) 134 324 134
HRS write power (µW) 777.2 1034 373.7
LRS write power (µW) 317.3 1027 382.98

Write latency (ns) 150 7 80

compact models [29], [30] and their corresponding periph-

eral memory access circuits with specifications of the latest

reported experimental devices [31]–[34]. Each NVM bit cell

considered for this design has an area of 29F2 in the 1T-

1R configuration [35]–[38]. Table I lists the area and power

numbers for the read and write circuits for each of the NVM

devices. The read sense amplifiers are designed as either

current mode or voltage mode. In the case of voltage mode

sensing, a voltage drop across a pre-charged bitline indicates

if the state is a ‘0’ or not. In case of a current mode sensing,

the current flowing through the device is compared with that

flowing through a reference resistance cell. For the STT-RAM

device, as the on-off ratio is low (∼2), a current mode sensing

is used. For the other two devices, which have a higher on-off

ratio of ∼10, the voltage mode sensing is adopted.

To evaluate the designs with these three NVM arrays, we

choose the performance metric of Synaptic Operations per

Second (SOPS), or Giga SOPS (GSOPS) as introduced in

[12]. One synaptic operation for inference involves reading

an 8-bit synaptic weight and updating the respective post-

synaptic neuronal membrane potential. Table II lists the per-

formance metrics for the three different NVM-based designs.

We also present the normalized metrics with respect to power

(GSOPS/W), area (GSOPS/mm2), and both area and power

(GSOPS/W/mm2). The metrics are evaluated for neurosynaptic

core designed with the memory cells and peripheral logic at

65 nm node. As can be seen from Table II, the STT-RAM

core has nearly 2× and 5× higher throughput per unit Watt

compared to PCM and RRAM based neurosynaptic cores, re-

spectively. The main reason for the performance improvement

in the STT-RAM array is its low read latency, allowing the

memory access to take place at higher frequency compared

to PCM and RRAM. Hence, we use the STT-RAM memory

arrays to design the learning accelerator for SNNs.

IV. LEARNING ACCELERATOR DESIGN

The NVM based neurosynaptic core described in Section III

is extended to support on-chip spike based learning with STT-

RAM arrays. We trained a fully-connected network with two

hidden layers, each having 256 neurons for the MNIST dataset.

We used 16-bit floating point (also called half-precision or

TABLE II
EVALUATION OF NEUROSYNAPTIC CORE FOR INFERENCE ACROSS THREE

DIFFERENT NVM TECHNOLOGIES

Parameters STT-RAM PCM RRAM

Read latency (ns) 5 10 25
Memory clock frequency (MHz) 100 50 20
Memory access power (mW) 0.53 0.92 0.79
Digital logic power (mW) 1.46 1.46 1.46

Total power (mW) 1.98 2.38 2.25
Total bit cell area (8KB) (mm2) 0.02 0.02 0.02
Memory peripheral area (mm2) 0.095 0.040 0.040

Digital logic area (mm2) 0.02 0.02 0.02
Total core area (mm2) 0.13 0.08 0.08

GSOPS 3.2 1.6 0.64
GSOPS/W 1610 673 285

GSOPS/mm2 24.62 20 8
GSOPS/W/mm2 12385 8412 3562

FP-16) representation to train our network [39]. Our network

obtained a test accuracy of 97.25% on the MNIST dataset

after training for 500 epochs. We also used a dropout of 0.1

in the input layer and 0.2 in the hidden layers. To implement

stochastic gradient descent, we employed a batch size of 1 for

our design to avoid the need to store the intermediate variables

of the size of the network parameters outside of the array. In

[26], a fully-connected network with two hidden layers each

with 1024 neurons in the 32-bit floating point precision reports

a test accuracy of 98.7%, which used the Adam optimizer and

a batch size of 100.

Fig. 2 shows our scheme for realizing the learning com-

putations on the crossbar. It involves two phases, one for

evaluating the gradients δ and the other for performing the

weight updates. The forward pass evaluates the neuronal spike

(ak), membrane potentials (vk), and the activation gradients
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Fig. 2. Scheme for performing back-propagation of error gradients and weight
update. During the backward pass, when a spike is received on the row of
the array, the corresponding weights are read into the post-synaptic logic and
new weights are computed. The flipped bits between the original and new
weights are then programmed back into the array through write drivers. The
error gradient back-propagation happens whenever the pre-synaptic neuron
has non-zero activation gradient.
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a row. The peripheral digital logic consists of blocks to update the neuron
membrane potential, the error derivative δ, and the weight update terms ∆w.

(gk). For each pre-synaptic neuron i, synaptic weights on the

ith row of the crossbar are read and stored in local registers

of the post-synaptic neurons. If the pre-synaptic activation

gradient is non-zero (gk−1  = 0 or if vk−1
i ∈ [0, 2θ]), we then

compute the δ values as the output of a MAC (multiply and

accumulate) unit as,

δk−1
i =

1

2θ

∑

j

wk
j,i.δ

k
j (6)

The weight update term ∆w is evaluated only if there is

a pre-synaptic spike, i.e., if ak−1
i  = 0. The weights on the

corresponding row, the wj,i values are read in the peripheral

registers and the update terms ∆w values are added to each

of the synaptic weights as,

wj,i(n+ 1) = wj,i(n) + ∆wj,i (7)

The bits flipped from the read weight values and the newly

updated values are compared by performing a bit-wise XOR as

wflip = w(n+1)⊕w(n), and then the write driver programs
the specific bits to their required final states. The two steps

of updating the weights on a row and evaluating δ values

are repeated sequentially over all the wordlines which have

received an input spike.

We used a larger array with 2048×2048 elements to realize
the STT-RAM on-chip learning accelerator (Fig. 3). From

interconnect parameters [40], we estimate the resistance of the

bitline with 2048 bit cells as RBL = 9.5 kΩ and capacitance

as CBL = 146 fF at the 65 nm node. Thus, the RC wire delay

of ∼ 1.4 ns is less than the minimum pulse width needed

to read or write (2 to 10 ns) to a single device, making our

TABLE III
POST-SYNTHESIS AREA AND POWER NUMBERS FOR DIGITAL LOGIC

BLOCKS IN THE NEUROSYNAPTIC CORE AT 65 NM NODE

Blocks Area (mm2) Power (mW)

Neuron Logic (Forward pass) 0.358 20.49

Spike Router 0.036 2.05

Controller and decoder 0.11 6.15

MAC and weight update blocks 0.039 18.21

Total 0.543 46.9

large array design feasible. Each synaptic weight for a neuron

has 16 STT-RAM bit cells. This array can support 128 post-
synaptic neurons and 2048 inputs. The digital logic blocks at
the array periphery consist of a 16-bit floating point adder, a

MAC unit, and an XOR block to identify the flipped bits in the

weights and biases. Additionally, the digital logic also includes

the spike decoders and controllers needed for accessing the

memory for read and write.

We designed the digital logic with FP-16 compute units

in Verilog and synthesized them using the Synopsys Design

Compiler tool to obtain the area and power estimates of

each of these blocks at 65 nm node. Table III presents the

synthesized area and power estimates for the different digital

logic blocks (FP-16 neuron, MAC unit, spike decoder, router

and controller). The area and power for the spike router is

taken as 10% of that of the neuronal design based on previous

published works [41]. We compare our design with an SRAM

memory block of the same capacity as the STT-RAM array of

512KB. The DESTINY tool is used to obtain the estimates

for the SRAM memory block of 512KB [42]. Similar to the

SRAM cell used in the inference design, we use a bit cell of

size 150F 2 in DESTINY [26]. Table IV presents the read and

write peripheral power for SRAM and STT-RAM. We estimate

the area of the memory array as the sum of bit cell area

(2048× 2048 bit cells each having an area of 29F 2) and the

total area of the designed peripheral read/write circuits. Based

on the maximum latency of SRAM access and bandwidth

reported by DESTINY, we set the memory operating clock

frequency at 250MHz. The STT-RAM array that we designed

can operate at 100MHz based on the timing requirements of

its peripheral circuits. The total area (post-synthesis) of the

complete STT-RAM design is 1.83mm2, whereas the area of

the SRAM design is 7.27mm2.

TABLE IV
COMPARISON OF SRAM AND STT-RAM TECHNOLOGIES OF 512KB

CAPACITY USED IN NEUROSYNAPTIC CORE AT 65 NM NODE

Design Parameters SRAM (DESTINY) STT-RAM

Operating Frequency (MHz) 250 100

Read Power (mW) 529.5 27.29

Write Power (mW) 555.25 760.19

Memory bit cell area (mm2) 6.29 1.22

Peripheral area (mm2) 0.44 0.17

V. PERFORMANCE ANALYSIS

Our digital logic blocks synthesized with 65 nm library

cells can operate at 500MHz, without incurring any timing
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TABLE V
AVERAGE SPIKE STATISTICS PER LAYER PER CORE IN THE SNN TO TRAIN

WITH MNIST DATASET.

Network Statistics SRAM STT-RAM

Memory clock (MHz) 250 100

Incoming Spikes ak−1 20 20

Incoming gradients gk−1 95 95

Forward Pass

No. of synaptic reads 2560 2560

Memory clock cycles for read 20 20

Power (mW) 580 78

Back-propagation

No. of synaptic reads 5664 5664

Memory clock cycles for MAC 2833 1152

Power (mW) 489 26

Weight Update

No. of writes 1180 1180

Memory clock cycles for write 20 160

Power (mW) 91 123

Overall GSOPS

Synaptic Operations (SOPs) 9404 9404

Total # of Memory clock cycles 2853 1172

GSOPS 0.82 0.80

violation. The arrival of a spike on the input wordline enables

the read of all the bit cells on a row in the memory array.

For the STT-RAM array, the logic (running at 500MHz)

operates 5× faster than the memory (operating at 100MHz),

while for the SRAM memory (operating at 250MHz), the

logic clock is 2× faster than memory. The neuronal updates,

as well as the evaluations of δ and ∆w values take place

in the digital logic. The back-propagation modules used for

computing δs perform multiplication of δk
i and wk

i,j across all

the output neurons i, of layer k, and hence need more clock

cycles than the memory read/write per row j. The total cycles

needed for writing to the weights through write drivers and

computing error back-propagation δk−1 is decided based on

the maximum of the cycles needed to write to the memory

array and to perform the MAC operation as the two stages

can be parallelized. For the STT-RAM array, we make use of

only two write drivers per 16-bit synapse, to limit the STT-

RAM write driver power requirement and hence, each write

in the STT-RAM array requires 8 memory clock cycles. To

measure the performance, we compute the synaptic operations

during the forward pass, back-propagation, and weight update,

based on the spike and gradient statistics collected while

training the network in software emulation with half-precision

representation. Our neurosynaptic core can be used to realize

one layer of the SNN with maximum of 128 neurons. For

realizing layers with 256 neurons, two of such cores can be

interfaced to the previous layer output.

We measure the performance of a single core, by measuring

the time required to perform the synaptic reads for neuronal

potential update (forward pass), synaptic reads for evaluating

the MAC (for δ) and finally the synaptic reads and writes

during the weight update stage (using ∆w). Table V lists the

average number of synaptic operations during different stages

of learning in the neurosynaptic core.

Using the listed statistics we estimate the GSOPS (Giga

Synaptic Operations per second) for the neurosynaptic core.

Table VI presents the performance comparison of the SRAM

and STT-RAM designs. While the SRAM can be operated at

a higher frequency than the STT-RAM, the overall throughput

is limited by the MAC logic which takes more cycles per

memory access, hence, we do not see a significant difference

in the GSOPS in the two designs. As we have accounted for the

network activity during training, the number of synaptic writes

is significantly smaller than the number of synaptic reads

(in this example, we have 1, 180 writes compared to 8, 224

reads in both forward and backward passes per image). This

translates to smaller overall energy requirement for the STT-

RAM core, as STT-RAM memory read energy is significantly

less than that of the SRAM memory (by ∼7×). Hence,

considering the total power in the design for the forward

and backward passes, the STT-RAM core has ∼5× higher

GSOPS/W compared to that of the SRAM core. Normalizing

the performance with respect to the core area, it can be seen

that STT-RAM core has nearly 20× higher GSOPS/W/mm2

than SRAM core.

TABLE VI
PERFORMANCE COMPARISON BETWEEN SRAM AND STT-RAM DESIGNS

Design GSOPS GSOPS/W GSOPS/W/mm2

SRAM design 0.82 0.71 0.09

STT-RAM 0.80 3.5 1.93

VI. CONCLUSION AND FUTURE WORK

We have designed a learning accelerator based on NVM

crossbar arrays that implements learning for SNNs using 16-

bit floating point representation. Overall, the STT-RAM core

performs nearly 20× better than the equivalent SRAM core

in terms of GSOPS/W/mm2, due to its lower read energy and

smaller bit cell area, when considering the network statistics

for training with the MNIST dataset. Our design’s throughput

is limited by the number of cycles required by the MAC

unit. Introducing more parallelization in the MAC logic can

improve the overall performance of the design, which could

be a future direction to this work. In future work, network

training under novel bit-representation schemes such as bfloat

as well as reduced precision could be studied and hardware-

aware optimization strategies during training could be explored

to improve network accuracy.
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