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Abstract—Neuronflow is a neuromorphic, many core, data flow
architecture that exploits brain-inspired concepts to deliver a
scalable event-based processing engine for neuron networks in
Live AI applications. Its design is inspired by brain biology, but
not necessarily biologically plausible. The main design goal is the
exploitation of sparsity to dramatically reduce latency and power
consumption as required by sensor processing at the Edge.

I. INTRODUCTION

Vision and audio sensor processing is currently dominated

by neural networks. These are robust, more accurate and easier

to develop than hand-crafted feature extraction/classification

techniques. Their emergence enabled a plethora of applications

and opened new markets and opportunities.

We focus on Edge of the cloud applications and in, par-

ticular, on Live AI, i.e. applications that receive live data

from one or more sensors and quickly react to environment

changes, making decisions in real-time. Live AI typically has

stringent requirements in timing (especially latency) and power

consumption, and thus cannot be off-loaded to the cloud.

We contend that popular strategies to process neural net-

works for Live AI suffer from a power bottleneck that cannot

be addressed by existing compute architectures. NeuronFlow

bridges this gap by employing both recent advances in neuro-

morphic engineering and older ideas from dataflow processors.

State-of-the-art vision and audio sensors generate large

volumes of time-sampled data. Most commercially available

vision sensors rely on the capture of complete images (frames)

at equally-spaced (i.e. periodic) time intervals, regardless of

whether the scene changes. Such sensors are called frame-

based.

Algorithms processing vision sensors typically follow a

frame-based structure both because this fits the dominant,

frame-based sensor technology, and because it enables the

reuse of single-frame algorithms to process frame sequences,

ie, a single picture object recognition DNN can be applied to

a video sequence frame by frame.

As a consequence, the same irrelevant background objects

are repeatedly identified and analyzed across frames. The

processing of all these superfluous data dramatically increases

computational load, resulting in highly inefficient, power-

hungry processing. This would not be a serious issue if

the absolute computational requirements of image sensing

algorithms were low, but neural networks are computationally

intensive and come at a significant power consumption cost.

For current processor technology, and for Live AI, these costs

are highly prohibitive.

Our approach to these challenges is grounded on neuro-

morphic engineering. Biological neuron networks are more

efficient in processing sensory data than computer systems,

doing it with considerable less computation and at a much

lower power consumption. The performance of state-of-the-art

neural processors, however, is not even close to brain perfor-

mance concerning the trade-off between power consumption,

accuracy, and speed. The human brain contains approximately

86 billion neurons and 150 trillion synaptic connections while

only consuming around 20W [1]. Visual and audio processing

consumes around 30% and 3% of brain resources, respec-

tively [2]. And even though the biological fabric of the brain

is not as efficient as our modern silicon technologies, it

achieves extremely efficient power consumption for streaming

signal processing. State-of-the-art DNN processors can attain 5

TOPs/W [3]. To execute a neural network with 150T synapses

in this technology with the assumption of 10Hz updates (1.5P

operations per second), requires 300W of power (15x more

than the human brain). Biological studies [4] [5] show that,

most of the time, only about 1% to 10% of the neurons in

the brain are active. This suggests that, by efficiently avoiding

redundant processing, it should be possible to bridge the power

consumption gap between DNN accelerators and the brain.

SectionIII, which discusses sparsity, will elaborate on this.

The biological brain has other impressive characteristics. It

scales from 10k neurons in a worm brain up to 86B neurons

in a human brain, while using the same building blocks and

architecture. This level of scalability is not found in any

human-designed processor. It is achieved via asynchronous

distributed processing and event-based communication [6].

In-memory processing In the brain, memory and processor

are not separate entities as in typical von-Neumann architec-

tures. And there is a cost to this separation. Measurements

show [7] that, in a conventional processor, an external memory

access consumes two orders of magnitude more power than a

MAC (Multiply-ACcumulate) operation, while local memory

accesses consume almost the same power. Beyond energy

reduction, in-memory processing enables scalability, as it
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mitigates the memory bandwidth bottleneck [8].

We propose to dramatically reduce power consumption and

computational requirements by selectively applying neuromor-

phic concepts to processor design.

The next section reviews related work. Section III discusses

sparsity and how SpArNet (Sparse Asynchronous Neural Net-

work) can efficiently exploit sparse DNN inference. Section

IV presents NeuronFlow.

II. THE STATE-OF-THE-ART AND ITS LIMITATIONS

A neuromorphic processor is a neural network execution

machine where the neuron model is inspired by biology.

Currently, the highest level of bio-plausibility can be found

in analog neuromorphic processors like BrainScaleS [9], DY-

NAPs [10], and Neurogrid [11]. This is achieved by designing

an analog electronic circuit to emulate the behavior of a

biological neuron and replicating it thousands of times.

The big advantage of analog neuromorphic design is power

consumption, attained by applying asynchronous technology

and sub-threshold design. Its main disadvantages are a large

silicon area per neuron, which severely constrains the neuron

count in a chip, and the limitations of analog circuitry regard-

ing fabrication variations and noise.

In the digital domain, neuromorphic platforms typically con-

tain many processing cores, with each core simulating many

neurons. Per neuron, a memory word stores the membrane

potential, while a shared ALU performs operations. Cores

communicate through packet-switched NoCs. Some examples

are IBM TrueNorth[12], Intel Loihi[13] and SpiNNaker[14].

SpiNNaker[15] (2012) aims at partially emulating the hu-

man brain in real-time. It consists of a matrix of ARM pro-

cessors connected by asynchronous routers and a shared HBM

memory. SpiNNaker uses a scalable Globally-Asynchronous-

Locally-Synchronous (GALS) NoC architecture[16] that can

connect more than 1M cores in a single platform. The flexi-

bility comes at the cost of higher power consumption. Because

of small on-chip memories, execution frequently needs random

off-chip memory access, resulting in high latency and a

memory bottleneck [17].

TrueNorth[12] (2014) was proposed as a new type of

processor architecture for natural signal processing. With 5.4B

transistors, it was IBM’s largest chip. It contains 4096 cores.

Each core emulates 256 neurons and communicates through a

GALS NoC. It achieves very low power consumption (around

100mW) by exploiting asynchronous, event-driven execution.

It suffers from limited connectivity, as each neuron can only

connect to 256 other neurons in one core with binary weights.

This makes it inefficient to implement even moderately com-

plex networks.

Loihi[13] (2017) is a many-core SoC, designed by Intel,

with 128 cores, connected through two independent NoCs.

Each core emulates 1024 neurons. A flexible connectivity

scheme allows exploitation of structural sparsity. It supports

flexible synaptic weight precision (from 1b to 9b), allowing a

trade-off between the number of connections and the precision

per connection. The neuron model is fixed and designed for

bio-plausibility. Thus, applications are constrained to platform-

specific algorithms. Loihi consumes almost half of its silicon

area in on-chip learning. This learning mechanism has not

shown competitive performance in accuracy.

In summary, known digital neuromorphic approaches aim

at understanding the brain, thus focusing on mimicking its

operation. To achieve competitive performance in power and

latency, we believe one must instead find out which brain

characteristics contribute to its desirable properties and exploit

them in a way fitting modern silicon technology. NeuronFlow

does this by exploiting sparsity, the subject of our next section.

III. SPARSITY AND SPARSE ASYNCHRONOUS INFERENCE

A. The Importance of Sparsity

Frame-based sensors capture enormous amounts of redun-

dant data. This means that relevant information is generally

sparse. Sparsity is present within a frame (spatial sparsity),

in-between frames (temporal sparsity) and across the neural

network (structural sparsity).

Structural sparsity: The dominant operation in DNN is

multiplication-accumulation of synaptic weights by neuron

output. These can be skipped when either operand is zero.

DNNs are generally built with regular topology, and this

regularity is often exploited by the processor architecture.

However, after training, some connections may become unnec-

essary. Weight pruning [18] will assign zero value to insignif-

icant weights. To exploit this, the processor must skip zero-

weight connections, but this creates topological irregularities

that may cause execution overhead.

Spatial sparsity: In DNNs, a neuron accumulates its inputs

and then applies a non-linear activation function to the result to

produce its output. It is known that the function’s non-linearity

is more important than its shape, and a DNN can adapt to

many activation functions. Using ReLU (y = max(0, X))
became popular since it is partially linear and efficient for

hardware implementation. The output of neurons with ReLU

is zero when the accumulation result is negative. This imposes

high sparsity (around 50%) to each layer. Again, skipping

zeros during computation will conflict with exploitation of the

regular structure.

Temporal sparsity: data are said to be temporarily sparse

if they rarely change over time. For example, the output

of a security camera in a quiet place mostly contains the

unchanging background scene. Exploiting temporal sparsity

means skipping the update of a neuron when none of its inputs

changes. The algorithm needs to remember the results of past

calculations and reuse them efficiently, thus requiring a large

memory. This is the case with biological brains, which trade-

off power consumption for memory. Therefore, even though

the volume of the brain is large, it is very low power, as only

1% to 10% of its neurons are active at a time [4] [5]. This

contrasts with conventional ANN inference where all neurons

are updated and communicate their output for every frame.

As Neural Networks are mostly used for natural, temporally-

sparse signal processing, such as audio/video streams, enabling

sparse processing in inference engines dramatically impacts
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Fig. 1: A feed-forward neural network. Circles represent

individual neurons. Green neurons received a spike and should

be updated, red neurons fired after receiving a spike. Execution

goes from left to right, from sensor input to classification

output. Typically, sparsity increases with depth.

power consumption. The next section introduces SpArNet, an

example of efficient DNN inference in NeuronFlow. SpAr-

Net adapts bio-inspired Spiking Neural Networks (SNN) to

perform sparse inference of non-spiking ANNs, without com-

promising accuracy. It adapts known schemes [19] [20] [21]

[22] [23] to NeuronFlow.

B. SpArNet

Fig. 1 illustrates a simplified schematic of a Spiking Neural

Network (SNN). In an SNN with Leaky Integrate&Fire (LIF)

neurons, each neuron has a potential which is updated upon

the integration of its inputs over time. If a neuron’s potential

reaches the predefined threshold, an output spike is fired and

propagated through its output synapses. If not, the spiking

neuron does not generate output. Similar to our brain, only a

small number of neurons is active at a time.

SNNs have two advantages over synchronous processing.

First, unlike a synchronous neuron, an SNN neuron only

updates its potential when there is an input event (spike).

Second, input events can be processed immediately and the

neuron can fire anytime without waiting for an external trigger.

SpArNet shares characteristics of both synchronous ANN

and LIF. It performs the inference of an ANN, but asyn-

chronously, and with the number of operations optimized for

spatio-temporal sparsity. Starting from an ANN, we obtain a

SpArNet with the same topology by quantizing the neurons’

activation functions. In SpArNet, events are valued and repre-

sent quantized changes in a neuron output value. To perform

an inference, each neuron updates its potential upon receiving

an event. If the change in output is higher than a defined

threshold, the neuron will fire an event to its consumers. This

is known as change-based or delta inference.

We use hysteresis quantization, not direct quantization, to

set thresholds [19]. This avoids excessive firing activity. Fig. 2

compares the spiking behavior for these quantization schemes.

In direct quantization, when the input (X) is near the transition

point of two quantization levels, small variations/oscillations

in X may result in several big changes in the quantized X

which is not desirable. Choosing the threshold is a trade-off,

(a) (b)

Fig. 2: Comparison between direct (left) and hysteresis (right)

quantization when the quantization level (threshold) is one.

Fig. 3: Prediction angles for the first 20,000 frames of the

original CNN inference and the proposed SNN inference.

as coarser quantization results in higher quantization error but

generates fewer spikes, resulting in lower computational load.

As an example, our results show a reduction of one to two

orders of magnitude in the number of updates required when

executing PilotNet in GrAI One. PilotNet is a neural network

introduced by NVIDIA [24] along with the dataset1. The

dataset contains a video recording (10 fps) by a camera placed

in front of the car as well as the corresponding steering angles

Fig. 4: Number of MACs for the first 20,000 frames in CNN

versus SparNet inference (original 10fps recording).

1https://github.com/lhzlhz/PilotNet
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Fig. 5: PilotNet: the average number of operations per second

increases linearly with fps for CNN. For SpArNet, it saturates.

for each frame of the video2. The output of the network is

the predicted steering angle for the input frame. This network

contains 108K neurons and 1.6M parameters.

Fig. 3 shows the output of PilotNet for the original CNN

inference versus the proposed SNN inference for part of the

dataset. Fig. 4 shows the number of required MAC operations

during inference of PilotNet in the original CNN and our SNN

network for the first 20,000 frames. As the original PilotNet

dataset has a very low frame rate (10 fps), we tested the

network with higher frame-rate recordings3 (480fps). As it is

shown in Fig. 5, savings in number of operations increase with

frame rate, due to increased inter-frame redundancy4.

SpArNet enables sparse asynchronous execution, but ex-

ploiting this in a conventional processor is difficult, and

that may be the reason why regular inference models are

typically preferred. Most bio-inspired models run very slowly

on a conventional computer. We designed NeuronFlow to be

flexible to program and efficient in exploiting all types of

sparsity, as we shall see in the next section.

IV. THE NEURONFLOW ARCHITECTURE

A. Consequences of sparsity for computer architecture

To exploit temporal sparsity, the computing machine must:

• keep a resilient neuron state across time, to track

variation in output and avoid full re-computation of state

every time a change and/or a time-trigger happens.

• process updates to resilient neuron states as synapse input

arrives in a event-based, data-dependent order, since the

neurons to be updated are not known at compile-time;

furthermore, since there are few updates (due to spatial

and temporal sparsity), avoid pulling values from memory

to decide what neurons to update; this suggests a data-

flow execution model, where produced results trigger

consuming computations (instead of relying on a pre-

defined execution order).

2https://youtu.be/ N7nC-8YxzE shows the original PilotNet inference.
3https://youtu.be/LyPTj3Parp0
4https://youtu.be/OySJKJWGrjw shows number of operations for the

PilotNet dataset per frame with a dynamic illustration.

Conventional processor architectures for signal processing,

however, rely heavily on architectural features that are counter-

productive in processing sparse sensor input, as follows.

Data-value-independent execution order: a typical im-

plementation will cycle through all neurons to update them

in a pre-determined order, working in a feed-forward manner

through the layers. Per layer, it accesses the memory-stored

values of output synapses one by one. A high-degree of

parallelism and reuse can be achieved, but each neuron and

each input synapse are visited once. This makes sense when

evaluating the full network; less so when computing sparse

updates. In a sufficiently sparse system, an optimized static-

order of evaluation will not compensate the overhead of so

many redundant updates.

Locality of reference: memory accesses to large, cheap

memory arrays incur high latencies. Communication devices

(busses and NoCs) and DMA accelerators try to alleviate

this by reading large chunks of contiguous data items in

bursts; memory hierarchy techniques like caching work by

creating local copies of frequently accessed, contiguous data

in faster memory. These techniques - burst access, DMA and

caching - make sense when a) the same data are accessed

frequently in succession and b) access to a data item is a good

predictor for a subsequent access to contiguous data (such

as when neuron updates are processed in-order, as described

above). Such techniques make less sense when computing

sparse updates. This is not a fully black and white picture:

in video processing, there is some locality of reference as,

for instance, when an object moves, many contiguous pixels

will change. Nonetheless, employing burst accesses and cache

mechanisms to applications with little locality of reference

may result in costly hardware overhead and in performance

degradation [21], through failed speculative data access and

unnecessarily complex control.

Pull memory model: in conventional computer architec-

tures, the processor must obtain data by requesting it from

memory; it must then wait for data to be sent, with varying

latency depending on where the requested data resides in the

memory hierarchy; this means that the effectiveness of the

processing chain is conditioned by the memory architecture,

and that considerable communication bandwidth and power

must be spent pulling data from memory; moreover, for a

sparse application, this may result in spending resources and

power just to obtain data that do not need to be (re)processed.

B. The NeuronFlow Architecture

NeuronFlow (see Figure 6) is a scalable many-core array

of event-processing cores with distributed execution control.

In a possible realization, NeuronFlow I, each Neuron Core

is comprised of 1024 neurons states organized in Neuron-

State Memory, 1024 Synapses to keep the neural network

parameters, allowing for the implementation of hundreds of

thousands of synapses per cluster through our proprietary

connection sharing schemes (explained below). The number

of cores in a chip will vary (up to several thousands) based on

the performance target, and the architecture can be scaled post-
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Fig. 6: The NeuronFlow many-core grid.

Fig. 7: The event-processing pipeline of a Neuron Core

silicon through chip tiling. The NoC is optimized for small

packet transactions (to support sparse communication).

Each Neuron Core implements an event-processing pipeline

(Figure 7), designed to handle one incoming event per clock

cycle. In the basic execution model, each event corresponds

to the output of a source neuron which is driven through

a weighted synapse to a target neuron. Moreover, if our

connection sharing scheme is used, events to many weighted

synapses can be packed in a single output event that will

address multiple target neurons in the destination core.

The processing of an event is as follows. The Neuron Core

receives events from the network. These events are processed

in order of arrival. Each event triggers one or more synapses.

For each synapse thus triggered, the Neuron Core will fetch

weight and other parameters from the parameter memory, and

multiply the event value by the weight of the synapse. It will

then read the state of the target neuron from the Neuron State

Memory and accumulate the synaptic results onto it, writing

it back to the Neuron State Memory.

For a threshold-triggered neuron (such as a SpArNet neu-

ron), once the state is updated, and if the activation condition is

met, all the output axons are activated, resulting in the injection

of new event(s) into the network. The Axon Memory contains

the destination core addresses for the events.

The data-flow transport of data and control does not

follow the pull-push (read-write) memory access model of

conventional von Neumann architectures, thus avoiding the

memory accesses that would be required to check for non-

occurring updates in a sparse application. As shown in Fig 7,

every access to memory occurs in the core where the item is

located (in-place data processing). Note that this also avoids

unnecessary data transport, and only occurs as the result of an

event trigger, meaning that it is a change at the producer that

triggers update of the consumer.

Our connection sharing scheme allows a single neuron

output event to fan-out to multiple weighted synapses in the

next layer, while only using the bandwidth of one event. Since

a connection pattern can be shared by many neurons, the

method also reuses Synapses and Axons and is thus partic-

ularly efficient for convolution layers. This is done without

imposing any constraints on irregular connections, which are

still fully supported. Additionally, multi-casting imposes no

constraints on the NoC. Connection sharing also supports zero-

skipping and multiple weight resolutions.

By using relative core addressing, we limit each neuron

to address all neurons in the same core or in the neighboring

cores. Long-distance communication is still possible by using

dummy neurons as intermediate hops. This will reduce the

amount of memory we need to store the destination addresses

while keeping the architecture scalable to any size. Relative

addressing also allows NeuronFlow to be tiled to make a

bigger mesh of cores.

Since AI algorithms are evolving fast, flexibility is impor-

tant. We support both dedicated neuron models and general

DFG (Data-Flow Graph) nodes that allow full programma-

bility. Neuron output triggers can use a configurable value

threshold, a configurable time-trigger or a programmable trig-

ger. For precision, we employ dynamic fixed-point (similar to

[25]), with a configurable scale factor and zero-point.

Some neuron models for SNN need state leakage. Neu-

ronFlow provides a configurable, event-driven leak process,

controlled either by a programmable trigger or by a timer.

Neuronflow events are valued, i.e. not simple spikes as usual

in neuromorphic systems. In a digital realization, the main

transport cost is not the value but the target neuron address,

so the relative cost of a valued payload is minor. This is less

biologically-accurate, but more efficient for digital circuits.

Out of the box, NeuronFlow supports Basic arithmetic and

logic operations and Switch DataFlow nodes as well as Leaky

Integrate and Fire (LIF), ANN (for conventional inference)

and SpAr neurons with Linear, ReLU, Leaky-ReLU, Clipped

ReLU, Hard Sigmoid and Hard Tanh activation functions.

For inter-core synchronization, it supports both autonomous

and time-step-driven execution. Time-step driven execution

requires all cores to finish one time instant before proceeding

to the next, assuming a fixed delay per synapse of one time

unit. This synchronization mechanism can be split hierar-

chically, allowing for either multiple autonomous islands of

synchronicity, or for heterogeneous synaptic delay, i.e. the

latency in time-steps of an event depends on the mapping of

neurons to the fabric. In de-synchronized execution, every core

executes events continuously in the order of arrival to the input

queue and sleeps if the input queue is empty.

Table I compares two possible hardware realizations of

the architecture for different application domains and using

different technology nodes, NeuronFlow I and NeuronFlow

II, with other architectures. Power numbers are averaged for

typical applications. Both realizations have 196 cores, but

different memory configurations per core. Larger processors
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TABLE I: Comparing two possible Neuronflow configurations with similar architectures

Neurogrid TrueNorth Loihi NeuronFlow I NeuronFlow II

Technology Analog (180nm) Digital (28nm) Digital (14mn) Digital (28nm) Digital (14nm)

Size of a neuron (µm2) 2600 430 460 100 25

Memory(bits)/neuron — 426 2000 120 152

Neurons/chip 65k 1M 131k 200k 4M

Synapses/neuron 1.5k 256 (binary) 1k (shared, 1b) 1k (shared,8b) 4k (shared,8b)

Axons/neuron — 1 4k (shared) 1k (shared) 16k (shared)

Energy/synaptic-operation 100pJ 25pJ 80pJ 20pJ 10pJ

On-chip Learning No No Yes No No

can easily be built through tiling. The power consumption

numbers are reported by Spyglass tools from Synopsys.

GrAI Matter Labs also provides an SDK to program the

chip and directly map onto it neural networks trained in

TensorFlow. GrAIFlow provides performance numbers (usage

of cores, number of events per core during run time, estimated

power consumption, debugging tools, etc.) by performing

mapping and simulating hardware behavior.
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