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Abstract—Arithmetic is a key component and is ubiquitous
in today’s digital world, ranging from embedded to high-
performance computing systems. With machine learning at the
fore in a wide range of application domains from wearables to
automotive to avionics to weather prediction, sufficiently accurate
yet low-cost arithmetic is the need for the day. Recently, there
have been several advances in the domain of computer arithmetic,
which includes high-precision anchored numbers from ARM,
posit arithmetic, bfloat16, etc. as an alternative to IEEE 754-
2008 compliant arithmetic. Optimizations on fixed-point and
integer arithmetic are also being pursued actively for low-power
computing architectures. Furthermore, approximate computing
and transprecision/mixed-precision computing have been exciting
areas of research forever. While academic research in the domain
of computer arithmetic has a long history, industrial adoption of
some of these new data types and techniques is in its early stages
and expected to increase in the future. bfloat16 is an excellent
example for this. In this paper, we bring academia and industry
together to discuss the latest results and future directions for
research in the domain of next-generation computer arithmetic,
especially for edge computing.

Index Terms—Computer arithmetic, floating point arithmetic,
mixed-precision arithmetic, IEEE 754-2008 standard

I. INTRODUCTION

Computer arithmetic is ubiquitous in applications ranging

from an embedded domain such as smartphones to high-

performance computing (HPC) applications like weather mod-

eling. Specifically, in embedded systems, since the platforms

have performance limitations due to limited power and area

budgets, using appropriate arithmetic is desirable. The con-

straints on power and area footprints combined with demand

for high performance in applications like edge computing in

internet-of-things (IoT) have created tremendous challenges

for researchers and computer architects [1]. Over the years

in response to this challenge, researchers have developed

hardware-efficient implementations of computer arithmetic [2].

Recently, there have been attempts to design new representa-

tions to replace the existing ones [3].

Major semiconductor manufacturers involved in efficient

domain-specific accelerator designs are investigating new

arithmetic formats for their applications of interest [4] [5].

For example, the recently proposed bfloat16 format supports

similar dynamic range as single-precision IEEE 754 compliant

floating point number, but with lower precision. The bfloat16

format is supported in several products by Intel, Google, and

ARM. Similarly, several academic researchers have designed

and developed software and hardware tools that can auto-

matically generate efficient arithmetic hardware. The FloPoCo

project is one such example. In this paper, we describe and

review the following complementing approaches that lead to

an optimum computer arithmetic for edge computing:

• Firstly, we describe an application-specific arithmetic

where the focus is on operator transformation and com-

puting exactly required arithmetic.

• Secondly, we describe an arithmetic architecture and

approaches for efficiently implementing them on field

programmable gate arrays (FPGAs) mainly targeting ar-

tificial intelligence (AI) applications.

• Thirdly, we describe a hardware-oriented approximate

computing for speech recognition and keyword spotting.

• Finally, we discuss a new datatype called posit arithmetic

that is proposed as a drop-in replacement for IEEE 754

format and arithmetic.

The rest of the paper is organized as follows. In Section

II, we discuss application-specific arithmetic. FPGA imple-

mentation and support for arithmetic is discussed in Section

III. Applications of approximate computing are described in

section IV. Posit arithmetic and its hardware cost are discussed

in Section Vas an example of alternate number formats.

Finally, we conclude our work in Section VI.

II. APPLICATION-SPECIFIC ARITHMETIC DESIGN

Conventional arithmetic units designed for general-purpose

processors have to be most generally useful.A good illustration

is how the fused multiply-and-add became the floating-point

unit of choice at the turn of the century: it could replace an

adder and a multiplier, but also enable efficient and flexible im-

plementations of division, square root, elementary functions,

etc. [6], while improving the performance on linear algebra

computations (the measure of all things in high-performance

computing). This particular technical choice is now being

reconsidered for energy-efficiency reason, but it remains that
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general-purpose processors need general-purpose arithmetic

units.

In contrast, there are two edge-computing contexts in

which application-specific arithmetic units may be better

than standard, general-purpose ones. The first is, of course,

the design of application-specific circuits, in particular for

the increasingly compute-intensive wireless interfaces, or for

machine-learning accelerators. The second is FPGA-based

reconfigurable computing, which in some applications will

offer the best trade-off between cost, energy efficiency, and

performance. Designing operators that match the needs of such

application-specific contexts is the subject of this section.

There is, by definition, an infinite number of application-

specific operators of interest. Therefore, it makes sense to

automate their design as much as possible. This is the primary

objective of the FloPoCo framework 1. This section attempts to

review the productive hardware arithmetic paradigm that has

emerged during the development of FloPoCo: on one side, the

open-ended generation of over-parameterized operators that

attempt to compute just right at all levels and on the other

side, the use of generic hardware frameworks and optimization

methodologies.

A. Opportunities of application-specific arithmetic

A first, obvious approach to tailor the arithmetic to the

needs of an application is to tailor the number formats. For

example, if 17 bits are enough at some point, then the data

format should be 17 bits and not 32. Therefore, all application-

specific operators should be parameterized in the precision and

range of their inputs and outputs. Further, in this section we

review several other approaches for tailoring the arithmetic to

the needs of a specific application.

Operator specialization consists in optimizing the structure

of an operator such that it can leverage some useful property

if its inputs. The most classical example is multiplication by

a constant, which has been extensively studied. More subtly,

a square requires fewer bit-level operations to compute than

a multiplication. An operator can also be specialized for a

specific sub-range of its inputs if the application dictates that

it will only be used in that sub-range. There are many other

such specialization opportunities.

Operator fusion involves considering a compound mathe-

matical expression such as
x

√

x2 + y2
as a single operator to

implement. It goes beyond the specialization of the squares

as mentioned in the previous paragraph.For such algebraic

expressions, there exists generic techniques that will directly

derive a bit-level operator [7].

Function approximation is another generic technique that

enables the automatic construction of hardware for a different

class of mathematical objects, that is (somehow) continuously

derivable functions of one variable up to a certain order. It is

a very useful block in some situations of operator fusion or

specialization, but also in the design of coarser operators such

as elementary functions. FloPoCo includes several generic

1http://flopoco.gforge.inria.fr/

approximators: by using plain tabulation, by using only tables

and additions, or by using multipliers additionally, thanks to

polynomial approximation.

Operator sharing is a classical optimization technique. In

the arithmetic hardware context, a specific opportunity is to

look for intermediate computations that can be used by several

subsequent computations. A well-researched example is the

multiple constant multiplication problem [8].

Finally, target-specific optimizations capture and exploit,

in the hardware generator framework, the specific performance

capabilities of the targeted hardware technology. For instance,

given that the logic of modern FPGAs being based on 6-

input look up tables, any technique that exploits pre-computed

tables of 64 entries (however random these entries may seem)

will be implemented extremely efficiently on FPGAs. This

deeply orients algorithmic choices compared to ASIC designs.

Another difference between ASIC and FPGA include ripple-

carry adders (comparatively faster on the latter with respect to

random logic) or the fact that some degrees of freedom (e.g.

multiplier size) become constraints due to the reconfigurable

arithmetic structure. Section III is discusses the exploration of

FPGA-specific optimizations in more detail.

B. Computing just right

One key principles of application-specific design is to

systematically correlate accuracy with precision. In a general-

purpose processor with a fixed 32-bit data-path, it may make

sense to have a 32-bit data that holds information accurate to

17 bits only whereas in an ASIC or FPGA context, it does

not. No component should output bits that do not carry useful

information. And of course, conversely, no component should

be designed to be more accurate than it can express on its

output. A nice side-effects of this commonsense rule is that it

simplifies the interface: for an operator that could be more or

less accurate (be it a multiplier by sin 17π

256
, or an approximator

to log x or a digital filter) there is no need to specify the

accuracy, as it should be deduced from the output format.

Indeed, for several FloPoCo papers, a central contribution has

been a better definition of the core problem thanks to such

interface simplifications.

C. A generic methodology for the design of complex operators

All the previous approaches exposes many parameters in the

interface of an operator (I/O formats, functional parameters

such as the constant in a constant multiplier, which variant of

which algorithm to use, etc).

Assembling several components into a larger one, as illus-

trated by Fig. 1, also involves new parameters such as all the

internal precisions required at various steps of the algorithm.

Some of these parameters may control a cost/performance

trade-off. For instance, the size of the sub-word A in Fig. 1

controls a trade-off between table size and multiplier size.

There is nothing wrong in over-parameterizing an architecture

generator, it can only make it future-proof. Defining an over-

parameterized architecture is the first step of the design of an

application-specific operator generator.
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Fig. 1. A parametric architecture for fixed-point sine+cosine [9]. The T

boxes describe truncations, the colored bubbles cover operations that are
merged in a bit heap. Each bit-width on this figure is computed by the
generator, and very few signals have the same bit width.

The second step is, of course, to choose the value of all

these parameters. There is no push-button approach here, but

three main sub-problems must be solved jointly.

First, we need to be able to compute the accuracy of the

architecture as a function of the parameter values through error

analysis . Indeed, as we just saw, the output precision entails

a constraint on this accuracy. A range of techniques exist and

can be mixed and matched, from approximation theory down

to a brute force enumeration of all the values of a table, as

long as the resulting error analysis can be programmed (with

reasonable run-time).

Second, we need to express the cost of the architecture. This

will obviously depend on the technology on the target. Here

also, inelegant enumerations are just as good as nice closed-

form formulae, as long as their run-time remains acceptable.

Finally, we must write a parameter-space exploration that

respects the constraints while minimizing the cost.It will

define all the internal parameters, and in particular attempt

to minimize the intermediate bit-widths, hence computing

just right.This exploration can be an ad-hoc program, or

use generic optimization techniques such as reductions to

the Shortest Vector Problem, Integer Linear Programming, or

constraint programming.

An interested reader can find detailed examples of this

methodology in many articles describing FloPoCo operators,

for instance sine/cosine [9] of IIR filters [1]. We conclude this

section with an overview of another high-level optimization

framework specifically designed for application-specific arith-

metic.

D. The Bit Heap generic arithmetic framework

A bit heap is an arbitrary sum of weighted bits, a general-

ization of the bit arrays classically used in multiplier design.In
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Fig. 2. A bit-heap-centric view on operator generation

FloPoCo, they have been used since 2013 [10] to capture sum-

mations in a surprisingly large number of operators, including

sums of products and more generally polynomials of several

variables, but also all sorts of sums of tabulated values, for

instance in table-based FIR and IIR filters [1] or in multipartite

table methods for function evaluation [11]. They is an elegant

way of decoupling (Fig. 2) the description of an arithmetic

computation (as a sum of weighted bits) from the generation

of target-optimized hardware that computes this sum. It is

not uncommon for a complex operator such as an elementary

function to involve several bit heaps (see Fig. 1). Having an

open-source bit-heap framework in FloPoCo has also renewed

interest in bit array compression, improving the state of the

art with an ILP-based heuristic [12] that, in return, improves

the performance of a large number of FloPoCo operators.

III. FPGA BASED ARITHMETIC

The most recent FPGA architectures have introduced new

levels of embedded floating point (FP) performance, with

tens of TFLOPs now available across a wide range of device

sizes. The emergence of AI/Machine Learning as the highest

profile FPGA application has changed the focus from signal

processing and embedded calculations supported by FP32

to smaller FP precisions, such as bfloat16 for training and

FP16 for inference. As an example, each Intel Agilex DSP

Block [13] contains a FP32 multiplier-adder pair that can be

decomposed into two smaller precision pairs; FP16, bfloat16,

and a third FP19 {1,8,10} format which can be used for both
training and inference. One member of the new Agilex device

family contains almost 9000 DSPs; at a clock rate of 750MHz

this provides up to 25TFLOPs performance.

Ristretto [14] showed that smaller precisions, especially

combined with a flexible block floating point method (de-

scribed as dynamic fixed-point), could provide effective AI

performance with significantly reduced precisions. This re-

search is well suited for FPGA implementations, where an

almost unlimited level of flexibility is available to implement

small precision soft multipliers.

In the Edge, where even lower precision arithmetic is

required for inference, new FPGA EDA flows can implement

100 TFLOPs+ of soft logic-based compute power. These in-

clude new synthesis, clustering, and packing methodologies –

collectively known as Fractal Synthesis [15] - that allow a near

100% logic use of the FPGA for arithmetic, while maintaining

the clock rates of a small example design. Improved soft

multiplier mapping algorithms [16] can also balance logic and
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routing resources better, and the results can still be packed

further by Fractal Synthesis. All of the soft logic methods can

be used simultaneously with the embedded FP operators in the

DSP Blocks, making the FPGA the most flexible, and amongst

the highest performing AI platform available.

One significant limitation of the FPGA is high density

fitting, especially with a performant timing closure. While

a design consisting of random logic can top 80% logic

utilization, soft arithmetic is more typically 60%-70% full.

Coupled with very high compute densities required, the known

methods of mapping multipliers to soft logic give an inef-

fective result in terms of PPA (power, performance, area).

Two new algorithms were developed to address this: multiplier

regularization, which balances the soft logic and soft routing

for efficient multiplier implementation, and Fractal Synthesis,

which packs carry chains and the logic associated with them

into the FPGA with a deterministic result. Although a detailed

description of these two methods is beyond the scope of this

paper, we will give an overview here, including a simple

example in the case of multiplier regularization.

An FPGA can be considered as a relatively fine grained

array, but for low precision arithmetic, can appear to be very

coarse grained. We will use the example of a 3x3 multiplier

to illustrate our approach. Using the pencil and paper method,

two inputs a2, a1, a0 and b2, b1, b0 produce 3 partial products

of 3 bits each, the second and third of which are arithmetically

shifted one bit to the left of the first and second, respectively.

This is illustrated by Fig. 3. The term p1,0 is the bit 0 of the

multiplicand (the least significant bit) ANDed with bit 1 of

the multiplier.

The issues can be seen by inspection. FPGAs contain two

input ripple carry adders, yet this arrangement leads to three

inputs after the second column. The number of independent

inputs per column is grossly unbalanced, varying from two to

six bits.

We can, however, extract components from the deepest

column and calculate them in out of band functions, then

refactoring these across the entire chain to the left, creating

a two input chain. First, we restate two entries of column 2

with the function (p0,2 ⊕ p1,1), which is the redundant sum

compression of those input bits. The four input bits (a2,a1,b1,

and b0) can be used in the same adaptive logic module (ALM)

used to calculate the redundant carry function (a2 · b0 ·a1 · b1).

Although moving the redundant carry function into column 3

creates another column of three bits, the redundant carry can

be refactored to use the redundant sum calculation for column

3, or (a2 · b0 · a1 · b1)⊕ (a2 · b1).
There is, however, another condition that needs to be

considered. If a2 ·b0, a1 ·b1, and a2 ·b1 are all ’1’, then a carry

will be produced in column 4. Restated, if the redundant sum

in column 3 is (a2·b0·a1·b1)⊕(a2·b1), the following redundant

carry will be (a2 · b0 · a1 · b1) · (a2 · b1). The redundant sum

can be XORed with a2 · b1 in the cell of column 4, generating

(a2 · b0 · a1 · b1)⊕ (a2 · b1)⊕ (a2 · b1), or (a2 · b0 · a1 · b1). The

redundant carry is then (a2 · b0 · a1 · b1 · a2 · b1), which can be

reduced to (a2 · b0 · a1 · b1). Note that this is identical to the

previous redundant sum.

The unsigned 3x3 multiplier can now be mapped to a single

3 ALM carry chain, with a single out of band ALM. The

routing and logic are now balanced, with 6 independent inputs

over the 4 ALMs. See Fig. 4 for details. This method can be

expanded to larger multipliers, as well as the summation of

multiple carry vectors such as those found in a soft multiplier

or dot products [16].

Now that we have optimized the mapping of small multi-

pliers to the FPGA soft logic resources, we must address the

fitting challenges of the many independent short carry chains

that these functions contain. Fitting is a variant of the well

known bin packing problem. The physical carry chains on

the FPGA will be organized in fixed granularities, and we

need to find a way to pack the many more logical carry chain

segments efficiently. The low fitting rates that are generally

seen for these soft arithmetic arrays underscore that there

is rarely a good solution available for this, which is made

more challenging as the segments need to be arithmetically

separated from each other (typically by the insertion of non-

functions), which further reduces the efficiency of the final

fit.

We now add a re-synthesis step to the clustering and packing

stage, and approach the problem as a combined logic and carry

chain fit. If a carry segment cannot fit in the space available,

we start to decompose it, followed by other segments that may

already exist in a trial fit to that physical chain. Sub-segments

that are split off are later placed in remaining gaps after all

segments have been placed. Finally, a hard depopulation is

used to complete gaps in the physical chain – so that the back

end of the tool does not try to alter the arrangement of sub-

segments.

This process is iterated exhaustively, rather than simulated

annealing, with a seed function to initialize each iteration.

Unlike many EDA algorithms, we do not need to keep a record

of each solution, only a list of seeds and their final metrics are

tracked. The best solution can be quickly re-created using the

chosen seed; this reduces RAM and disk usage, and in turn

provides a marked improvement in run time.

Access to embedded DSP Blocks are not affected by these

soft logic methods, and can still be independently used, for

more system flexibility. Alternately, small multipliers can be

extracted from the embedded multipliers (this is especially

efficient if one of the input operands is shared, as is often

the case for deep learning implementations). The dot products

can then be realized using soft logic adders packed by Frac-

tal Synthesis. This approach is validated by the Brainwave

[17] design, where 92% logic utilization was achieved. This

architecture has two components: control comprises 20% of

the design at a packing rate of about 80%, and the datapath,

which contains 80% of the design with 97% packing.

IV. APPROXIMATE COMPUTING PARADIGM FOR COMPLEX

NEURAL NETWORKS

Approximate computing at software level (e.g. quantization

and pruning techniques [18]–[20]) and hardware level (e.g.
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Column 5 4 3 2 1 0

PP0 0 0 0 p0,2 p0,1 p0,0
PP1 0 0 p1,2 p1,1 p1,0 0

PP2 0 p2,2 p2,1 p2,0 0 0

Fig. 3. 3× 3 Multiplier {a2, a1, a0} × {b2, b1, b0}

Column 5 4 3 2 1 0

PP0 0 p2,2 p2,1 p2,0 p0,1 p0,0
PP1 0 AUX2 ⊕ p1,2 AUX2 AUX1 p1,0 0

Fig. 4. 3× 3 Multiplier in Two Levels with Auxiliary Functions

partial [21]–[23] and full [24], [25] approximations) has been

thoroughly investigated in recent years. Energy saving in

partial approximation, which typically does not require any

retraining, is smaller while not all computation elements are

approximated. Full DNN approximation on the other side

allows for larger energy saving that can only be achieved

through effective retraining [24], [26]. Recent works have

shown that approximate computing is a viable approach for

more complex tasks [27]. However, few have investigated

the effects of approximate computing for other tasks such

as speech recognition or keyword spotting, which are typical

applications on edge devices.

A. Approximating Multiplications on DNNs

We define the approximate multiplication g̃(·) between two
values a, b as g̃(a, b) = a×b+ ǫa,b, where ǫa,b is the approxi-

mation error, deterministic by nature, and dependent from val-

ues a and b. Approximate DNN layers can be mathematically

expresed as ỹ = Ψ(f(x,w)+g̃(x,w)+b) = Ψ(f̃(x,w)+b),
where f(x,w) is either a convolutional operation or a matrix
multiplication between inputs x and weights w in case of a

fully connected layer, f̃(x,w) is the approximate counterpart,
b is the bias and Ψ is a non-linear function. The result of

f̃(x,w) is hereby obtained by introducing the behavioral sim-
ulation of a given approximate multiplier in the computation of

f(x,w). To achieve this, we implement ProxSim [27], a GPU-

accelerated simulation framework specialized for approximate

computation of convolutional and fully connected layers. We

quantize weights, bias, and activations to 8 bits using linear

quantization. For our case study, we consider DNNs shown

in Table I and 10 randomly selected approximate multipliers

from EvoApprox [28] shown in Table II. ResNet20 is used for

image classification, whilst KWS-CNN1 and KWS-CNN2 for

keyword spotting. MRE and MAE correspond to mean relative

error and mean absolute error respectively.

TABLE I
DNN CHARACTERISTICS

DNN Dataset Params MACs Float 8-bit

ResNet20 CIFAR 274,442 40.8M 91.04 90.34
KWS-CNN1 SCD 69,982 2.5M 91.99 91.90
KWS-CNN2 SCD 179,404 8.6M 92.71 92.60

TABLE II
APPROXIMATE MULTIPLIERS

Multiplier MRE [%] MAE Energy Saving [%]

320 0,03 0,2 0,02
114 1,26 11,2 7,59
302 2,38 22,9 15,49
231 4,94 46,6 22,10
62 6,04 73,7 30,85
163 11,88 165,8 51,90
435 14,34 217,3 56,87
24 16,24 343,4 62,00
195 17,67 283,8 63,08
280 19,45 343,9 68,08

B. DNN Approximation Technique

Accuracy degradation tolerance is generally defined for ap-

proximate DNNs. Following [21], [27] we propose a tolerance

of 1% and 5% with respect to quantized (8-bit) accuracy for

image classification and keyword spotting respectively. We use

the cross-entropy loss as cost function for the initial DNN

training, i.e.

Cθ(Ỹ ) = −

n∑

k=1

ΓklogỸk (1)

Then, the gradients are updated with respect to the weights

through back-propagation, i.e.

wt = wt−1 +∆w = wt−1 + ∇
∂C(Ỹ )

∂wt−1
(2)

with
∂C(Ỹ )
∂w

= ∂C(Ỹ )

∂Ỹ

∂Y
∂w

. Note that we compute the gradient

of Y (with respect to w) instead of Ỹ . This is necessary as

the gradient of approximate function is undefined and thus we

need to estimate it using the accurate counterpart.

C. Evaluation

We evaluate our proposed approximate retraining in Prox-

Sim. The detailed results are presented as follow.

1) Task accuracy: We retrain the DNNs over 5 epochs

with 10 different multipliers from Table II. The results is

presented in Fig. 5. For ResNet20, we observe a uniform

accuracy recovery, reaching the defined accuracy tolerance

in 70% of the cases, which corresponds to multiplier with

energy saving of up to 56,8%. In case of keyword spotting,

the accuracy tolerance is reached in all cases, with maximum

energy saving of 68%, although the accuracy slightly decreases

for approximate multipliers with MRE higher than 2,4%.

2) Effects of data augmentation: Approximate compu-

tational units introduce unwanted noise in DNN opera-

tions through approximation errors. Such noise, in controlled

amounts, acts as a regularizer when training approximate

DNNs [29]. Thus, we propose DNN retraining without data

augmentation, as this is also another form of regularization

through input alteration. By performing data augmentation,

the DNN approximation error is then harder to compensate.

We compare the results of training with and without data

augmentation in Fig. 5. For image classification, we randomly
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Fig. 5. Task accuracy with 10 different approximate multipliers on 3 DNNs

flip the training samples, and for keyword spotting, we add

background noise with a volume of 10% to the initial time

series. As observed, data augmentation worsens the accuracy

degradation in approximate DNNs, specially for speech recog-

nition tasks.

3) Conclusions: The paradigm of approximate computing

delivers promising results for optimizing energy consumption

of perception tasks. In this work, we present an unprece-

dented analysis of hardware-oriented approximate computing

for speech recognition tasks, and highlight the role of data

augmentation and regularization through approximation error

through experiments in DNNs for image recognition and

keyword spotting.

V. FAIR HARDWARE COMPARISON OF POSITS VS IEEE

FLOATS

Before comparing IEEE floating point format and the

emerging posit format [3], consider a similar transition that

occurred half a century ago, regarding the storage of signed

integers on digital computers.

Early binary computers represented signed integers with

sign-magnitude arithmetic, mimicking the notation people use

to write numbers: One bit for the sign, and the remain-

ing bits for the magnitude, written with positional notation

dndn−1...d0 where each digit di is implicitly multiplied by

bi for a number base b (10 for decimal, 2 for binary). (The

ENIAC (1946) even went so far in the direction of human-

oriented format that the on-off logic of vacuum tubes was

used to represent decimal digits 0−9 throughout the machine

instead of recognizing the much greater efficiency of using

2 as the base of the positional notation.) For multiplication,

the sign of the product is the XOR of the signs of the

inputs, and the magnitude is simply the integer product of the

input magnitudes, performed by early machines using repeated

integer add-shift operations.

Addition and subtraction with sign-magnitude representa-

tion is less simple. Hardware must accomplish at least the

following to add integers i and j to produce a sum k, ignoring

the handling of overflow:

if sign(i) = sign(j) then

magnitude(k) = magnitude(i)+magnitude(k)
sign(k) =sign(i)

else

if magnitude(i) > magnitude(j) then

magnitude(k) = magnitude(i)−magnitude(k)
sign(k) =sign(i)

else

magnitude(k) = magnitude(j)−magnitude(i)
sign(k) =sign(j)

end if

end if

Complications also exist from the redundant representation

of 0 as “positive zero” and “negative zero.” The comparison

operators must make an exception when comparing with zero

because it is not a simple matter of checking that all bits are

identical. A choice must be made whether the sign of zero is

“don’t care” or subject to special rules.

A more mathematical approach, 2’s complement format,

soon replaced sign-magnitude format because it reduces the

above algorithm to a single line: k = i + j where i and j

are treated as unsigned integers. Multiplication is as simple

as before. Redundant representation of 0 is eliminated, and

comparison becomes trivial. Its only downside is that it is less

human-readable. Someone practiced at reading binary might

recognize 00000101 as the number 5 and in sign-magnitude,

10000101 as the number −5, but it is not easy for humans

to read the 2’s complement for −5: 11111011. Designers
initially used human-oriented parcels of bits or “bit fields” and

eventually realized it is more important for the number format

to be logic-oriented and hardware-efficient. We can imagine a

designer familiar only with sign-magnitude being introduced

to 2’s complement, and finding it less efficient because of the

(erroneously perceived) need to first extract input sign bits and

take absolute values to find the magnitudes, then re-encode the

result back as 2’s complement.

The IEEE 754 Standard for floating-point representation

[30] reverted to sign-magnitude format and human-oriented

bit parcels for the scale factor and the significand. Posit arith-

metic is based on 2’s complement principles. Some published

comparisons (e.g. [2], [31]) make the mistake just described of

re-casting everything into familiar bit parcels and then having

to re-encode the result.

We can diagram 2’s complement integers on a ring, where

the bottom of the ring represents 00...00 for zero, increases
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Fig. 6. Ring Plot of 16-Bit Floats

counterclockwise to the largest positive integer 011...11,

which then increments to the most negative integer represented

by 100...00 at the top of the ring. It continues a mono-

tonically climbing representation to −1 as 11...11 in the

clockwise direction, wrapping to zero. Fig. 6 shows the integer

bit strings on the inside of the ring and how the IEEE 16-

bit floats map to those bit strings, drawn to scale. A similar

diagram holds for all IEEE float sizes. Almost universally,

processors do not use hardware for the ”Trap to Software”

sections where the exponent field is all 0 bits or all 1 bits.

The result is that calculations run orders of magnitude slower

for about 6 percent of the possible values, which also allows

side-channel security attacks because of the effect on system

timing [32]. Outside those regions, it is possible to decode

floats as “normal” with a sign, exponent, and fraction field.

On a SIMD or vector architecture, it is common to use flags

to turn off the IEEE rules for the NaN and subnormal regions

so that one exception does not cause a massive slowdown in

processing the entire list [33].

A theorem taught in numerical analysis courses is one that

bounds the relative error caused by computing the product of

two floats, a×b. However, it is rarely taught that this theorem
and others like it apply to less than half the range of possible

inputs a and b, shown in the arc regions marked “Theorems

are valid.” Outside this range, underflow and overflow are

possible. For 16-bit floats, the dynamic range is already so

limited (about 6× 10
−5 to 7× 10

4) that they are difficult to

use for AI and signal processing; the effective dynamic range

is much smaller if we expect to do any multiplies or divides,
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…
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Fig. 7. Ring Plot of 16-Bit Posits

from 1/256 to a little less than 256. The restricted dynamic

range has led Google to introduce its 16-bit “bfloat,” a 32-bit

float with the 16 least-significant fraction bits rounded off.

In Fig. 6 we can also note that floats increase monotonically

on the right half of the ring but reverse direction for the

negative values, the left half. The IEEE 754 Standard requires

22 different kinds of comparison operations because of the

NaN exceptions; NaN compares as “not equal” to itself and

“unordered” to everything else; Negative zero and positive zero

compare as equal. Substantial circuit logic is needed for the

comparison of two floats.

In contrast, consider the posit mapping to the ring plot of

integers shown in Fig. 7. With only two exception values,

there is no need to trap to software; both exceptions have all

0 bits after the first bit. The OR tree takes no more than six

logic levels (less than a clock cycle) even for 64-bit posits, and

that test can execute in parallel with processing that assumes

a non-exception value. Execution times can thus be made

data-independent and quick, eliminating both the security hole

and the need to disable exceptions for parallel processing.

The single Not-a-Real (NaR) value takes care of all non-real

outputs, relying on computer languages (and debuggers) to

catch such errors during program development.

Reciprocation is symmetric for posits, and negation with 2’s

complement also works without exception. There is no need

for a posit comparison unit separate from the one used for

integers; NaR is treated as equal to itself and less than all

other numbers.

The shaded arcs in Fig. 7 are regions that can be decoded
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Fig. 8. 8-Bit Posit Multiplier (Yonemoto)

as easily as floats, because there are exactly two regime bits

and a count-leading-zero-or-one operation is not needed. All

the bit fields are in a fixed location, but are best decoded

with 2’s complement. The circuit by Isaac Yonemoto in Fig. 8

shows a multiplier for 8-bit posits With floats, the “hidden bit”

is the OR of the exponent bits: 0 for subnormal floats (and

zero), and 1 for normal floats. While posits can make use of

a similar trick to set the hidden bit to 0 for zero and achieve

correct results in the arithmetic logic, Yonemoto’s insight was

that the hidden bit means −2 for negative posits. The need

for separate circuitry for negative values is eliminated. We

can think of the fraction bits added to 01 for positive values,

meaning 1, and 10 for negative values, meaning −2, so the

significand counts from 1 to 2 for positive values but from −2

to −1 for negative values. The community is still in the early

stages of discovering such circuit shortcuts, so we will initially

see designers trying to implement posits by first forcing them

to look more like floats, then converting back.

A similar economy exists for addition and subtraction. A

16-bit posit has a dynamic range from 2
−28 to 2

28 and can

thus be converted to a signed fixed-point representation with

58 bits (an extra bit is needed to indicate the sign). The add or

subtract logic simply needs to perform an arithmetic shift on

the fraction that preserves the sign, add or subtract as integers,

and convert the result back to posit form. Up to some precision,

single-cycle posit addition and subtraction appear possible. For

larger precision posits, it is more economical to align binary

points as with floats; 2’s complement still avoids some of the

conditional testing needed for float addition and subtraction.

Hardware engineers and programmers faced with choosing

between fixed-point and floating-point representations now

have a third choice: posit representation. Fig. 9 summarizes

the decimal accuracy of 16-bit representations as a function of

the magnitude (log base 10) of the absolute value of the value

log10(|x|)

float16

bfloat

fixed16
posit16

-5 5

1

2

3

4

5

decimal accuracy

Fig. 9. Accuracy as a function of bit string for 16-bit formats

represented by the format. Fixed-point (integer) format is the

simplest and fastest format, but has very unbalanced accuracy

about low magnitudes and a very restricted dynamic range.

The float values have flat accuracy except for the subnormal

number range on the left, where accuracy tapers to zero. For

the most common values in the range of about 0.01 to 100,

posits have higher accuracy than IEEE floats and bfloats, but

less accuracy outside this dynamic range. For all precisions,

float accuracy forms a trapezoidal shape; fixed-point accuracy

looks like a triangular ramp upward; and posit accuracy is an

isosceles triangle centered at magnitude zero. Depending on

the applications, posits often maximize information-per-bit in

the Shannon sense, compared to the other formats.

Another way to view the accuracy is as a function of the bit

string that expresses the value, treated as an integer. For 16-

bit representations, the bits range from 0 to 32767 for positive

values, as shown in Fig. 10. This figure shows how 16-bit

posits have nearly the accuracy of fixed-point representation,

but also provide a large dynamic range (almost 17 orders of

magnitude, compared to only 9 orders of magnitude for IEEE

754 Standard 16-bit floats in the normal range, and less than 5

orders of magnitude for fixed-point format). The bfloats have

a huge dynamic range (about 76 orders of magnitude) but at

the cost of less than three decimals of accuracy that forces

users to deal with quantization errors.

In summary, comparisons of posit and float hardware com-

plexity need to be careful to note whether the float hardware

actually supports IEEE 754 or if the compliance is limited to

normal floats only. Posit hardware is slightly more expensive

than normals-only float hardware, but substantially simpler and

faster than hardware that fully supports all aspects of the IEEE

754 Standard.

VI. CONCLUSION

In this paper, we presented four complementing approach

to build optimum computer arithmetic for edge computing

applications. At first, we discussed several approaches in oper-

ator transformation for edge computing. The transformations

presented in this paper are part of FloPoCo project. Later, field-
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programmable gate array-based arithmetic frameworks were

discussed in detail where the arithmetic support for the hard-

ware platform was discussed. We also discussed approximate

computing and applications of the same for complex neural

network architectures. It was observed that the paradigm of

approximate computing yields significant energy benefits for

edge computing devices. Finally, a new data representation

called posit and its properties were described. Mainly, the

hardware costs of posit arithmetic compared to the IEEE 754

compliant arithmetic were evaluated. In future, we continue

to experiment and research further in the domain of computer

arithmetic to improve their energy and area requirements, es-

pecially keeping in mind the requirements of edge computing

devices.
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