
Special Session Paper

Pitfalls in Machine Learning-based Adversary

Modeling for Hardware Systems

Fatemeh Ganji, Sarah Amir, Shahin Tajik, and Domenic Forte

Department of Electrical Engineering

University of Florida

Gainesville, USA

{fganji, sarah.amir, stajik}@ufl.edu, dforte@ece.ufl.edu

Jean-Pierre Seifert

Security in Telecommunications

Technische Universitt Berlin

Berlin, Germany

jean-pierre.seifert@external.telekom.de

Abstract—The concept of the adversary model has been widely
applied in the context of cryptography. When designing a crypto-
graphic scheme or protocol, the adversary model plays a crucial
role in the formalization of the capabilities and limitations of
potential attackers. These models further enable the designer to
verify the security of the scheme or protocol under investigation.
Although being well established for conventional cryptanalysis
attacks, adversary models associated with attackers enjoying the
advantages of machine learning techniques have not yet been
developed thoroughly. In particular, when it comes to composed
hardware, often being security-critical, the lack of such models
has become increasingly noticeable in the face of advanced,
machine learning-enabled attacks. This paper aims at exploring
the adversary models from the machine learning perspective.
In this regard, we provide examples of machine learning-based
attacks against hardware primitives, e.g., obfuscation schemes
and hardware root-of-trust, claimed to be infeasible. We demon-
strate that this assumption becomes however invalid as inaccurate
adversary models have been considered in the literature.

Index Terms—Physically Unclonable Functions, Logic Locking,
Composed Hardware, Root-of-Trust, Machine Learning.

I. INTRODUCTION

In an era characterized by increasing cybersecurity threats,

we have witnessed the ever-continuing competition between

system designers/ manufacturers and adversaries that mali-

ciously break the security of systems. Modern systems are

usually composed of several hardware components, potentially

involved in various protocols. Analyzing the security of such a

system in an effective manner is a nontrivial task, even though

frameworks for modular security, e.g., Canetti’s universally

composable (UC) framework, has been devised to support the

security evaluation of hardware-assisted protocols [1]. It is

even challenging for stand-alone hardware components, de-

spite the existence of mathematical, cryptographic reductions.

This can be explained by the fact that assumptions regarding

the availability of secure key generation and storage, as well

as secure execution, cannot always be valid. In an attempt to

resolve this issue, it has been suggested to build a physical

root-of-trust (RoT), i.e., a physical primitive that can fulfill

the physical security objectives. In this regard, the security

in the system depends heavily on the security of the RoT.

Nevertheless, it has been demonstrated that the security of an

RoT can be compromised through attacks covering the whole

spectrum of invasive, semi-invasive, and non-invasive ones.

Non-invasive attacks have become increasingly threatening

and much more common as a result of the advancement

in machine learning (ML). This is also partially due to the

lack of systematic and provable methods, which can assess

the security of a system in the design phase. This lack of

methods is present, albeit of well-known, and acknowledged

frameworks developed in cryptography, and its sister field, i.e.,

ML. This close relationship has been first well formulated

in a seminal work of Rivest [2], which has recognized the

similarities between attack types and the queries required by

an ML algorithm. Rivest’s paper has further highlighted the

difference between the exact and approximate inference. The

above similarities and differences have been solely partially

considered in hardware security-related literature. In addition

to these, the significance of selecting the proper ML setting is

often underestimated.

To address this, our paper aims at exploring the close

relationship between machine learning and cryptography in

the context of composed hardware and the RoT. To this end,

we discuss the main aspects of an ML framework that are

crucial for assessing the security of these primitives, namely

the distribution of learning examples, access type, and choices

of models (i.e., representations) assigned to an attacker. For

this purpose, we provide examples of physical systems and

discuss how inappropriate conclusions can be made if the

setting of the ML model is applied improperly.

II. BACKGROUND ON HARDWARE SECURITY AND ML

A. Logic Locking Techniques

ICs nowadays become vulnerable to IP piracy, tampering,

and counterfeiting while several phases of chip manufacturing,

such as design, integration, and fabrication are carried out

at various - often untrusted - facilities. Besides, on the end-

user side, especially for the devices delivered to malicious

entities, IP protection is still an issue. IP logic locking (LL)

schemes [3] have been proposed to cope with this issue for

not only standalone hardware primitives, but also composed

hardware. In the latter case, the security of the composed IP

can be ensured by protecting either all the IPs involved in the

composed hardware or solely ones that are security-critical.

Regardless of these scenarios, our goal is to observe why and

to what extent the existing security analysis of LL schemes
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through ML can be less precise. Therefore, here, we solely

focus on some examples of sequential and combinational LL.

Sequential LL mainly refers to the augmentation of the Finite

State Machines (FSMs) at, e.g., the gate-level, by adding a

new set of states, whereas combinational LL methods aims at

adding extra key gates in a design, which are controlled by a

key given to it as input bits [3].

Prime examples of employing (provable) ML algorithms to

assess the security of LL methods have been suggested in [4],

[5]. More precisely, it has been observed that this problem

can be reduced to the Boolean satisfiability (SAT) problem

and solved by applying off-the-shelf SAT-solvers. When for-

mulated in the probably approximately correct (PAC) learning

framework, the approximation-based versions of SAT attacks

have been applied to deobfuscate circuits effectively [5].

Furthermore, it has been attempted to prove the impossibility

of building robust LL schemes, when the adversary is given

access to an oracle providing her with the outputs of an

unlocked design [4]. In our paper, we mainly consider these

results to put emphasis on different angles of the problem,

which are crucial for conducting thorough PAC learning-based

security assessments.

B. Physically Unclonable Functions

In practice, secure key generation and storage have been

the main challenges to ensure the security of a cryptographic

primitive. As the conventional methods for this failed to reach

the desired level of security, Physically Unclonable Functions

(PUFs) have been considered as a promising solution. PUFs

can be thought of as mappings, where the input/output (so-

called, challenge-response) behavior is determined by the

physical characteristics of the system embodying the PUF.

Among all PUFs, Arbiter PUFs are one of the most celebrated

types of PUF, where the delays of two symmetrically-designed

paths are used to generate an instance-specific response to a

given challenge. Shortly after the introduction of Arbiter PUFs,

it was demonstrated that these circuits are “not difficult enough

to model,” cf. [6].

XORing several chains of Arbiter PUFs has been suggested

to overcome the above shortcoming of Arbiter PUFs [7]. It is

clearly an example of a composition of several instances, aim-

ing at achieving robustness against ML attacks. Nonetheless,

this new type of PUF, called XOR Arbiter PUF, has come

under non-invasive, machine learning (ML) attacks, ranging

from empirical to provable [8], [9]. In the latter case, it has

been proven that if the number of chains exceeds an upper

bound, a class of provable ML algorithms cannot be applied

against XOR Arbiter PUFs [9]. This result has been applied

to design new PUF constructions [10]. However, it seems that

the essential aspects of the framework applied to establish this

bound have been overlooked, which we discuss in this paper.

Besides XOR Arbiter PUFs, we concentrate our attention on

security assessments of Bistable Ring (BR) PUFs as one of the

most interesting families of PUF [11]. This is indeed tempting,

since for BR PUFs, no concrete, mathematically precise model

is known to model the internal functionality of PUF instances.

C. Probably Approximately Correct Learning

This framework deals with the problem of generating a

hypothesis that is a good approximation of the unknown target,

with a given level of probability [12]. More formally, a set of

labeled examples (i.e., a set of input/output pairs) is given to

a learning algorithm A that generates, with high probability,

an approximately correct hypothesis. The examples are drawn

according to a fixed, arbitrary probability distribution D on

the instance space Cn = {0, 1}n. Our target concept class is
a collection of Boolean functions F = ∪n≥1Fn, defined over

Cn. Similarly, a hypothesis h ∈ Hn is a Boolean function over

Cn, which is called an ε-approximator for f ∈ Fn, if

Pr
c∈DCn

[f(c) = h(c)] ≥ 1− ε.

Definition 1 formulates how the algorithm A works:

Definition 1. For the target concept class F , an algorithm

A is called a PAC learning algorithm , if for any n ≥ 1,
any distribution D, any 0 < ε, δ < 1, and any f ∈ Fn

the following holds. When A is given a polynomial number

of labeled examples, it runs in time polynomial in n, 1/ε,
VCdim(F ), 1/δ, and returns an ε-approximator for f under

D, with probability at least 1− δ.

For this definition, the Vapnik-Chervonenkis (VC) dimen-

sion VCdim(F ) is used to provide the measure of the class.

III. LEARNING UNDER UNIFORM DISTRIBUTION

According to Definition 1, one of the most critical param-

eters is the target distribution D, on which no restriction is

imposed rather than being fixed. Specifically, the PAC learning

algorithm A - run by an attacker - is needed to perform

well (i.e., in terms of the accuracy and the confidence levels)

with respect to any distribution D. Despite the fact that this

general setting is considered interesting for ML community,

for complexity theory and cryptography, another variant of

PAC learning has become more common, namely, uniform-

distribution PAC learning. The reason for this shift in the focus

of relevant studies is two-fold: (1) the development of efficient

algorithms in original PAC learning is more challenging [13],

and (2) the requirement regarding distribution-independency

makes PAC learning of relatively simple concept classes

challenging [14]. In this regard, interestingly enough, when

the assumption regarding the distribution-independent model

is relaxed, different, often positive results (i.e., a target concept

class is PAC learnable) can be obtained. Next, we will discuss

such results in the context of PUFs and LL schemes.

Uniform PAC learning of LL schemes: First and foremost,

we note that for the class AC0 containing poly(n)-size depth-

d circuits, considered in the context of LL, the running time

of a non-trivial distribution-free learning algorithm cannot

be better than 2n−n
Ω(1/d)

[15]. On the contrary, when the

uniform variant of the PAC learning framework is taken

into account, to learn the circuits in AC
0, a polynomial-time

algorithm has been devised [16]. Hence, when it comes to

the application of PAC learning for LL, this variant must
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have been considered, although being not explicitly stated in

the literature, see, e,g., [4], [5]. In other words, by the term

“random” input/output pairs widely used in the LL-related

literature, uniformly distributed examples are meant; however,

this term is used to refer to arbitrarily distributed examples in

the ML-related literature.

A. Uniform PAC Learning of XOR Arbiter PUFs

As mentioned in Section I, PAC learning of XOR Arbiter

PUFs, more specifically, the bound proved in [9] has been

attracted a great deal of attention in the hardware security

community. This upper bound relies on an observation made in

the literature that is, Arbiter PUFs can be represented by linear

threshold functions (LTFs) [6], [8]. In this respect, an n-bit
XOR Arbiter PUF composed of k chains of Arbiter PUFs can

be represented by the function f : Cn = {−1,+1}n → Y =
{−1,+1}, where y = f(c) = sgn ((

∑n

i=1 ωici)− θ) with

the coefficients ω1, ω2, · · · , ωn, θ ∈ R. In this formulation,

the set of challenges are denoted by Cn, whereas the set

Y includes the responses. Note that to define this function

the following encoding scheme is performed χ(0F2) := +1,
and χ(1F2) := −1. It has been shown that the coefficients

associated with the LTFs representing XOR Arbiter PUFs are

functions of k and n. Based on this result, the upper bound has

been established (see, Corollary 2 in [9], and Table I), based

on the upper mistake-bound of the Perceptron algorithm. Two

aspects of this result are particularly important.

1. Algorithm-independent and uniform PAC learning:

First, the bound in [9] is algorithm-specific, i.e., for other al-

gorithm this bound may not hold. Here we go one step further

and explore the change in the upper bound in the algorithm-

independent setting. In doing so, we apply the general bound

proposed in [12], which depends on the levels of accuracy and

confidence as well as the VCdim. For an XOR Arbiter PUF,

h(c), VCdimh(c) = O(k(n + 1)(1 + log(kn + k))) cf. [17].

Hence, it is straightforward to achieve the so-called general

bound reported in Table I, summarizing our new results along

with the previous ones. This bound indicates that if there is an

algorithm (without specifying that) to learn the target concept,

at most, how many examples is required.

2. Algorithm-dependent and uniform PAC learning: The

bound in [9] has been established in the original, distribution-

independent PAC learning framework. Let us examine whether

the bound can vary if we consider the uniform-distribution

PAC learning. To this end, among various uniform-distribution

PAC learning algorithms, we take the low degree algorithm,

so-called LMN algorithm, into account. This combines two

advantages: (1) the LMN algorithm can tolerate the noise in

its given examples (for a discussion on the inherent noise in

the XOR Arbiter PUFs, see [17]) , and (2) for this algorithm,

no limitation is imposed on the hypothesis class. By taking

advantage of the second property, we provide a stronger secu-

rity assurance as the freedom given to the learning algorithm

can make it potentially more powerful [18].

LMN algorithm: This algorithm relies on the spectral prop-

erties of Boolean functions by analyzing the Fourier expansion

of them [16]. To define this expansion of a Boolean function,

we use the encoding scheme defined above to write

f(c) =
∑

S⊆[n]

f̂(S)χS(c),

where [n] := {1, . . . , n}, χS(c) :=
∏

i∈S
ci, and f̂(S) :=

Ec∈U [f(c)χS(c)]. Here, Ec∈U [·] denotes the expectation over

uniformly chosen random examples.

The notion underlying the LMN algorithm is that the Fourier

expansion of some Boolean functions features low coefficients,

sufficient to approximate the respective functions [16]. One

class of function with this property include functions, whose

noise sensitivity is small and bounded1. Informally, for PUFs,

the noise sensitivity of a Boolean function indicates the proba-

bility of receiving a new response, when the challenge bits are

flipped independently, with some probability. More precisely,

the noise sensitivity of f at ε is NSε(f) := Pr[f(c) $= f(c′)],
where c is a uniformly chosen challenge and c′ is obtained by

flipping each bit of the string c independently, with probability

ε (0 ≤ ε ≤ 1). For some classes of Boolean function, the noise

sensitivity can be analyzed thoroughly and upper bounds for

that can be established accordingly. LTFs are examples of such

function, where it has been proven that for any LTF f , we have
NSε(f) = O (

√
ε). More importantly, for any function of k

LTFs, h : {−1,+1}n → {−1,+1} with h = g(f1, · · · fk),
NSε(h) = O (k

√
ε) [20]. This can be now used to derive the

upper bound on the number of CRP for the LMN algorithm:

Corollary 1. For an XOR arbiter PUF represented by the

Boolean function h, the LMN algorithm can deliver a set

of Fourier coefficients approximating h, where the number of

examples is polynomial in n, k2/ε2, and ln(1/δ).

Proof: As the noise sensitivity of h is NSε(h) = O (k
√
ε),

fix α(ε) = k
√
ε. According to theorem underlying the notion

of the LMN algorithm, the set of low coefficients S that

can approximate h with the accuracy ε fulfills the inequality∑
|S|≥m

f̂(S)2 ≤ ε, wherem := 1/α−1(ε/2.32)), and α−1(·)
denotes the inverse of the function α(·) cf. [16]. To compute

S, the LMN algorithm requires nO(m) ln(δ−1) example. For

our XOR Arbiter PUFs, represented by h, it is straightforward
to show m = 2.32k2/ε2. Note that here we implicitly assume

that ε ≤ 1/k2 to make the function α(·) strictly increasing

continuous over the range [0, 1]. �

The implication of Corollary 1 is that, when k = O(1),
i.e., k is a constant value, the LMN algorithm can PAC learn

the XOR Arbiter PUF. On the other hand, if k ≫
√

lnn,
applying this algorithm becomes infeasible. This is in line

with what has been reported in the original, distribution-free

PAC learning framework, namely when k = O(lnn), the PAC
learner fails. Note that this result does not contradict what has

been achieved in [17], where XOR Arbiter PUFs with a large

number of arbiter chains have been modeled through applying

1The noise here refers to the attribute noise studied in ML. It is related to
impact of “hidden” factors that can influence the response of the PUF to a
given challenge, e.g., meta-stability of a PUF stage, aging, etc. [17], [19]

516 Design, Automation And Test in Europe (DATE 2020)



Special Session Paper

TABLE I: Summary of the upper bounds on the number of CRPs required to PAC learn XOR Arbiter PUFs

Bound of Setting

Learning Bound Distribution Algorithm Attackers’ Access

[9] a O
(

(n+ 1)k/ε3 + ln(1/δ
)

/ε) Arbitrary Perceptron Random examples

General O((k(n+1)(1+ ln(kn+ k) ln(1/ε) + ln(1/δ)))/ε) Uniform Independent Uniformly-distributed examples

Corollary 1 O
(

nk
2/ε2 ln(1/δ)

)

Uniform LMN [16] Uniformly-distributed examples

Corollary 2 poly(n, k, (1/ε), log(1/δ)) Uniform LearnPoly [21] Membership queries
a Note that this bound does not depend on the VCdim of XOR Arbiter PUFs, but the mistakes made by the Perceptron algorithm.

the LMN algorithm. In this respect, the difference is two-fold:

(1) here we assume that the chains of an XOR Arbiter PUF are

uncorrelated, whereas in [17], the chains are made correlated

intentionally, (2) we do not consider the impact of the inherent

bias of XOR Arbiter PUFs here, while in [17], the expected

bias (i.e., the bias in the presence of the attribute noise) has

been introduced to evaluate the hardness of PUFs.

IV. ACCESS MODELS OF ATTACKERS

An important aspect of an attack against cryptosystems is

the access given to an attacker to gather information about the

system, more precisely, the unknown function describing the

internal functionality of the system. While in cryptography,

the attacker’s access to the inputs/outputs of the system has

been accurately classified, in the context of machine learning,

membership and equivalence queries have been defined to deal

with the learning scenarios. A membership query refers to the

case where the attacker can ask the value of the unknown

function on some specified inputs, similar to chosen-plaintext

attacks. By providing access to the equivalence queries, the

attacker can go one step further by asking whether the hy-

pothesis determined by her is equivalent to the unknown target

hypothesis. Although one may think that this type of queries

may not be available for security evaluation of hardware

primitives, cf. [4], according to a well-known result provided

by Angluin [22], equivalence queries can be simulated using

random examples in a straightforward manner. Hence, here,

we consider solely access to the membership queries that can

have a significant impact on the evaluation results.

A. Membership Queries for Learning LL Schemes

As explained before, for LL methods, one must consider

the uniform PAC learning framework. Interestingly enough,

when membership queries are also allowed, the analysis of

the learnability leads to a drastically different result. More

concretely, the distinction between the exact and approximate

learning of obfuscated circuits has been made in [4]. As stated

by Rivest [2], in cryptography, an attacker aims at exactly

identifying the unknown function, whereas ML concerns not

only this but also an approximation of the unknown function.

In this regard, what has been suggested in [4] is that although

the approximation-resiliency of obfuscated circuits cannot be

guaranteed, for some obfuscated circuits, it is possible to

ensure the exact inference-resiliency. To formulate this in the

learning framework, a key aspect has not received sufficient

attention; that is, uniform PAC learning (i.e., approximate

learning) algorithms can be straightforwardly converted to

exact learning one with membership queries [15]. Hence, the

impossibility of exact learning is not relevant.

B. Membership Queries for Learning PUFs

To provide an example of how the ML results can be differ-

ent, when the attacker is given the access the the membership

queries, let us consider again XOR Arbiter PUFs as stated in

the following corollary.

Corollary 2. For an XOR arbiter PUF with log(n) chains, if
the ML algorithm is given access to the membership queries,

the runtime of the algorithm is poly(n).

Proof: As each Arbiter PUF can be modeled by an LTF,

according to the noise sensitivity of LTFs (see Section III)

and the Bourgain’s theorem [23], it is close to an O(ε−3/2)-
junta, i.e., small juntas. Moreover, it is known that the class of

r-juntas is a subset, or equal, to the class of r-XT that is the

class of XOR of terms, T1 +T2 + · · · +Ts, where Ti’s are the

terms with the size at most r (i.e., the conjunction of r Boolean

variables), and s is the number of terms. Hence, our O(ε−3/2)-
junta can be equivalent to some r-XT functions, where r is

small and r = O(ε−3/2) [24]. Consequently, when we XOR

our k Arbiter PUFs, the combined function is of the form

O(k)-term r-XT that can be represented as O(2rk)-monomial

r-Boolean Multivariate Polynomial, i.e., sparse multivariate

polynomial of degree r over F2, cf. [24]. The immediate result

of this is that the polynomial-time algorithm suggested in [21]

can be applied to learn the combined function. For this, the

algorithm requires poly(n, (1/ε), log(1/δ)) uniformly chosen

membership queries to learn log(n)-XOR Arbiter PUFs with

accuracy ε and confidence δ. �

We put emphasize on the important consequence of this re-

sult that is, XOR Arbiter PUFs constructed upon the difficulty

of learning O(log(n))-XOR LTFs cannot be secure against

attackers given access to the membership queries.

V. CHOICE OF REPRESENTATIONS FOR ML ATTACKS

When assessing the security of hardware systems through

ML, two issues should be tackled: (1) the internal functionality

of the system should be (at least) approximated accurately and,

(2), the algorithm running to learn this approximated model

should deliver a hypothesis with pre-defined levels of accuracy

and confidence. These two issues are discussed below.

A. Representation of the Concept Class

Regarding this case, it is known that there is a fundamental

difference between a concept (i.e., a set of Boolean functions)

and its representation. As explained below, this difference is

not only reflected in the size of the representations, but also

on the effectiveness of learning in terms of accuracy.

Concept representations for obfuscated circuits: When

analyzing the security of LL methods, the class AC0 is often

considered, which is composed of all families of circuits of
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depth O(1) and polynomial size, with mainly unlimited fan-in

AND gates and OR gates. In this manner, the size of the circuit

has a drastic impact on both of the number of examples (i.e.,

the input/output pairs), and the running time of the algorithm.

It may be interesting to examine why this factor is not taken

into account in one of the most relevant studies presented

in [5]. The point is that the ML model considered in [5] is

the online-ML, which can be converted to a PAC learning

model. Accordingly, the impact of the size of the concept

representation is reflected by the number of mistakes that the

algorithm is allowed to make for a given level of accuracy.

Concept representations for PUFs: In contrast to LL sce-

narios, for PUFs, various representation classes have been

considered. As an example of how choosing an improper

representation can affect the accuracy of learning PUFs, we

shift our focus to the problem of PAC learning BR PUFs. In

an attempt to approximate the functionality of these PUFs, it

has been suggested that LTFs can represent BR PUFs [11]. As

an inevitable result of this simplified representation, according

to the results presented in [11], it is not possible to arbitrarily

increase the learning accuracy. In other words, the accuracy

level reaches the maximum possible value (approximately 95%

for various BR PUF instances) and remains the same even after

increasing the number of CRPs fed into the ML algorithm.

Seen from the angle of ML, it is known that to tackle this

problem, a more expressive model could be helpful. For this

purpose, two main directions can be explored.

1. Regularity of LTFs representing BR PUFs: As the

regularity of a representation (i.e., having only a few large

coefficients) plays an important role in its learnability, it could

be thought that if the representation of a BR PUF (i.e., LTFs)

can be made regular, the accuracy of learning can be increased

to an arbitrarily high level. This is according to a well-known

result in ML, which states that for any LTF f defined over

{0, 1}n, there is a linear threshold function f ′ so that it is

ε-close to f and all of its weights are integers of magnitude

at most
√
n(1/ε)O(log2(1/ε)) [25]. Such a function f ′ can be

built upon the Chow parameters of f , i.e., n+1 degree-0 and

degree-1 Fourier coefficients of f , namely f̂(0) = E[f(x)],
and f̂(i) = E[f(x)xi] for i = 1, · · · , n. To approximate the

Chow parameters and construct f ′, a minimum number of

Ω(n) labeled examples should be given to a polynomial-time

algorithm that outputs f ′ for a constant ε, e.g., ε = 0.01.
Note that if a BR PUFs can be approximated by LTFs, then

f ′ must approximate it with a constant, arbitrarily small, pre-

defined level of ε. To investigate this, we conduct experiments

on BR PUFs implemented on an Intel/Altera Cyclone IV

FPGA, manufactured on a 60nm technology [26]. In this

regard, by using a small set of noiseless CRPs, we approximate

the Chow parameters and follow the algorithm suggested

in [25] to construct f ′. Afterward, we apply the Perceptron

algorithm embedded in Weka [27] to learn the CRPs obtained

from f ′, i.e., for each challenge, the response is computed

and inserted in the training set. The remaining CRPs are

involved in the test set, composed of 44834, 35876, and 31375

noiseless and stable CRPs collected from 16-, 32-, and 64-

TABLE II: Results of learning an LTF f ′ built upon Chow

parameters approximated by using the CRPs collected from

BR PUFs. Even with an increase in the number of CRPs in

the training set, the accuracy cannot be increased arbitrarily.

# Noiseless CRPs for computing the

Chow parameters and in training set

Accuracy

16 32 64

1000 71.93 91.52 92.55

2500 81.02 92.04 93.80

5000 84.94 91.45 93.57

10000 88.65 91.85 93.69

TABLE III: Results of testing how far BR PUFs are to LTFs.

n # CRPs How far from any halfspace (min.) [%]

16 100 20

32 1339 40

64 63434 50

bit BR PUF, respectively. We expect that if BR PUFs can be

represented by LTFs, the output/input relationship of f ′ can be

learned and generalized to the training set. The results of our

experiments are presented in Table II, where the key insight is

that the above does not hold. Thus, our assumption regarding

representing BR PUFs by LTFs is not valid.

2. Testing halfspaces: It can be argued that since we

first represent a BR PUF by an LTF and further approximate

its corresponding Chow parameters, the error of the whole

process could have increased so that the accuracy of learning

cannot be arbitrarily high. In another attempt to confirm that

an inappropriate representation, namely, LTFs, results in this,

we employ a property testing algorithm. More specifically, a

property tester can with high probability examine how close an

unknown function can be to a class of Boolean functions. To

test if BR PUFs are close to LTFs (or so-called, halfspaces),

we run a halfspace tester proposed in [28]. In brief, with high

probability δ, this tester distinguishes halfspaces from other

Boolean functions, which are ε-far from any halfspaces, when

given poly(1/ε) uniformly chosen examples - noiseless CRPs

in our case. We implement the algorithm in MATLAB, into

which we feed the CRPs collected from our BR PUFs. The

results of this experiment are summarized in Table III, where

δ = 0.99. As can be understood from these results, BR PUFs

are not close to halfspace, which confirms our results discussed

before.

B. Representation of the Hypothesis Class

Another crucial aspect of an ML-based analysis is to stress

how the representation of what should be delivered by the

machine (i.e., the hypothesis) can have an impact on the

results. In view of the fact that an unknown concept class can

be learned under a hypothesis class, but not others, special care

must be taken. In other words, if more expressive hypothesis

representations are allowed, the analysis of the learnability

yields different results. Therefore, it can be desired to remove

the dependency on the hypothesis representation and give the

learner the freedom to return any hypothesis. In PAC learn-

ing framework, this refers to improper learning. Ironically,

although being called improper, ML algorithms categorized

in this class are more powerful than proper learners, which

output a specific hypothesis representation.
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Improper learning of PUFs: In the context of PUFs, the

significance of improper learning has been already recognized

in the literature, see, e.g., [17], [19]. In line with that result, as

the LMN algorithm is an improper ML algorithm, the bound

that we have derived in Corollary 1 serves as another exam-

ple of applying improper learning algorithms against PUFs.

Specifically, we put emphasis again on the results of learning

XOR arbiter PUFs presented in [17], where XOR Arbiter

PUFs with a large number of chains (k ≫ lnn) have been

learned with a reasonable level of accuracy (approximately

75%). This result is obtained by employing the LMN algorithm

within the uniform PAC learning framework. At first sight, it

could seem to be contrary to what has been proved in [9];

however, now after explaining the factors contributing to that

(the distribution of the example and the type of the algorithm),

it should be clear that those results are not comparable.

Hypothesis representation for obfuscated circuits: To

provide an example of what may constitute a reason for

deciding whether an obfuscated circuit can be learned, we

explore a representation-dependent result considered in [4].

In a nutshell, it has been discussed if an obfuscated sequential

circuit would be vulnerable to PAC learning-based attacks.

To answer this question, the authors of [4] have suggested

that deterministic finite automaton (DFA) representation of

FSMs can be learned through Angluin’s method [22], if the

number of possible input patterns to the FSM would not

be exponential. It should not be overlooked, however, that

Angluin’s algorithm delivers DFAs, and thus, improper ML

algorithms can be further taken into account.

VI. CONCLUSION

This paper aims to highlight the impact of ML settings on

the security assessment of standalone and composed hardware.

To this end, we demonstrate the relationship between these

settings and the freedom given to an adversary in terms of

having access to learning examples and models. In addition to

providing theoretical insight into why the ML setting is crit-

ical, we discuss examples of real-world hardware primitives,

where inappropriate choices of the parameters can result in

less accurate security assessment.
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