
A Reinforcement Learning Approach to Directed
Test Generation for Shared Memory Verification

Nı́colas Pfeifer, Bruno V. Zimpel, Gabriel A. G. Andrade, Luiz C. V. dos Santos
Federal University of Santa Catarina

Florianópolis, Brazil

Abstract—Multicore chips are expected to rely on coher-
ent shared memory. Albeit the coherence hardware can scale
gracefully, the protocol state space grows exponentially with
core count. That is why design verification requires directed
test generation (DTG) for dynamic coverage control under the
tight time constraints resulting from slow simulation and short
verification budgets. Next generation EDA tools are expected to
exploit Machine Learning for reaching high coverage in less time.
We propose a technique that addresses DTG as a decision process
and tries to find a decision-making policy for maximizing the
cumulative coverage, as a result of successive actions taken by
an agent. Instead of simply relying on learning, our technique
builds upon the legacy from constrained random test generation
(RTG). It casts DTG as coverage-driven RTG, and it explores
distinct RTG engines subject to progressively tighter constraints.
We compared three Reinforcement Learning generators with
a state-of-the-art generator based on Genetic Programming.
The experimental results show that the proper enforcement of
constraints is more efficient for guiding learning towards higher
coverage than simply letting the generator learn how to select
the most promising memory events for increasing coverage. For
a 3-level MESI 32-core design, the proposed approach led to
the highest observed coverage (95.81%), and it was 2.4 times
faster than the baseline generator to reach the latter’s maximal
coverage.

Index Terms—Multicore chips, shared memory, design verifi-
cation, reinforcement learning, decision process.

I. INTRODUCTION

Multicore chips are expected to rely on coherent shared

memory [5]. Albeit the coherence hardware can scale grace-

fully [19], the protocol state space grows exponentially with

core count. Besides, sophisticated architectures (e.g. ARMv8,

IBM Power9, RISC-V) relax sequential consistency, largely

increasing the number of valid execution witnesses of a

parallel program, making the detection of invalid witnesses

more difficult. The combination of coherence and relaxed

consistency makes the validation of shared memory behavior

a very challenging task that has deserved specific techniques.

Most of them fall in two main approaches: litmus test genera-

tion [3], [17] and random test generation (RTG) combined with

memory model checking [13], [15], [18]. The first approach

exploits a memory model for synthesizing small programs

able to expose invalid execution witnesses. Although quite

efficient to find errors, its coverage control is limited. The

This work was financed in part by the Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico - Brasil (CNPq) - grant 141686/2019-7 - and
by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

second approach exploits RTG for raising the coverage of

memory events and lets an independent checker verify the

axioms of a memory consistency model. When applied at

design time, however, such approach requires directed test

generation (DTG) for efficient coverage control under the

tight time constraints resulting from slow simulation and

short verification budgets. Coverage control can be obtained

statically [20] or dynamically [8], [11], [22]. A pragmatic

approach to dynamic coverage control is the casting of DTG

as coverage-driven RTG [10]. This paper’s proposal adopts a

similar casting.

Figure 1 shows our coverage-driven RTG approach. A

few parameters (p1, p2, · · · , pM) are used to constrain the

generation of parallel test programs. From a given setting

for the parameters, the RTG engine produces a test, which is

executed in a simulator. During simulation, a few events serve

as coverage witnesses, which are converted by a Coverage

Analyzer into a coverage estimate. With basis on estimated

coverage and elapsed time, a Directing Engine makes a

decision that redefines the settings for the parameters so as to

dynamically try to maximize coverage under a time constraint.

Fig. 1. A coverage-driven RTG approach to DTG

The main contributions of this paper are the following:

1) A novel technique for DTG that exploits Reinforcement

Learning for reaching higher coverage in less time, as

a result of successive actions taken by an agent that

influences RTG. The agent was designed to be reusable
(regardless of different coverage metrics adopted in

distinct verification environments), and its actions are

customizable (depending on the choice of random test

generator).

2) An evaluation of how domain-specific information

(properties of shared memory and parallel programs),

538978-3-9819263-4-7/DATE20/ c©2020 EDAA

usually captured as constraints on RTG, can be exploited

for improving learning.

II. TARGET PROBLEM AND PROPOSED APPROACH

This paper addresses DTG for shared-memory verification.

It casts DTG as coverage-driven RTG, which is formulated as

a time-constrained optimization problem, as follows.

Problem: Given a state space defining valid shared-memory

behaviors, find a sequence of random tests that maximize some

coverage metric c subject to a time constraint at (available

time).

However, we do not address that general verification prob-

lem directly. Instead, we model the definition of a sequence

of tests as a decision process, and we try to find a decision

making policy that maximizes cumulative rewards resulting

from successive actions taken by an agent. Since the action

probabilities of causing state transitions are unknown, the tar-

get instance becomes a Reinforcement Learning (RL) problem.

III. RELATED WORK

A. Constrained RTG legacy

RTG has been used for synthesizing parallel programs for

shared memory validation of prototype multicore chips [13],

[18]. Constraints usually enforce structural properties of par-
allel programs. They are formulated as generation parameters,

such as the number of operations, the number of shared

locations, and the number of threads (assuming that each test

thread is bound to a different core).

RTG has also been used for validation at design time.

For instance, Genesys-Pro [1] is an approach to functional

processor verification that is based on constrained RTG. The

handling of constraints is formulated as follows. The approach

casts test generation into a constraint satisfaction problem and

uses a generic solver customized for RTG to improve test

program quality. Albeit part of the constraints capture design-

specific testing-knowledge information from a database, the

approach also provides generic biasing constraints that are

applicable to any processor. Biasing constraints do not capture

program properties, but try to enforce functional hardware
properties (e.g. address alignment, cache eviction, etc.) for

improving test quality.

A recent technique proposed a complementary way of

constraining RTG. It enforces canonical multiprocessor chains

of operations across different threads [4]. Since canonical

chains consist of operations colliding at the same location

in different threads and at least one of them is a store, a

chaining constraint has the potential to raise the number of

data races among threads, which is a known mechanism to

expose design errors faster [13]. In other words, a chaining

constraint enforces functional properties of parallel programs
for improving test quality.

B. DTG for shared memory verification

An early learning approach to DTG proposed the ex-

ploitation of statistical inference to build a Bayesian network

for defining the most probable generator settings that would

achieve a certain coverage goal [11]. The Bayesian network

was used as a centralized directing engine for dynamic

coverage control, thereby casting DTG as coverage-directed

constrained RTG. This technique required an offline training

phase (to establish the basis for future online decision making),

which might become a drawback, unless its contribution to the

overall effort can be kept negligible. To ensure fast and proper

training, however, test expertise may be required [10].

Instead of a centralized directing engine, a later learning-

based approach relied on distributed intelligent agents, each

working at a distinct core domain, which cooperate to improve

the overall transition coverage. MCjammer [22] is a scalable

scheme that avoids the enumeration of the full protocol space.

Each agent formulates its coverage goals according to a

dichotomic finite state machine (FSM), which captures the

protocol behavior from the perspective of each core domain.

Given a core domain, a state in its dichotomic FSM captures

the state of a block in the local cache and an aggregation
of the state of that block in the caches from other domains.

The agents exploit the insufficiently verified transitions to

formulate their goals towards higher transition coverage. The

generator is reusable only for derivative designs that comply

with the same protocol, because the dichotomic FSM must be

modified for porting the generator to a protocol variant.

The most recently reported approach relied on Genetic Pro-

gramming for learning how to build new tests from old ones.

McVerSi [8] tailors the fitness function to the target verifica-

tion scope. To obtain a new population from the fittest tests, it

employs a selective crossover function that favors the selection

of memory operations contributing to higher non-determinism.

In McVerSi, the RTG engine is largely unconstrained, while

its centralized directing engine exploits non-determinism. As

opposed to MCjammer [22], whose mechanism is tied to its in-

ner coverage metric, McVerSi’s directing engine distinguishes

the externally measured coverage from the inner mechanism

for fostering coverage improvement. In other words, McVerSi

is reusable across verification environments, as opposed to

MCjammer.

C. Reinforcement learning for DTG

RL has already been used for hardware verification, but

at the logic level. It was exploited, for instance, to influence

the generation of random tests so as to raise the probability

of design error discovery [21]. On average, as compared

to a conventional technique, that approach led to a 15.3%

improvement on fault coverage.

Besides, RL has been used for software validation. The

validation of software modules requires the laborious work

of generating data for a given set of tests. That is why

validation techniques usually focus on relevant data generation

(not in test generation). In contrast, an approach proposed

a change of focus: the use of RL not to generate relevant

data, but to synthesize new tests [12]. In this case, the agent

was rewarded only if a newly synthesized test led to some

software behavior not yet observed. As compared to software

test based on random generation, the technique was clearly

Design, Automation And Test in Europe (DATE 2020) 539

superior only when targeting modules requiring complex input

sequences (e.g. heaps). In general, however, albeit competitive,

the technique was slightly inferior to random testing.

A more recent approach [16] exploited RL under the con-

ventional data generation focus. It proposed a framework that

casts the software under test as the environment and relies on it

for training a neural network. After training, the agent learned

how to mimic the behavior of meta-heuristic techniques that

had shown good results on the creation of new data for the

tests. As a result, even when faced with unseen environments,

the approach was able to achieve a considerable coverage

value. However, random search still required less time to reach

higher coverage values.

In short, such early uses of RL for DTG [12], [16], [21] led

to small improvements over random generation/search. This

indicates that RL should rely on domain-specific properties

for improving test quality, as did RTG approaches [2], [4],

[13], [18] and previous learning approaches [8], [10], [11],

[22]. The next section shows how our proposal bridges that

gap.

IV. THE PROPOSED TECHNIQUE

A. Formulation of the Decision Process

The environment includes an RTG engine, the simulator, and

the Coverage Analyzer. The Directing Engine is formulated as

an agent that takes actions in such environment. The Coverage

Analyzer and the Timer interpret the environment into a state
representation and a reward value assigned to each action

taken in a given state.

As verification is constrained by a time limit for reaching

coverage goals, a suitable representation for an environment

state would be a pair (c, t), where c denotes the cumulative

coverage value (quantified by some metric adopted by the

verification framework) and t denotes the time when that value

was reached. However, to bound the number of states, we

apply quantization on the values of coverage and time.

Coverage is quantized in C levels, and time is quantized

into T levels1. As a result, when a pair (c, t) is observed from

the environment, it is interpreted into the state representation

e = (γ, τ), where γ ∈ {1, 2, · · ·C} and τ ∈ {1, 2, · · ·T}
denote, respectively, values of c and t rounded to the nearest

quantization levels. Therefore, under such interpretation, the

environment state space is E = C × T .

Since the agent interacts with the environment through the

RTG engine’s interface, we formulate actions in terms of

the parameters of a given constrained random test generator

adopted as RTG engine. Let p1, p2, · · · , pj , · · · , pM be the

parameters that command a given RTG engine. Let Vj denote

the collection of allowed values for parameter pj . Therefore,

V = V1 × V2 × · · · × Vj × · · ·VM is the generation space

for the RTG engine. Let v = (v1, v2, · · · , vj , · · · , vm) and

v′ = (v′
1, v′

2, · · · , v′
j , · · · , v′

M) denote allowable settings for

the RTG parameters. Let a be an action that changes the

1Without loss of generality, but for simplicity, this paper assumes uniform
quantizers.

RTG parameters from v to v′. Let (c, t) and (c′, t′) denote

the cumulative coverage and the elapsed time observed after

the execution of the tests generated with the settings v and

v′, respectively. An action should be better rewarded than

another when the former induces a higher coverage increment

in less time. Therefore, a suitable reward for an action a is

Ra(v, v′) = (c′ − c)/(t′ − t).
With this formulation, we want to find a policy (sequence

of actions) for reaching the maximal coverage (max c) within

the available time (t < at).

B. Proposed actions

The set of actions is largely dependent on the adopted RTG

engine. For instance, conventional RTG engines [13], [18] use

two main parameters: the number of memory operations (n)

and the number of shared locations (s). On the other hand,

the RTG engines proposed in [4] employ a third parameter:

the number of distinct cache sets to which locations can be

mapped (k). Without loss of generality, this paper defines

actions only for the above mentioned RTG engines.

We assume that the verification engineer defines bounds on

the allowed test sizes (nmin and nmax) and on the allowed

amount of shared locations (smin and smax).

1) Two-parameter actions: Let N and S be the sets of

allowed values for the parameters n and s (respectively) that

are within user-defined bounds, and are induced by the range

of functions2 f(i) = �2i/2� and f ′(i) = 2i, as follows:

N = {n : nmin ≤ n ≤ nmax : n = �2i/2� for some i ∈ N},

S = {s : smin ≤ s ≤ smax : s = 2i for some i ∈ N}.

We define the following actions:

• a1(n, s) = (�
√
2n�, s)

• a2(n, s) = (�n/
√
2�, s)

• a3(n, s) = (n, 2s)
• a4(n, s) = (n, s/2)

2) Three-parameter actions: The first two parameters are

n and s, whose sets of allowable values are defined above.

Let us now consider the third parameter. The values allowed

for the parameter k are bounded for each allowed value of s,

and are constrained to be multiples3 of that value, as follows:

K = {k : (1 ≤ k ≤ s) ∧ (s ∈ S) ∧ (s mod k = 0)}.

We define the following actions:

• a1(n, s, k) = (�
√
2n�, s, k)

• a2(n, s, k) = (�n/
√
2�, s, k)

• a3(n, s, k) = (n, 2s, k)
• a4(n, s, k) = (n, s/2, k)
• a5(n, s, k) = (n, s, 2k)
• a6(n, s, k) = (n, s, k/2)

2These could be replaced by other functions without loss of generality, as
far as actions are accordingly adjusted. They were designed for finer-grain
control on parameter n than on the others, because n largely affects test
throughput.

3This is a constraint leading to a uniform distribution of locations competing
for cache sets, which tends to foster higher coverage.

540 Design, Automation And Test in Europe (DATE 2020)

C. The underlying model

In order to build a directed test generator that could be

reused for distinct coverage metrics adopted in different design

environments, we do not give the agent direct access to cov-

erage events. As a result, it needs to be able to handle partial
observation of the state in order to learn in the environment.

Recurrent Neural Network (RNNs) are a viable option for

partially observable Markov Decision Processes, because their

ability of handling time and memory makes them suitable for

modeling any type of dynamical system [6].

We opted for an RNN with a single 10-neuron recurrent

layer between fully-connected input and output layers, and

11 distributional RL atoms4. Since an RNN is trained with

sequences, we used subsequent RL transitions5 for training.

We relied on sequences of length 8 and learning rate of 0.01.

As the tests used for training would not impair coverage,

but actually contribute to its cumulative effect, the nature of

the problem allowed us to opt for online training. At the start

of every test-suite execution, we used a new set of random

weights for the network, and trained them during its execution.

Our implementation is an adaptation of the Rainbow agent

[14], but the original neural network was replaced by our RNN.

V. EXPERIMENTAL VALIDATION

A. Experimental set up

Three generators were built under the proposed approach.

To build each Reinforcement Learning Generator (RLG), we

used the same Directing Engine and selected a distinct RTG

engine. We selected three RTG engines subject to progres-

sively tighter constraints, which are denoted as follows. RLG-

relies on an RTG engine that constrains the numbers of oper-

ations and locations only, similarly to [13], [18]. RLG+ relies

on an RTG engine that not only constrains operations and

locations, but also employs biasing constraints for controlling

cache evictions, similarly to [11]. RLG* relies on an RTG

engine that enforces the same constraints as the previous

ones, but imposes extra chaining constraints, similarly to [4].

RLG- employs two-parameter actions, while both RLG+ and

RLG* employ three-parameter actions. We set the same ranges

for their common parameters: nmin = 1Ki, nmax = 64Ki,
smin= 4, and smax=128.

We compared the proposed RLGs with the McVerSi [8]

test generator (MTG), which is available in the public domain

[7]. We preserved all genetic parameters exactly as they

were originally set in [8]. Since the MTG can only generate

fixed-size tests (as opposed to our generators), we launched

experiments for test sizes at the extremes of the range adopted

for our generators (i.e. n=1Ki and n=64Ki). To ensure that

the MTG operated in a similar range of shared locations as our

4Distributional RL is an optimization where the agent learns to approximate
a distribution of the rewards, instead of the expected reward. These distribu-
tions are modeled as probability masses placed on a discrete support defined
as a vector, where each component is called an atom [14].

5An RL transition is essentially a transition between environment states
that was induced by a given action and was assigned a given reward [14].

generators, we adopted the test memory constraint of 8KB, as

defined in [8].
We relied on gem5’s infrastructure [9] for simulation and

design representation of 32-core designs (O3 processor model)

under coherent shared memory (Ruby model). To reduce a

possible dependence of the results on protocol variant, we

adopted either a 2-level (L1, L2) or a 3-level (L0, L1, L2)

MESI directory protocol with 4KB (directed-mapped) private

caches at L0, 64KB (2-way) private caches at L1, and a 2MB

(8-way) shared L2 cache, all with same block size (64 bytes).
To capture coverage evolution, we used the structural metric

defined in [8], which tracks the state transitions of the cache

controller’s FSMs at all hierarchical levels and in every core

domain. However, to reflect the hardware structure and not the

protocol state space, the metric does not distinguish between

transitions from different core domains. We report a coverage

value as the fraction of transitions covered after the execution

of a sequence of tests. The agent relies on the cumulative

coverage up to a given test to decide on the most adequate

setting of parameters for the next test.
Without loss of generality but for experimental convenience,

we let each generator run until it stopped or a time limit of 10

hours (emulating a verification budget) was reached. Taking

into account the average test runtime for the adopted genera-

tion space, we opted for T=1000 levels for time quantization.

We arbitrarily selected C=100 levels for coverage quantization.

B. Impact of learning on coverage evolution

Fig. 2. Coverage evolution for 3-level MESI

Figure 2 shows the coverage evolution for a 3-level design.

Notice that the evolution of RLG-, which relies on conven-

tional random generation, is the poorest among all generators.

This indicates that the simple exploitation of structural prop-

erties of parallel programs by the RTG engine is not sufficient

for proper learning (as will be explained in Section V-C). The

RLG+ and RLG* are not only superior to RLG-, but also

competitive with the MTG. This indicates that the exploitation

of hardware properties and functional properties of parallel

programs are able to improve the quality of the generated tests

under RL.

Design, Automation And Test in Europe (DATE 2020) 541

Fig. 3. Coverage evolution for 2-level MESI

Note also that RLG+ reaches higher coverage than RLG*

until around 1 hour. After that, the tighter constraints exploited

in its RTG engine enable RLG* to reach higher coverage

values faster. Albeit their difference might seem small, it is

indeed relevant in face of the diminishing returns as coverage

approaches 100%. This explains why, after the 3-hour mark,

both RLG* and RLG+ exhibit similar evolution. Therefore, in

general, as more constraints are added, the generator becomes

better suited to reach higher coverage values.

Observe that, for 64Ki, MTG is better than its 1Ki counter-

part until around the 2-hour mark. After that point, the shortest

test size started to pay off, because the higher test throughput

allowed the genetic algorithm to create a larger number of tests

in the same interval to cover new transitions. This permitted

the MTG to reach higher coverage with the shortest tests.

RLG*’s final coverage was 95.81%, while MTG’s was

94.88% (with n=1Ki). However, MTG took around 26.000

seconds to reach its highest coverage, while RLG* took around

10.700 seconds to reach that same coverage, i.e. 2.4 times

faster. Thus, as far as the RTG engine is properly constrained

with biasing and chaining constraints, the use of RL for

dynamic coverage control is not only competitive with MTG,

but may allow the RLG to achieve higher final coverage6.

Figure 3 shows that coverage evolution is similar for 3-level

and 2-level designs, except that a higher final coverage was

reached for the latter. Since the suppression of one hierarchical

level reduced the overall number of transitions, a larger frac-

tion of them was covered in the same time frame. Surprisingly,

only RLG- did not benefit from that, since it reached a smaller

final coverage for a 2-level design. This can be explained as

follows. The RTG engine used by RLG- randomly assigns

addresses to locations, as opposed to the others, which con-

strain address assignment for better control on replacements.

Thus, it is harder for RLG- to stimulate transitions induced

by replacements, especially as cache associativity increases.

6The MTG and the RLG* covered, respectively, 204 and 206 transitions.
Thus, their difference in the final coverage corresponds to 2 hard-to-stimulate
transitions that RLG* covered due to chaining and biasing constraints.

As the 2-level design was built by suppressing the directed-

mapped L0 cache, the first hierarchical level was granted

higher (2-way) associativity. As a result, a higher fraction of

the remaining transitions became harder to cover with RLG-.

As expected from the suppression of one level, the MTG

reached a final coverage value (99.35%, with n=64Ki) closer

to RLG+’s and RLG*’s (99.67%, and 99.35%, respectively).

Albeit it seems to indicate that tighter constraints do not

contribute as much to coverage evolution when verifying a

less challenging design, the enforcement of constraints may

be crucial to stimulating the hardest-to-cover transitions

C. Impact of problem-specific information on learning

Fig. 4. Impact of constraints on learning for 3-level MESI

Figures 4 and 5 show the learning evolution for 2-level and

3-level designs. They plot the median loss7 as a function of

time. The loss essentially represents the difference between

the prediction and the actual output of the environment. In

our case, the prediction of the RNN is the expected reward

for each one of the possible actions, and the output of the

environment is the actual reward obtained. Therefore, a sharp

decrease in the loss function means that the agent is learning

faster.

Figure 4 shows the learning evolution for a 3-level design.

All RLG variants are clearly learning with time, but their

behavior is quite different. The sharpest evolution observed

for RLG- indicates that, albeit the agent learns fast, it stops

learning prematurely. The fact that the agent is unable to

keep learning after the 3-hour mark explains why it got

stuck at practically the same coverage after that time (as

seen in Figure 2). This happens because the two-dimensional

generation space of the underlying RTG engine was exhausted.

In contrast, the RTG engines underlying RLG+ and RLG*

have much larger three-dimensional generation spaces. That is

7The median loss was obtained as follows: First, for each random seed, the
10-hour runtime was divided into 72 intervals, each representing 500 seconds.
Then we determined the median loss value in the scope of each interval, and
we built a 72-point function for each random seed. Finally, we obtained the
overall loss function by taking the median value of each point over 10 seeds.

542 Design, Automation And Test in Europe (DATE 2020)

Fig. 5. Impact of constraints on learning for 2-level MESI

why RLG+ and RLG* can keep learning longer. Thus, RTG

engines with more parameters or larger ranges of parameters

have higher potential for coverage control under RL.
Albeit, for RLG-, the loss increased after the 3-hour mark,

this does not represent the generator’s behavior in every

execution. In 7 of the 10 executions, its generation space was

exhausted in 3 hours. Therefore, loss values reported after the

3-hour mark represent only the remaining 3 executions.
Note that, although the learning behavior of RLG+ and

RLG* are quite ‘noisy’ up to the 6-hour mark, this changes

afterwards. In the final phase of the verification process, the

residual loss is higher for RLG+ than for RLG*. This indicates

that RLG* is able to learn how to reach the few harder-to-

cover transitions left. This is evidence that the combination of

biasing and chaining constraints in the RTG engine (as it is

the case for RLG*) improves the quality of RL exactly when

it is more difficult to further increase coverage.
Figure 5 shows that the learning evolution for a 2-level

design is similar to 3-level, as seen in Figure 4.

VI. CONCLUSIONS AND FUTURE WORK

The experimental results show that Reinforcement Learning

leads to an effective technique for directed test generation

when it builds upon the legacy from random test generation.

They show that Reinforcement Learning for shared memory

verification is largely improved when shared memory and

parallel program properties are exploited by an RTG engine.
The partitioning of complementary tasks into different mod-

ules (one exploiting what is known, another exploring what

is unknown) seems to have the synergy required by next

generation verification tools.
As future work, we intend to broaden the evaluation with

additional coverage metrics and a more extensive set of de-

signs. Besides, we intend to study the impact of our generators

on design error discovery.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv. Genesys-pro: innovations in test program generation for

functional processor verification. IEEE Design Test of Computers,
21(2):84–93, Mar 2004.

[2] A. Adir, D. Goodman, D. Hershcovich, O. Hershkovitz, B. Hickerson,
K. Holtz, W. Kadry, A. Koyfman, J. Ludden, C. Meissner, A. Nahir,
R. R. Pratt, M. Schiffli, B.St. Onge, B. Thompto, E. Tsanko, and
A. Ziv. Verification of transactional memory in power8. In 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1–6,
2014.

[3] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak mem-
ory models. In Tayssir Touili, Byron Cook, and Paul Jackson, editors,
Computer Aided Verification, pages 258–272, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[4] G.A.G. Andrade, M. Graf, and L.C.V. dos Santos. Chain-Based Pseu-
dorandom Tests for Pre-Silicon Verification of CMP Memory Systems.
In 34th IEEE International Conference on Computer Design (ICCD),
pages 552–559, 2016.

[5] S. Devadas. Toward a coherent multicore memory model. Computer,
46(10):30–31, 2013.

[6] S. Duell, S. Udluft, and V. Sterzing. Solving partially observable
reinforcement learning problems with recurrent neural networks. In
Neural Networks: Tricks of the Trade, pages 709–733. Springer, Berlin,
Heidelberg, 2012.

[7] M. Elver. Mcversi framework. https://github.com/melver/mc2lib, 2016.
[8] M. Elver and V. Nagarajan. McVerSi: A test generation framework for

fast memory consistency verification in simulation. In IEEE Int. Symp.
on High Performance Computer Architecture (HPCA), pages 618–630,
2016.

[9] N. Binkert et al. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, Aug 2011.

[10] S. Fine, L. Fournier, and A. Ziv. Using bayesian networks and virtual
coverage to hit hard-to-reach events. International Journal on Software
Tools for Technology Transfer, 11(4):291–305, 10 2009.

[11] S. Fine and A. Ziv. Coverage directed test generation for functional
verification using bayesian networks. In Proceedings of the 40th Annual
Design Automation Conference, DAC ’03, pages 286–291, New York,
NY, USA, 2003. ACM.

[12] A. Groce. Coverage rewarded: Test input generation via adaptation-
based programming. In 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011), pages 380–383, Nov
2011.

[13] S. Hangal, D. Vahia, C. Manovit, and J.J. Lu. TSOtool: A program for
verifying memory systems using the memory consistency model. ACM
SIGARCH Comp. Arch. News, 32(2):114–123, Mar 2004.

[14] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI Conference on
Artificial Intelligence, 2018.

[15] W. Hu, Y. Chen, T. Chen, C. Qian, and L. Li. Linear Time Memory
Consistency Verification. IEEE Transactions on Computers, 61(4):502–
516, Apr 2012.

[16] J. Kim, M. Kwon, and S. Yoo. Generating test input with deep rein-
forcement learning. In Proceedings of the 11th International Workshop
on Search-Based Software Testing, SBST ’18, pages 51–58, New York,
NY, USA, 2018. ACM.

[17] D. Lustig, M. Pellauer, and M. Martonosi. Pipe check: Specifying
and verifying microarchitectural enforcement of memory consistency
models. In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-47, pages 635–646, Wash-
ington, DC, USA, 2014. IEEE Computer Society.

[18] C. Manovit and S. Hangal. Completely verifying memory consistency of
test program executions. In IEEE Int. Symposium on High-Performance
Computer Architecture (HPCA), pages 166–175, 2006.

[19] M.M.K. Martin, M.D. Hill, and D.J. Sorin. Why on-chip cache
coherence is here to stay. Communications of the ACM, 55(7):78–89,
June 2012.

[20] X. Qin and P. Mishra. Automated generation of directed tests for
transition coverage in cache coherence protocols. In Design, Automation,
and Test in Europe (DATE), pages 3–8, 2012.

[21] N. Shakeri, N. Nemati, M.N. Ahmadabadi, and Z. Navabi. Near optimal
machine learning based random test generation. In 2010 East-West
Design Test Symposium (EWDTS), pages 420–424, Sep. 2010.

[22] I. Wagner and V. Bertacco. MCjammer: Adaptive Verification for Multi-
core Designs. In Design, Automation, and Test in Europe (DATE), pages
670–675, 2008.

Design, Automation And Test in Europe (DATE 2020) 543

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

