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Abstract—Deep neural network (DNN) training suffers from
the significant energy consumption in memory system, and most
existing energy reduction techniques for memory system have
focused on introducing low precision that is compatible with
computing unit (e.g., FP16, FP8). These researches have shown
that even in learning the networks with FP16 data precision,
it is possible to provide training accuracy as good as FP32,
de facto standard of the DNN training. However, our extensive
experiments show that we can further reduce the data precision
while maintaining the training accuracy of DNNs, which can be
obtained by truncating some least significant bits (LSBs) of FP16,
named as hard approximation. Nevertheless, the existing hard-
ware structures for DNN training cannot efficiently support such
low precision. In this work, we propose a novel memory system
architecture for GPUs, named as precision-controlled memory
system (PCM), which allows for flexible management at the level
of hard approximation. PCM provides high DRAM bandwidth
by distributing each precision to different channels with as
transposed data mapping on DRAM. In addition, PCM supports
fine-grained hard approximation in the L1 data cache using
software-controlled registers, which can reduce data movement
and thereby improve energy saving and system performance.
Furthermore, PCM facilitates the reduction of data maintenance
energy, which accounts for a considerable portion of memory
energy consumption, by controlling refresh period of DRAM. The
experimental results show that in training CIFAR-100 dataset
on Resnet-20 with precision tuning, PCM achieves energy saving
and performance enhancement by 66% and 20%, respectively,
without loss of accuracy.

Index Terms—Deep Neural Network, Approximate Computing,
Precision Control, Refresh Period Control, General Purpose
Graphic Processing Unit, High Bandwidth Memory

I. INTRODUCTION

Deep neural network (DNN) is a widely used concept in

various fields. In DNN, appropriate training process is the

first step to achieve its unprecedented accuracy. However, the

training process consumes a significant amount of energy. In

particular, because a large amount of data, such as weight

and activation maps, must be moved back and forth between

the memory and the core, the memory system is a key

bottleneck in the reduction of power consumption [1]. Another
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process whose power requirements are often underestimated

is data retention, which needs to maintain a few terabytes

of DRAM per pod on a warehouse-scale server [2]. The

power consumption of such a memory system exceeds the

energy consumption of the logic unit. For example, Alexnet,

a representative convolutional neural network (CNN)-based

algorithm known to have computational bounds, consumes

85% of the total energy required for the operation of the first

convolution layer for data movement alone [1].

A popular method to reduce the energy consumption of

memory systems, and even of logic units, is precision reduc-

tion. Proper precision reduction does not incur any overall

accuracy loss for the DNN, while simultaneously diminishes

energy consumption by reducing computation demands and

data movement. For this purpose, data is represented using a

small number of floating-point bits, like 16-bit (FP16) or 8-

bit (FP8), instead of the commonly used 32-bit data format

(FP32). A lot of recent studies have focused on effectively re-

ducing precision [3]–[5]. However, this is limited by hardware

constraints such as memory alignments and computation unit

designs. Inefficiencies in such hardware components impede

the search for the optimal precision that does not cause an

accuracy drop. Therefore, the previous studies are not very

feasible.

Meanwhile, research to reduce the energy consumption of

data maintenance processes is being conducted orthogonally

with DNN research [6]–[8]. Refresh operations in DRAM are

the causes behind the high energy demands of data retention

processes. Research to reduce the energy consumption of

refresh processes [6], [7] generally involves skipping the

refresh operation in the absence of errors. However, it is known

that a larger amount of energy can be saved if errors are

permitted, and many software and hardware techniques have

been proposed based on this principle. However, the DRAM

architectures of these studies [6]–[8] solely focus on saving

energy used in refresh operations and do not consider data

movement.

In this study, we propose a novel memory system archi-

tecture to save energy in both aspects, i.e., data movement

and data retention, of the training process. In the proposed
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architecture, the process of transposing data is similar to the

previous study [8], but data corresponding to different bit

position, i.e., bit-slice, are stored in different rows on the

DRAM. Further, a new data mapping is applied to meet

the throughput requirements of the de facto deep learning

training hardware, GPU with HBM, and the deep learning

algorithm. The L1 cache is modified to bridge the format

gap between the DRAM and the existing GPU core, while si-

multaneously eliminating cache underutilization by employing

thread throttling and hardware prefetching. We also propose a

new refresh scheme, soft-approximation, that can be applied

to low precision deep learning training. As a result, our

architecture eliminates the hardware inefficiencies that occur in

the memory system during training using arbitrary precision by

enabling hard-approximation which is the precision truncation

mechanism. Therefore, the energy consumed by the proposed

memory system is proportional to the degree of precision

used. In addition, the architecture is proposed based on the

transposed memory technique, which is also used in existing

refresh energy saving mechanisms. So, the reduction in power

consumption is at least as much as that achieved in previous

research.

In summary, our contributions are:

1) Transposed data layout for HBM –– We propose

a memory mapping for the access in bit-slice unit

on HBM, which minimizes throughput degradation in

training workloads.

2) L1 cache system design for bit-slice fetching –– We

redesign the cache system for supporting the transposed

data layout and enabling hard-approximation at the

core. PCM reduces energy consumption caused by data

movement by 38% and speed up the training process by

20% using hard-approximation.

3) Exploration on non-power-of-2 precision learning
–– Using the proposed system, we propose bit-level

precision control and evaluate its potential by measuring

training performance altering bit-level precision in the

epoch unit.

4) Refresh energy reduction scheme for low precision
deep learning –– We reduce energy consumption of

refresh processes in deep learning training by 85% by

employing the proposed refresh skipping techniques and

conclude that it has no substantial effect on overall

accuracy.

II. BACKGROUND AND MOTIVATION

A. Low Precision for Deep Neural Network Training

DNN training is a weight optimization process required be-

fore the inference phase. The weights determine the accuracy

of the DNN and are thus crucial to the DNN process. In a

DNN, the training process is generally a non-convex opti-

mization problem; thus, it consists of an iterative algorithm.

To perform the millions of iterations necessary, the training

process consumes a significant amount of energy. Especially

with the growing popularity of the neural architecture search

technique, a technique to determine even network shape by

using DNN training process is consuming more energy at once

than a person uses during his entire life [9].

Fortunately, DNNs can retain their accuracy even without

data of high numerical precision because they comprise a per-

ceptron structure. Furthermore, using less precise data reduces

energy consumption and speeds up the system. Therefore,

recent complex DNN algorithms designed to produce high

accuracy extensively use precision reduction techniques, and

relevant research is being conducted actively [3]–[5]. However,

as excessive reduction in precision can lead to severe losses in

accuracy and hardware that supports such drastic reduction is

unavailable, precision reduction remains at an acceptable level

in practical industrial applications.

The state-of-the-art low precision technique used in DNN

training is called Mixed Precision Training and it uses a

mixture of half precision and single precision [3]. During

the training process, the feature maps and the weights are

converted to half precision via a computation unit, and the

partial sum of convolution is accumulated in 32-bit. A training

method using even lower precision, such as 1-bit, has also been

proposed [10], but it shows unacceptable levels of accuracy for

complex DNN tasks.

Nevertheless, as shown in Section IV, when training the

CIFAR-100 dataset on Resnet-20, the same accuracy as mixed

training can be achieved by using only 9-bit weights and

feature maps. However, 9-bit data movement is very inefficient

in general GPU architectures, which support only standardized

precision such as FP8, FP16, and FP32. This arises from the

additional work required to move and map unaligned data to

multiple cores and ALUs. As a result, reducing the precision

to 9-bit is rendered useless, and so many techniques proposed

at the algorithm level cannot be applied in practical scenarios.

B. Approximate DRAM for refresh power reduction

Refresh is an operation to keep data in volatile DRAM.

Refresh is expected to account for a large portion of energy

consumption as DRAM chips grow in density [6]. This trend

on refresh is equally applicable to server systems where DNN

training is mainly performed, and the impact of refresh oper-

ations on server systems may be more severe than inference

phase mainly performed at the edge device because server

systems have a lot of acceleration hardware with high-capacity

DRAM.

A lot of studies have conducted to solve this refresh problem

[6]–[8], to basically skip the unnecessary refresh commands.

Especially, the research in [8] varies the refresh period accord-

ing to the importance of the data. In this method, during the

inference phase based on FP32, the DRAM cell containing

LSB (i.e., Mantissa bits) is refreshed at a low rate, and the

MSB (i.e., Sign and Exponent bits) is protected from error

with normal refresh rates. As a result, this technique reduces

the power consumption of refresh processes by 70%. However,

since the refresh operation is performed in a row unit, data

are stored in the DRAM after being transposed to achieve

precision-wise refresh control.
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In fact, the transposed mapping proposed in this previous

study can be utilized to control not only refresh periods by bit-

slice but also data access (i.e., data movement) by bit-slice.

Therefore, applying this bit transposed structure to control

precision during DNN training phase can solve the hardware

inefficiency problem presented in Section II-A. However, the

naı̈ve adoption of the transposed structure proposed in the

previous study [8] results in the significant DRAM bandwidth

underutilization due to the degradation of the row locality.

This is because each bit-slice is located in different rows in the

same bank, which causes excessive row changes that are time-

consuming during the data fetching process. Therefore, the

inefficiency of the transposed architecture must be addressed

to construct a system that can effectively control both dynamic

power and refresh power.

III. PROPOSED HARDWARE ARCHITECTURE

We present a precision-controlled memory system, PCM,

based on the motivation provided in Section II. PCM is a

memory system for DNN training that supports loads and

stores data corresponding to any degree of precision without

any bandwidth loss. Consequently, both dynamic energy and

refresh energy consumption can be reduced.

A. Architecture Overview

Fig. 1 shows the PCM architecture proposed in this study.

PCM is based on discrete GPU with HBM, which is often used

for server-scale DNN training device. In HBM, data is stored

after transposition, and L1 and DRAM controllers of existing

GPUs are modified to support the transposed mapping. In L1

cache, the internal SRAM structure is modified, and a write

buffer and a prefetcher are added. The DRAM controller also

includes a refresh controller.

The sub-unit in the PCM architecture works interactively to

reduce energy consumption in memory systems with precision

while minimizing performance degradation. To use the trans-

posed data without bandwidth degradation, PCM maps these

data by utilizing the parallelism of HBM. In addition, PCM

controls the degree of precision in the modified L1, thereby

making the dynamic energy consumption in data movement

proportional to the degree of precision and minimizing IPC

degradation. In addition, to reduce the refresh energy, the

DRAM controller in PCM performs refresh skipping at a rate

appropriate for the application.

Fig. 1. Overview of the proposed PCM architecture

Fig. 2. Address mapping for transposed data

B. Address Mapping for Transposed Data

The proposed architecture provides precision controllability

using a transposed data layout. In addition, we propose a data

mapping method that uses the parallelism of HBM, which

solves the issue of bandwidth degradation caused by the naı̈ve

transposed data mapping. The proposed mapping places each

bit-slice in an independent DRAM array, such as a channel

or a bank, minimizing the opening and closing of rows when

multiple bit-slices are being accessed. In particular, since each

channel operates independently, the degrees of precision which

are less than the number of channels can be accessed with the

latency of only one row change. This is faster than the naı̈ve

mapping by the number of bit-slices used.

Fig. 2 shows a schematic diagram of the proposed mapping.

Each bit-slice is located in a different channel or bank. In the

case of adjacent bit-slice, row level dependency is removed by

mapping to other channels, and by placing them in different

banks in different channels. The parallelism provided by the

other HBM dies is excluded from use. This is because locating

different bit-slice in different dies could increase latency vari-

ations and could stall the GPU core’s pipeline until the slowest

bit-slice is fetched. An example of the proposed mapping is as

follows. When mapping 32-bit data to HBM, 0th—15th bit-

slices are assigned to the 0th bank of each channel and 16th—

31st bit-slices are placed on the 1st bank of each channel. In

this way, each bit-slice is mapped to a different bank, ensuring

independent access and refresh. Also, it guarantees that the

worst access latency is the same as two accesses in different

banks, not 32 accesses in the same bank.

However, since different bit-slices are located on different

channels, data can no longer be reconstructed into word from

the bit-slices in the DRAM controller as in the conventional

method. Since the L2 cache is also channel-private on the

GPU, the core-private L1 cache is the lowest memory hier-

archy whose bit-slice chunk can be converted into word. In

addition, since the DRAM request unit is 32B, the L1 cache

line size should be 1KB for 32-bit data, which is very large.

Therefore, a new L1 Data subsystem is required.

C. Precision-wise Fetching : Supporting Cache Hierarchy

In PCM, the L1D subsystem interacts with the DRAM

data mapping proposed in Section III-B, thereby effectively
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Fig. 3. L1 data cache and internal elements. (a) L1 overview, (b) sub-request generator, (c) modified data SRAM, and (d) shuffle logic

controlling hard-approximation. First of all, the L1 subsystem

in the PCM decides which degree of precision to fetch for

low precision data movement. It also reconstructs the fetched

bit-slice into words to bridge the gap between the core and

the memory system. Further, it replaces the values for the

bit-slices that would not be fetched. In addition, appropriate

techniques are applied to compensate for the lower cache

efficiency caused by the larger cache line. The L1 cache with

these features is depicted in Fig. 3-(a).

A sub-request generator, which is depicted in Fig. 3-(b),

decides which bit-slice needs to be fetched from the memory

and creates a memory request for each degree of precision

called a sub-request. The sub-request generator contains a

software-configurable register called the fetch mask. The fetch

mask indicates which bit-slices to be fetched in the form of

a bit flag. Sub-requests are created sequentially in the order

indicated by the fetch mask. Unlike the original request, the

address field in a sub-request is modified to point to the address

of the bit-slice, and an additional field is added for bit-slice

index. The generated sub-requests are managed in one MSHR

entry in the form of a fetch mask. When each bit-slice arrives,

the corresponding bit in the stored fetch mask is set. When all

fields of the fetch mask in the MSHR entry have the value 1,

the valid flag is set in the tag.

The conversion of bit-slices into words is impossible in the

DRAM controller, and is therefore performed via the modified

SRAM and the shuffle logic, as shown in Fig. 3-(c). First,

sub-requests are collected in 1 KB cache line. Within cache

lines, data are still stored in the order of their bit position.

Word rearrangement is performed in the shuffle logic on the

way to the core. Within the shuffle logic, there is a software-

configurable register (i.e., fill mask) to replace vacant bit-

slices via an OR operation. After the OR operation, data are

reorganized from a sequence of bit-slices to that of words

using a hard-wired path consisting of 2-input MUX. The

example of 2 words with 4 bit-slices is shown in Fig. 3-(d).

Although PCM supports hard-approximation via L1 modifi-

cation, two challenges are encountered. The first is a large L1

cache line. To maintain the same cache capacity, the number of

cache line is reduced, which often results in conflict misses.

The second is reduced write-efficiency. GPU writes usually

bypass the L1 cache, and request size is generally less than 1

KB. However, in the PCM, a write request must be divided into

sub-requests as well as a read-request, resulting in requests of

inadequate size. This causes bandwidth degradation because

the request size becomes less than that of the DRAM atom.

To solve the issue of conflict miss, our architecture em-

ploys two well-known optimization techniques that improve

GPU cache utilization. The first is to limit concurrent thread

numbers, which reduces the contention for cache lines [11]. In

addition, a simple next line hardware prefetcher is included,

which compensates for the latency hiding ability caused by

the presence of fewer threads [12]. To solve the write request

inefficiency, the PCM includes a write buffer, as depicted in

Fig. 3-(d). In the write buffer, the write data is collected by

a directly mapped 1 KB line, and the line is evicted when

the line is hit and has been fully collected or another line is

missed and it is selected as a victim line under LRU policy.

D. Deep Learning Training with the Proposed Memory System

Using PCM, DNN training with hard approximation is

possible by simply setting a fetch mask and a fill mask. For

example, 9-bit training begins by setting the fetch mask and

fill mask to 0xFF800000 and 0x00400000, respectively, while

storing a full precision copy of the weight and input data in the

DRAM. Then, during training kernel execution, the weights

and inputs are automatically hard approximated while being

fetched into the core. Otherwise, in the DRAM, the refresh

period is managed, MSBs (bit 0-–5) are protected, the bits used

in the mantissa bits are skipped (bit 6—8), and the refresh of

the remaining bits is ignored (bit 9-–32).

In addition, the fetch mask and refresh periods can vary

between each epoch, mini batch, or layer with negligible

overhead. Therefore, it is possible to change the precision

finely in a specific epoch or layer. In this study, using the fact

that the numerical range of weights is small as shown in [4],

we begin with aggressively low precision and use 1 additional

bit precision from each specific training iteration until the end.

Simultaneously with the increase in the degree of precision,

the refresh of newly used bits is started. This 1-bit increase

scheme does not have any benefit in the existing architecture,

but the PCM can execute it efficiently.
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IV. EXPERIMENTAL RESULTS

A. Experimental Methodology

This paper evaluates the performance of the PCM when

training classification CIFAR-100 [13] dataset on Resnet-20

[14] network. The classification accuracy of various fixed

precision and the proposed algorithm is measured through the

simulation using a commodity GPU. In the proposed algorithm

introduced in Section III-D, a combination of 7-bit (early

epoch) and 9-bit (later epoch) is used because the minimum

fixed precision without an accuracy loss is 9-bit. The error due

to refresh skipping is modeled through bit error injection [15].

When applying refresh skipping, the sign bits and exponent

bits are protected and the mantissa bits are injected with error.

To evaluate architectural performance of the PCM, we

model the PCM in GPGPU-Sim [11]. This paper keeps the

cache capacity constant while enlarging the size of the L1

cache line. Shuffle logic is estimated to be 2 cycles of L1

hit latency. For the baseline, a model of NVIDIA V100 is

used. Detailed specifications including the PCM itself are

depicted in Table I. Energy consumption in the memory

system is calculated by architectural statistics obtained from

the simulations using parameters from previous HBM study

[16], refresh energy study [7], and models from CACTI [17].

To make the binaries run on GPGPU-Sim, we modify and

build PyTorch v1.1 without cuDNN. Then, we obtain Resnet-

20 training python code from open source and modify it using

half precision data.

TABLE I
HARDWARE CONFIGURATION

Baseline PCM
Arch. 80 SMs, 1.2 GHz, compute capability sm 60

Core 2048 max threads
32 max CTAs

1024 max threads
2 max CTAs

L1D Cache

4 set, 32 KB,
32 B sectored, 64 ways,
128 B line
28 cycles hit latency

4 set, 32 KB,
32 B sectored, 8 ways,
1 KB line
30 cycles hit latency
write buffer, prefetcher

DRAM FRFCFS scheduler, BL=2, HBM timing

B. Accuracy Evaluation

The experimental results for accuracy are depicted in Fig-

ures 4 and 5. Fig. 4 depicts the results of training with fixed

precision. For the data format compatible with the existing

hardware, the accuracy of FP16 is almost the same as that of

FP32, but the accuracy is lowered as FP8 is used. However,

this loss in accuracy does not occur for the intermediate

numerical precision between FP8 and FP16. In the case of

Top-1 accuracy, FP9 exhibits accuracy similar to that of FP16,

while FP14 exhibits even higher accuracy than that of FP 16.

These results show that, in the absence of hardware constraints,

it is worth it to search for various precision and finally

use the network-optimized precision. Note that existing GPU

architectures cannot utilize this precision even if such precision

exhibit high accuracy.

Fig. 4. Top-1 (dotted, left) and Top-5 (line, right) accuracy of Resnet-20 on
CIFAR-100 with various numerical precision

Fig. 5. Accuracy of proposed training algorithm according to epoch ratio of
FP7 and refresh skipping rate. (a) Top-1 Accuracy (b) Top-5 Accuracy

The solid lines in Fig. 5 depicts the accuracy of the proposed

algorithm in Section III-D, which uses FP7 for the early epoch

and FP9 for the late epoch. In Fig. 5-(a), as the ratio of

FP7 increases, top-1 accuracy tends to decrease; however,

top-5 exhibits the same performance when running at FP7

at 10% epoch, while it exhibits a higher accuracy at 80% of

FP7 as depicted in Fig. 5-(b). These results also effectively

demonstrate the need for efficient hardware that can utilize

the results of a fine-grained search for degrees of precision

searching.

The dotted lines in Fig. 5 depicts the results of adjusting

refresh skipping according to the proposed algorithm. The

results show that there is no substantial change in accuracy

compared to the result without error. Even increasing the

refresh period of the mantissa bit to 1024 ms incurs no

noticeable drop in the accuracy, and in some cases, the top-5

accuracy even improves. This improvement is caused by the

fact that error injection has the effect of preventing overfitting.

Therefore, with PCM, additional power reduction is possible

through soft approximation without accuracy loss even after

hard approximation, and the complete evaluation is presented

in the next subsection.

C. Evaluation of the Proposed Hardware Architecture

The energy consumption of the PCM is depicted as a bar

diagram in Fig. 6. In Fig. 6, the energy consumption for
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fixed precision with a refresh period of 768 ms in mantissa

bits is presented. There is a large improvement by 66% in

energy consumption for the PCM, compared to the baseline

architecture. This is because the refresh energy dominates

the total energy consumption in the baseline and refresh

energy is reduced by 85%. It should be noted that a large

proportion of the reduction in the refresh energy is obtained

from refresh skipping, not due to stopping refresh which

is proportion to the degree of precision used. However, the

refresh energy improvement has become saturated, since the

sign and exponent bits are protected.

Fig. 7 depicts the dynamic energy consumption breakdown

of the PCM. It is clear that the PCM uses less energy when

using lower degrees of precision. Compared to FP9 and FP7,

there are 35% and 40% dynamic energy improvements, respec-

tively. For the proposed scheme, dynamic energy is reduced

by 38% compared to the FP16 baseline. The breakdown

results show that the energy consumption of the DRAM is

significantly reduced compared to the baseline because of

the higher L2 cache hit rate caused by thread limitations.

Also, energy overhead from the write buffer, which is only

added part of the PCM datapath, is negligible. Within the

PCM results, as the degree of precision is lowered, the energy

consumed in the L2 cache is proportionally reduced, resulting

in precision reduction gain.

The effect of the PCM is not only apparent in energy

consumption but also in speeding up the system. The training

time is normalized to baseline and depicted via a line graph

in Fig. 6. PCM using FP9 is 19% faster than the baseline

and FP7 is 20% faster. The proposed algorithm is 20% faster.

The reason why the proposed system can achieve such a fast

speed compared to the baseline is that the number of DRAM

accesses is reduced because of thread limitation. On the other

hand, the difference between FP7 and FP9 is not so large,

because Resnet-20 training is computationally bound. We can

therefore confirm that faster DNN training is possible using the

proposed system with significantly less power consumption.

V. CONCLUSION

A PCM architecture proposed in this paper can reduce en-

ergy consumption scalably by enabling the control of degrees

of precision in DNN training on GPU memory systems. In

addition, it is possible to simultaneously reduce refresh energy,

which takes up a significant proportion of the total power

consumption. Therefore, PCM supports DNN by achieving a

significant dynamic/refresh power reduction and speed-up of

the system compared to existing GPUs. Experimental results

show that while training CIFAR-100 on Resnet-20, the PCM

system consumed only 34% energy and achieved a 20% speed-

up compared to conventional GPU architectures.
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