Gap-free Processor Verification
by S?QED and Property Generation

Keerthikumara Devarajegowda*’, Mohammad Rahmani Fadiheh*, Eshan Singh?
Clark Barrett!, Subhasish Mitra, Wolfgang Ecker'$, Dominik Stoffel*, Wolfgang Kunz*

*Technische Universitit Kaiserslautern, Germany, fInfineon Technologies AG, Germany
Stanford University, USA, §Technische Universitit Miinchen, Germany

Abstract—The required manual effort and verification exper-
tise are among the main hurdles for adopting formal verification
in processor design flows. Developing a set of properties that fully
covers all instruction behaviors is a laborious and challenging
task. This paper proposes a highly automated and ‘“‘complete”
processor verification approach which requires considerably less
manual effort and expertise compared to the state of the art.

The proposed approach extends the S>QED approach to cover
both single and multiple instruction bugs and ensures that a
design is completely verified according to a well-defined criterion.
This makes the approach robust against human errors. The
properties are simple and can be automatically generated from
an ISA model with small manual effort. Furthermore, unlike
in conventional property checking, the verification engineer does
not need to explicitly specify the processor’s behavior in different
special scenarios, such as stalling, exception, or speculation, since
these scenarios are taken care of implicitly by the proposed
computational model. The great promise of the approach is shown
by an industrial case study with a 5-stage RISC-V processor.

I. INTRODUCTION

The evolution of ecosystems for scalable and customizable
computing based on the RISC-V instruction set architecture
(ISA) along with the demand to deliver millions of computing
devices to growing markets such as for the Internet-of-Things
(IoT) have created a new and urgent need for highly efficient
techniques of processor verification. Verifying the correctness
of a processor’s behavior after aggressive microarchitectural
optimizations and for every possible instruction interleaving
is a laborious and demanding task.

Formal verification (FV) by property checking is a powerful
technique for exhaustive design analysis. However, developing
a set of properties that fully covers all relevant behaviors of a
design is known to be a hard problem and requires high formal
verification expertise. Although there exist techniques that
propose complete formal verification of processor cores [1],
[2], they require high manual effort and are hard to integrate
in many industrial verification flows.

Formal processor verification is a well researched topic.
We provide a summary of the most related works: An ap-
proach for control path verification of pipelined processors
is proposed in [3] using an efficient validity checker for the
logic of uninterpreted functions with equality. This approach
of abstracting from the datapath motivated other works with
symbolic model checkers [4], [5]. Such methods target abstract
models of the processor and can miss bugs in the RTL
description. Moreover, developing the architectural description
of the processor implementation and the refinement mapping
between implementation and specification requires significant
manual effort. In [6] an approach is presented which generates
properties and verification IPs from an executable specification
of the ISA. Being based on bounded proofs and not covering
all corner cases of instruction execution, this work contributes
to efficient bug hunting but fails to prove the absence of bugs.

A “complete verification” approach is proposed in [2],
in which the authors used an industrial microcontroller to
demonstrate the formal verification with a “complete set of

978-3-9819263-4-7/DATE20/©)2020 EDAA

properties”. The proposed approach uses well-defined com-
pleteness checks [1] to determine the gaps in the property set,
thus ensuring high design quality. Developing a complete set
of properties and passing the completeness checks, however,
requires a large amount of manual work and high expertise.

In [7], formal verification of processors with a complete set
of properties is proposed, in which the properties are generated
from an architectural description of the processor. A similar
approach in which the properties are generated from semi-
formal specifications is proposed in [8]. These approaches, in
contrast to the work proposed here, do not follow a model-
driven flow but derive design-specific properties based on the
implemented architecture. This leads to higher manual efforts
for property development, especially when migrating to a new
processor architecture.

In [9] it is shown how formal methods can be used to lever-
age the benefits of quick error detection (QED) tests for pre-
silicon verification. The technique termed as Symbolic QED
(SQED) is based on Bounded Model Checking (BMC) [10].
It has been shown to be effective in revealing difficult-to-
find bugs, is applicable to large designs and requires low
manual effort. However, SQED fails to imply the absence
of bugs in a processor due to its bounded groof and limited
search space. This motivated the work on S“QED [11] which
is based on a bounded model with symbolic initial state. It
provides an unbounded proof that every instruction executes
uniquely independent of its context in the program. However,
also S?QED does not allow for a well-defined statement on
the absence of all logic bugs in a processor. Therefore, in
this paper, we propose Complete S?QED (C-S>QED), a gap-
free processor verification targeting processor cores of medium
complexity with in-order instruction execution. The C-S?’QED
method has the following characteristics:

1) The proposed approach is integrated into an industrial
model-driven design flow and is based on generating a
set of S?’QED properties from a formal ISA model.

2) The C-S?QED properties fulfill a well-defined complete-
ness criterion derived from [1]. By merit of complete-
ness, C-S?QED exhaustively verifies whether or not the
microarchitectural description of a processor at the RTL
is a correct implementation of its ISA-level specification.

3) Our approach combines the generation of properties
with proving the uniqueness of instruction execution by
S?QED. This simplifies both, creating properties and
completeness checking. Consequently, when compared to
previous complete verification approaches, such as [2],
C-S”QED considerably reduces the required manual ef-
fort and verification expertise.

The effectiveness of the proposed method is demonstrated
by verifying a 5-stage RISC-V processor implemented in an
industrial System-on-Chip (SoC) previously verified with a
complete property set. The experimental results show that all
(previously known) bugs were found by the proposed method
with drastically reduced manual effort.

526

The rest of the paper is organized as follows. Sec. II
reviews the notion of a complete set of properties and its
use in processor verification. Secs. III and IV discuss, in
detail, processor verification by S?QED and C-S?QED. Sec. V
presents C-S?QED as part of an industrial model-driven flow.
Our industrial case study is presented in Sec. VL.

II. COMPLETE PROPERTY SET

Interval Property Checking (IPC) is a variant of BMC [10],
in which the design behaviors can be specified in a special
property format called operation properties [1], [12]. Each
operation property describes a certain design behavior in a
finite time interval in which the design starts and ends in a
so called important state or conceptual state. An operation is
defined as a set of finite sequences of state transitions between
two important states such that only unimportant states are
visited in between. An important state is an abstract state and
corresponds to one or more concrete states. Each concrete state
can only belong to one important state. Operation properties
are supposed to be chained in the sense that the end state of
one operation is the start state of the succeeding operation.
These operations (transitions between conceptual states) can
be viewed as forming a conceptual state machine (CSM).
The CSM is a finite automaton describing the sequencing of
operations and is close to the specification. The goal is to
completely describe every input/output behavior by a sequence
of operation properties without any gaps [1], [12]. Interval
Property Checking fulfilling the following completeness crite-
rion is called Complete Interval Property Checking (C-IPC).

Definition 1. (Complete Property Set): A property set is
complete w.r.t. a Design Under Verification (DUV), if the
sequence of output signal values over a period of time is
uniquely defined by the property set according to a set of
determination requirements. The determination requirements
are specifications of signal behavior in the design, describing
which output and state variables of the design are to be
uniquely determined in each operation [1], [12]. O

The determination requirements define the input/output
space considered by the property set.

Corollary 1. A property set V = {P;, P»,...,P,} is com-
plete if two arbitrary state machines satisfying all properties
in the set are sequentially equivalent with respect to the
determination requirements. O

The verification engineer makes a property set complete by
ensuring that every possible operation is covered by an oper-
ation property and that all outputs and other signals referred
to in the determination requirements are uniquely specified at
every time point by the operation properties. Completeness
of a set of properties can be checked automatically, and
independent of a design. A complex sequential equivalence
check, as in [13], is not needed. Instead, completeness can
be established inductively by considering all pairs (P;, P;) of
properties describing an operation P; and a direct successor
operation P; and by performing a set of completeness tests 1],
[12] described below.

A) Case Split Test: The case split test checks that all paths
between the important states are covered by at least one
property. In other words, it checks that at the ending
important state of each operation, for every possible input
combination, there exists at least one operation property
which determines the next important state. This ensures
that there is no input scenario missed in the property set.

B) Successor Test: The successor test checks for every
operation whether the successor operation is uniquely

Design, Automation And Test in Europe (DATE 2020)

ready for next
_instruction

Fig. 1. Conceptual State Machine of a pipelined processor

determined. For every pair of predecessor/successor op-
erations (F;, P;), the execution of P; must be uniquely
determined by the predecessor P;. Passing successor and
case split tests ensures that there exists a unique chain of
operations for every input trace.

C) Determination Test: The determination test checks
whether a set of operation properties uniquely determine
the outputs of a circuit (or other signals in determination
requirements, e.g., general purpose registers in proces-
sors) at all time points.

D) Reset Test: The above three tests form an inductive
proof stating that if an operation determines its ending
important state and output, then there always exists a
successor operation that uniquely determines the next
important state and output. The validity of this inductive
reasoning depends on the reset state (i.e., the induction
base). The reset test checks whether the reset input se-
quence initializes the system deterministically to a unique
important state and fulfills all determination requirements.

A. Complete Processor Verification

Pipelined processors execute several operations simultane-
ously such that different operations overlap each other by one
or more clock cycles. Logically, the executions of instructions
are independent of each other, even though, physically, they
overlap each other in time as they pass through the pipeline.
Based on this insight, operation properties can be written
in such a fashion that the specified computations and the
corresponding determination requirements overlap temporally.
In this way, the operation properties provide an abstract
view on instruction execution that is close to the ISA-level
programmer’s view on the processor.

A CSM to capture the operations in a pipeline is shown
in Fig. 1. Each operation starts and ends in an important
state called ready_for_next_instruction. The state transition
graph (STG) of this finite state machine is of a special,
“degenerate” form: it consists of a single state and many
transitions beginning and ending at that state. Each transition
is labeled with a different opcode and represents the execution
of a specific instruction. The special structure of this STG has
implications for checking the completeness of the property set,
as discussed for our new approach in Sec. IV.

III. PROCESSOR VERIFICATION WITH S?QED

A. Design Errors

Design errors in hardware, often called “bugs” or “logic
bugs”, lead to incorrect behavior of the implementation in
certain scenarios.

Definition 2. (Error Scenario): In the context of processor
design, an error is a deviation of the implementation’s be-
havior from its specification, in a certain error scenario. An
error scenario consists of (1) an instruction in which the error
becomes observable, (2) the instruction’s operands, and, (3) its
program context, i.e., the sequence of previously executed
instructions.]

We say, an error scenario activates a logic bug. Logic bugs
can be categorized into single-instruction bugs or multiple-
instruction bugs.

527

Definition 3. (Single-instruction bug): A bug is a single-
instruction bug if there exists (1) an instruction opcode and
(2) a set of operands such that the execution of the instruction
leads to an error in all program contexts, i.e., independently
of all previously executed instructions. O

Definition 4. (Multiple-instruction bug): A bug is a multiple-
instruction bug if it is not a single-instruction bug and if there
exists (1) an instruction opcode, (2) a set of operands, and,
(3) a program context such that the execution of the instruction
leads to an error. O

A multiple-instruction bug requires error scenarios consist-
ing of specific instruction sequences that set up the micro-
architecture of the processor such that the bug is activated. In
contrast to a single-instruction bug, there are program contexts
in which a multiple-instruction bug is not activated.

B. S?QED Computational Model

S?QED [11] is a formal processor verification approach tar-
geting complex instruction pipelines. S2QED proves that every
instruction executes independently of the previous pending
instructions in the pipeline, i.e., independently of its program
context. The computational model of S?’QED consists of two
identical and independent instances of the processor under ver-
ification which are constrained to execute the same instruction,
at an arbitrary time point. Fig. 2 shows the computational
model in which the two CPU instances of the same processor
are unrolled for a time window as large as the upper bound
of the execution time of an instruction in the pipeline.

Instr(1) NOP

: CPUI1 ‘ """ CPUI1
Si Sn-1 Sn

Instr(2)

Sref CPUL

Instr(1)

CPU2 |,

Fig. 2. S?QED Computational model

Definition 5. (QED consistency): In the S?QED computational
model, the two CPU instances are QED-consistent at a time
point ¢, if the corresponding architectural state elements of
both instances at time point ¢ hold the same values. [

For a processor with N registers a QED-consistent register
state is characterized by the named logic expression:

N-1

ged_consistent_registers := /\ (Ripur = Ripua) (D
i=0
This expression is a Boolean predicate that is implemented
as a macro in the property language of the verification tool.
It represents architectural states in which the register files of
both CPU instances have identical contents.

Consider an S?QED computational model, in which R},
and R, represent the general purpose register files of
CPU1 and CPU?2, respectively. Fig. 3 shows the S’QED
property that is to be proven on this model. The property
specifies that if two independent CPU instances fetch the same

assume:

at tip: cpu2_fetched_instr() = cpul_fetched_instr();
during [tie+1, twel: cpul_fetched_instr() = NOP;
at tp: cpul _state() = Sief;
at twg: ged_consistent_registers();
prove:
at twe+1: ged_consistent_registers();

Fig. 3. Original S2QED property

528

assume:
at tip: cpu_fetched_instr() =
cpul_fetched_instr();

during [t+1, twel: cpul_fetched_instr() = NOP;

at tig: cpul _state() = Spef:
at tip: ready_for_next_instruction();
at tip: instr_register_type();
at twg: qed_consistent_registers();
prove:
at tgx: ready_for_next_instruction();
at twg + 1: qed_consistent_registers();
at twpg + 1: cpul_reg_value(reg_addr @ tp) =

expected_value(funct_type @ tp);
Fig. 4. S2QED property for Register-type instructions

instruction and the register files are consistent with each other
before the write-back (the macro ged_consistent_registers()
specifies this consistency), then the two CPU instances must
be QED-consistent also after the write-back, independently
of the pipeline context. The CPU 1 instance is constrained
to start from a flushed-pipeline state S, and fetches only
NOPs in the time frames for ¢ > 1. A flushed-pipeline state
Srer s forced on the CPU 1 instance by letting it execute
only NOPs for as many time frames before time point ¢ as
there are pipeline stages. This results in a significant reduction
of proof complexity and excludes any false counterexample
to the property that can result from an inconsistent pipeline
register. The CPU 2 instance is left unconstrained to start from
a symbolic initial state and is allowed to execute an arbitrary
sequence of instructions for the time frames ¢ > 1. In this
computational model, the SAT solver compares the scenario 1,
where the Instruction Under Verification (IUV) is executed in
a flushed-pipeline context, with all scenarios 2 where the IUV
is executed in an arbitrary context including the ones where
bugs are activated and propagated.

C. Extending S*QED for single-instruction bugs

The S?QED property shown in Fig. 3 can detect all logic
bugs resulting in a QED-inconsistent state [11]. In other words,
the instruction execution is verified to be independent of the
program context or previously fetched and executed instruc-
tions. As a result, the property covers multiple-instruction
bugs. However, single-instruction bugs can be masked due to
the fact that “common-mode” bugs like a bug in the data path
of the ALU have the same effect on both CPU instances and
may not lead to a QED-inconsistent state.

In this paper, we extend the original S?’QED approach such
that it detects all logic bugs in a processor including single-
instruction bugs. With our new approach, a complete processor
verification can be achieved with substantially less manual
effort when compared to traditional C-IPC. This is possible
since S?’QED “automatically” explores all possible program
contexts so that only a much simplified property set is needed
that covers just the single-instruction bugs.

Instead of one S?QED property for the entire ISA, we
develop an extended S?QED property for each of the different
instruction classes such as “register-type”, “memory”, “control
flow”. The extended S?’QED property is shown in Fig. 4 for
register-type instructions in a 5-stage RISC processor. This is
denoted by the macro instr_register_type() in the assumption.
At time point ¢, the same instruction is fetched by both CPU
instances, 1 and 2. Just like in the original S>QED property we
assume that (i) CPU 1 starts from a flushed pipeline state, (ii) it
fetches only NOPs after the time point ¢, and (iii) the previous
instruction execution has resulted in a QED-consistent state.
The macro ready_for_next_instruction() describes the state
(cf. Fig. 4) of the CPU 1 and CPU 2 pipelines, when they are
ready for the next instruction.

Design, Automation And Test in Europe (DATE 2020)

At time point t,;,, both pipelines begin processing the TUV.
Because of pipelining, each processor may be ready to decode
the next instruction in the program already one clock cycle
later, at Zz« (if no stall occurs). In terms of executing the TUV,
the conceptual starting and ending states of the operation are
assumed at ¢, and ¢, even though the processing of the [UV
continues for several more clock cycles (until ¢y, + 1).

At time point ty; + 1, one clock cycle after the results of
an instruction execution are committed, the QED consistency
(macro ged_consistent_registers()) and the expected values of
the instruction execution (macro expected_value(funct_type @
t)) are checked. These checks ensure that any logic bug in a
processor is found by the new extended S?QED property.

The macro expected_value (funct_type @ t,,) checks the
correctness of results of the instruction execution in the CPU 1
instance, for the following reason: Since the CPU I instance
fetches NOPs before and after the time point ¢, the complex
instruction interleaving scenarios such as forwarding or control
transfers do not need to be considered. These scenarios are,
instead, covered by checking QED consistency between the
CPU instances. This leads to a simplification of the property
and its generation from an ISA model (cf. Sec. V). Also,
checking QED consistency ensures that the CPU?2 instance
completes with the same, expected results. The property shown
detects all logic bugs with respect to the execution of register
type instructions. Similarly, an S?’QED progerty is developed
for each instruction class of the ISA. The S"QED approach is
independent of the availability of formal specification.

IV. COMPLETENESS CHECK FOR C-S?QED

Since the S?’QED property set of the previous section does
not concern itself with analyzing all special contexts in which
an instruction can be running, the conventional completeness
check of C-IPC is bound to fail. In particular, it is the
case split test that fails. On the other hand, the reset test,
successor test and determination test do hold for the proposed
S2QED version of the property set if each property uniquely
determines the outputs and architectural state variables of
the processor. This must be ensured by the set of macros
expected_value(func_type). Since these checks can be applied
to our new approach in their conventional form [12], we do
not further detail them in this paper.

Next, we present an adaptation of the case split test to the
reasoning of the new formulation. We then prove that verifying
the S?QED properties under the adapted completeness check
is equivalent to C-IPC in terms of covering all logic bugs.

A. Case split test

An operation property P is a property written in the form of
an implication A = C, where the antecedent A is a set of
assumptions and the consequent C' is a set of commitments. An
assumption or a commitment is an LTL formula where the only
temporal operator allowed is X. Such a formula can be mapped
to a finite unrolling of a transition structure. In the following,
we use the notation next(A, 1) to denote a “temporal shift” of
the formula A by [clock cycles, i.e., next(A, 1) := X' A. This
adds a temporal offset [to all time points referred to in the
formula A.

We first consider the case split test for the property suite of
a general hardware design and then look at simplifications for
a processor pipeline. Let a set of important states be given by
the commitments {C;} of the properties { P;} for an arbitrary
design. Then, for every important state (given by a commit-
ment C'p) reached in an operation P it is checked whether the
disjunction of the assumptions {Aq; } of all successor proper-
ties (); completely covers the commitment Cp, i.e., for every

Design, Automation And Test in Europe (DATE 2020)

path starting in a substate of the important state C'p there exists
an operation property (2; whose assumption A describes the
path. Let {Ag,, Ag,,...} be the set of assumptions of the
successor properties, then the case split test checks whether

Cp — next((AQl V AQ2 V AQ3 \Y),lp) 2)

where [p is the length of the property P, i.e., the number of
clock cycles between the starting and the ending state of P.
The next operator aligns the starting state of property @; with
the ending state of property P;.

In a processor pipeline, the operation properties all be-
gin and end in the same conceptual state, referred to as
ready_for_next_instruction() in Fig. 1. In our formulation,
we have grouped instructions into properties according to
instruction classes, i.e., we have a total of n properties
to consider when the processor core supports n instruction
classes. Since there exists only a single conceptual state that
is reached in every operation, we only need to verify for every
property P; that its commitment C'p, is completely covered
by the assumptions of the possible successor properties. Let
{A3,, A%, AS,, -~} and {Af AL AL -+ be the as-
sumptions of the successor properties on the CPU 2 and CPU 1
instances, respectively. We need to prove:

Cp, — next(((Ah, NAY) V (Ag, NAB,)

3

\/(Abs/\A23)v"')’lPi))
Assuming that the S?QED property set holds on the computa-
tional model, it is proven that the result of every operation is
consistent between the two CPU instances, regardless of the
predecessor operations. Therefore, it is sufficient to prove the
case split test on one of the CPU instances. In other words,
in order to prove the case split test, every possible instruction
sequence is implicitly considered on the CPU 2 instance. The
case split test for SQED is reduced to:

CP,L—)’I’Le.ft((A%l\/A22\/A23\/"'),lpi) 4)

If this test passes, it means that for every possible instruction
sequence of the processor there exists a chain of properties that
is executed. This means that every (cycle-accurate) execution
trace of the processor can be partitioned into finite non-
overlapping segments of behavior such that each segment is
described by a property. In other words, every execution trace
is “covered” by a sequence of operation properties.

The case split test is easy to satisfy for a set of S?QED prop-
erties. For a 2processor that implements n instruction classes,
we have n S"QED properties. By ensuring the correctness of
the macros that capture the opcode of the instruction classes,
such as instr_register_type() in Fig. 4, the case split can be
easily proven.

B. Complete S?QED

Based on completeness checking with the S?’QED-adapted
case split test, we can formulate the following theorem.

Theorem 1. Given an S’QED property set V. =
{P1, P2, ,P,} in which P; is a property for an instruction
class, created for a given ISA, as described in Sec. III-C. If
the property set fulfills the completeness checks for S*QED,
then it detects all logic bugs in the ISA implementation of a
processor core.

Proof. Assume that there is a bug in the processor. If the
bug is a single-instruction bug, it means that there is an
erroneous instruction that produces a wrong result (even) if
it is executed in a flushed pipeline. Because the property set

529

Informal ISA

MetaRISC
Model I: Base instructions

Model I:: Multiplier extension
Model In: Atomic extension

Model Pi: Register type
Model P2: Branch type
Model Py: CSR type

—

MetaView Transformation (.p
——> 2 /=
instances ﬁm ﬁ
Model Vi) |Model V3|
iew Metamodel

Fig. 5. C-S>QED property generation flow

Model Vi: SVA view model
Model Va: ITL view Model

passes the case split test and the successor test, there exists
a single S?QED property targeting the instruction. Since the
property set passes the determination test, there exists a macro
expected_value(funct_type) which is called by the commit-
ment of the property and which verifies the computation result
of the instruction. According to this macro, the property fails
for the expected architectural state in the CPU 1 instance.

If the bug is a multiple-instruction bug, two cases have
to be distinguished: (1) The bug is activated in a flushed-
pipeline context. Then, the bug will be detected in the same
way as described above for the single-instruction bug. (2)
The bug is not activated in a flushed-pipeline context. Then,
there exists another program context that activates the bug.
Because the property set passes the case split test and the
successor test, there exists a unique sequence of operation
properties covering the program context, i.e., the sequence
of instructions in the pipeline. Hence, there exists an STQED
property that covers the program context in the CPU 2 instance
of the model and has the instruction exposing the bug as
the TUV. Because the property set passes the determination
test, the macro ged_consistent_registers() determines the full
architectural state including the state variables exposing the
bug. Since the bug is not activated in the CPU 1 instance,
it is detected as an inconsistency between CPU 1 and CPU?2
architectural states. O

In the following, S?QED fulfilling the completeness checks
is referred to as Complete S?QED (C-S*QED).

V. AUTOMATIC GENERATION OF C-S?QED PROPERTIES

Property development is considered as one of the major
hurdles to the widespread adoption of formal methods in
real-life designs. With the proposed C-S?QED approach, the
number of properties required to completely verify a processor
are effectively reduced to the number of instruction classes
supported in the processor. In addition, the C-S?QED proper-
ties together with the macros can be generated from a formal
ISA model. Automation ensures the correct-by-construction
paradigm, and increases the overall verification productivity.

At Infineon, an in-house automation framework based on
metamodeling is widely employed for code generation ap-
plications. Automatic generation of properties from abstract
specifications is one such application [14], which follows the
Model Driven Architecture®™ principle proposed by the Ob-
ject Management Group® [15]. The generation of C-S?’QED
properties is implemented following the model-driven flow
elaborated in [14]. The framework uses a subset of Uni-
fied Modeling Language (UML) class diagrams to represent
metamodel definitions. Python is used as the (generation)
language to automate the property generation. For efficiently
building the code generators for a given metamodel, the
metamodeling framework provides an extensive infrastructure
including APIs, API extensions, input/output plugins, GUI,
input readers, output writers, etc.

530

The generation flow is illustrated in Fig. 5. The uppermost
layer involves translating the informal ISA to a formal ISA
model. In this layer, high-level information such as system
configurations, e.g., support for multiply/division unit, and
intended behaviors, e.g., ADD instruction execution, are con-
sidered.

A metamodel, MetaRISC in Fig. 5, is created using a
UML class diagram to capture the basic structure of the
ISA. Each model instance of the MetaRISC metamodel is
a formal specification model of the ISA, which will be
implemented in hardware. A model instance is created with all
the instructions (and corresponding details) of the given ISA.
For example, RISC-V is a modular ISA and allows for adding
several extensions, e.g., support for multiplication/division,
atomic execution, etc., on top of the base instruction set. In
Fig. 5, Model I; is a formal specification model of the base
instruction set and Model I, is a formal specification model
of the multiplier extension. These model instances are created
manually using a GUI provided by the framework.

The main task of the intermediate layer is to transform the
specification model to property models. The transformation
script, which is manually written in Python, performs two
major tasks. First, it extracts the expected behavior of each
instruction class from the specification model and invokes the
APIs provided by the automation framework to facilitate the
generation of macros. Second, it creates a property model for
each instruction class in the specification model. During this
step, microarchitectural details are considered, such as pipeline
length and interface signals to the register file. Using the
APIs provided by the framework for the property metamodel
MetaProp, a property model similar to the one shown in Fig. 4
is written in Python.

The transformation in the bottom layer, metamodel
MetaView in Fig. 5, maps each property model to a cor-
responding view model and generates the property in the
specified target language, such as SVA.

As described in previous sections, the advantage of the
proposed C-S’QED approach results from the fact that the
creation of a complete set of properties is drastically sim-
plified. Without exploiting the contribution of this paper, the
above model-driven generation flow can also be used to create
a complete set of properties based on the classical C-IPC
approach. However, when compared to C-S?QED, the transfor-
mation script in the intermediate layer is more complex and
requires significantly more manual development effort. The
reason is that the macro generation needs to consider different
special scenarios such as forwarding, stalling, exception, etc.,
so that more microarchitectural details need to be considered in
the transformation script. The transformation script describes
a property model for each instruction, explicitly considering
interleaving of instructions. Although describing one property
model for one instruction class is possible when following the
C-IPC approach, the transformation script becomes even more
complex and the corresponding generated properties are hard
to read and difficult to debug. By contrast, the macro gener-
ation for C-S*QED is straightforward, as macros need to be
generated only for a flushed-pipeline context (cf. Sec. III-C).

VI. EXPERIMENTS

The effectiveness of C-S>?QED is demonstrated by verifying
a RISC-V processor implemented in an industrial SoC for
a safety-critical application. The RISC-V core implements
a Harvard architecture and supports the RV32I base integer
instruction set from the RISC-V ISA. The 5-stage pipelined
core has an in-order fetch unit, a 32-bit ALU, a configurable
multiply/division unit and an exception handler.

Design, Automation And Test in Europe (DATE 2020)

TABLE I
BUG DETECTION RESULTS
SIC S?QED C-S?QED

Finds single-instruction bugs yes no yes
Finds multiple-instruction bugs yes yes yes
Effort for base instr. set (person days) 15 2 5
Effort for new extension (person days) 5 1 1
Runtime (with bugs) < 30s < 60s < 30s
Runtime (without bugs) 27 min 6 min 18 min
CEX length (Jmin, max] instructions) [1, 5] [2, 5] [1, 5]

The processor core has been previously verified with a
complete set of properties generated using a model-driven flow
based on the one described in Sec. V. However, this verifi-
cation approach, called Spec Implemented Correctly (SIC) in
Table I, is based on conventional C-IPC [2], [12]. 14 logic
bugs comprising both single-instruction bugs and multiple-
instruction bugs were found during verification. In our ex-
periments for C-S?’QED, all these logic bug scenarios were
injected into the RTL. For property checking, we used the
commercial tool OneSpin 360 DV-Verify on an Intel® Xeon®
E5-2690 v3 @2.6GHz with 32 GB RAM.

All 14 logic bugs that were previously detected by the SIC
method are also detected by C-S?QED properties within 30's
of computation time. Additionally, two error scenarios were
detected by the C-S?QED properties. The reported errors are
activated in a flushed-pipeline context, in which the failing
properties identified the unnecessary stalling of the pipeline.
As the CPU1 instance is fetching NOPs before and after
the time point ¢, the results of the instruction (fetched at
t:) execution are expected at specific time points. Because
of this, any unnecessary stalls (which result in performance
loss) associated with any instruction class are identified by
the C-S?QED property set.

Table I summarizes the results from the C-S?QED ex-
periments (last column) and compares them with other ap-
proaches applied to verify the RISC-V core. Columns 1 and 2
correspond to SIC and the original S?QED method [11],
respectively. Rows 1 and 2 report on the categories of bugs the
different approaches were able to detect. Rows 3 and 4 show
the manual effort required to develop the verification setup
and the properties for the base integer instruction set and to
support the new ISA extension (e.g., mult/div instructions),
respectively. For C-S?QED the manual effort mainly consists
of developing the ISA model and the transformation scripts
in the generation framework. It should be noted that only
the transformation script for the property models is design-
dependent and the rest can be reused for other designs with
the same ISA. “Runtime” refers to the computation time spent
to detect a bug (row 5) or to prove its absence (row 6). In case
of a bug being reported by the formal tool, the length of the
counterexample (CEX) is also reported for each method.

These observations have been made in our experiments:

Observation 1: A complete set of C-S?QED properties can
detect all logic bugs in a processor irrespective of their context
in the program within a reasonable amount of time. The length
of the counterexample is of significant importance to identify
the root cause of a bug and denotes the number of instructions
that need to be executed to trigger a certain bug scenario.
C-S?QED significantly reduces the debugging time due to
short counterexamples. The minimum counterexample length
for an C-S?QED property is 1 instruction, when a single-
instruction bug is detected.

Observation 2: The verification sign-off in industrial flows
includes manual review of the property suite (4-eyes principle),

Design, Automation And Test in Europe (DATE 2020)

comparing it against the (often informal) specification. This
can be tedious for a conventional C-IPC approach like SIC. In
C-S?QED this review process is much simpler because the
properties themselves are simple and the special execution
scenarios are taken care of by S?QED.

Observation 3: C-S?’QED requires no modification in the
RTL code of the design and it has no restriction on the type of
instructions it can consider. Developing the C-S>QED property
for each instruction class is straightforward and, by employing
a generation flow, the manual effort for various extensions in
an ISA is drastically reduced.

VII. CONCLUSION

This paper has shown that S’QED and model-driven gener-
ation of properties can complement each other nicely, leading
to a highly automated approach to complete processor verifica-
tion. By merit of the proposed computational model, the veri-
fication engineer is relieved from analyzing microarchitectural
details of instruction execution. C-S?QED is able to capture
both single and multiple instruction bugs and fulfills the well-
established completeness criterion provided by C-IPC. Our
current approach is applicable to the verification of medium
complexity in-order processor cores. Extending the approach
to out-of-order processor cores and uncore components, such
as memory controller, peripherals, etc., is subject to future
work.

REFERENCES

[1] J. Bormann and H. Busch, “Verfahren zur Bestimmung der Giite einer
Menge von Eigenschaften (Method for determining the quality of a set
of properties),” European Patent Application, EP1764715, 09 2005.

[2] J. Bormann, S. Beyer, A. Maggiore, M. Siegel, S. Skalberg, T. Black-
more, and F. Bruno, “Complete formal verification of TriCore2 and other
processors,” in Design & Verification Conference (DVCon), 2007.

[3] R. B. Jones, D. L. Dill, and J. R. Burch, “Efficient validity checking
for processor verification,” in Proc. of IEEE/ACM Intl. Conference on
Computer-aided Design (ICCAD), 1995, pp. 2-6.

[4] W. Damm, A. Pnueli, and S. Ruah, “Herbrand automata for hardware
verification,” in Proc. of Intl. Conference on Concurrency Theory, 1998,
pp. 67-83.

[5] S. Berezin, A. Biere, E. M. Clarke, and Y. Zhu, “Combining symbolic
model checking with uninterpreted functions for out-of-order proces-
sor verification,” in Proc. of Intl. Conference on Formal Methods in
Computer-Aided Design (FMCAD), 1998, pp. 369-386.

[6] A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen,
A. Pathirane, O. Shepherd, P. Vrabel, and A. Zaidi, “End-to-end ver-
ification of ARM ® processors with ISA-Formal,” in Proceedings of
28th International Conference on Computer Aided Verification, 2016.

[7] U. Kiihne, S. Beyer, J. Bormann, and J. Barstow, “Automated formal
verification of processors based on architectural models,” in Proc. of
Conference on Formal Methods in Computer-Aided Design (FMCAD),
2010, pp. 129-136.

[8] R. Baranowski and M. Trunzer, “Complete formal verification of a fam-
ily of automotive DSPs,” in Proc. Design and Verification Conference
Europe (DVCON-Europe), 2016.

[9] E. Singh, D. Lin, C. Barrett, and S. Mitra, “Logic bug detection and

localization using symbolic quick error detection,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 2018.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking

using satisfiability solving,” Form. Methods Syst. Des., vol. 19, no. 1,

pp. 7-34, Jul. 2001.

M. R. Fadiheh, J. Urdahl, S. S. Nuthakki, S. Mitra, C. Barrett, D. Stoffel,

and W. Kunz, “Symbolic quick error detection using symbolic initial

state for pre-silicon verification,” in Design, Automation & Test in

Europe Conference (DATE). 1EEE, 2018, pp. 55-60.

[12] J. Urdahl, D. Stoffel, and W. Kunz, “Path predicate abstraction for sound

system-level models of RT-level circuit designs,” IEEE Transactions On

Computer-Aided Design of Integrated Circuits and Systems (TCAD),

vol. 33, no. 2, pp. 291-304, Feb. 2014.

K. Claessen, “A coverage analysis for safety property lists,” in Proc.

International Conference on Formal Methods in Computer-Aided Design

[10]

[11]

[13]

(FMCAD). IEEE Computer Society, 2007, pp. 139-145.

[14] K. Devarajegowda and W. Ecker, “Meta-model based automation of
properties for pre-silicon verification,” in IFIP/IEEE Intl. Conference
on Very Large Scale Integration (VLSI-SoC), 2018, pp. 231-236.

[15] J. M. Siegel, “Model driven architecture (mda): The
mda guide rev 2.0,” june 2014. [Online]. Available:
https://www.omg.org/mda/presentations.htm

531

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

