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Abstract—One of the challenges stochastic computing (SC) faces
is the high cost of stochastic number generators (SNG). A solution
to it is inserting D flip-flops (DFFs) into the circuit. However,
the accuracy of the stochastic circuits would be affected and it is
crucial to capture it. In this work, we propose an efficient method
to analyze the accuracy of stochastic circuits with DFFs inserted.
Furthermore, given the importance of multiplication, we apply
this method to analyze stochastic multiplier with DFFs inserted.
Several interesting claims are obtained about the use of probability
conversion circuits. For example, using weighted binary generator
is more accurate than using comparator. The experimental results
show the correctness of the proposed method and the claims.
Furthermore, the proposed method is up to 560× faster than the
simulation-based method.

I. INTRODUCTION

As an unconventional computing paradigm, stochastic com-
puting (SC) has drawn more attention recently. It uses digital
circuits to compute on stochastic bit streams (SBSs), which
encode values through the ratios of 1s in the streams [1].
Compared to the conventional binary computing, SC has sig-
nificant advantages in circuit area and fault tolerance due to
its probabilistic nature. For example, with a single AND gate,
it can implement multiplication. Such a circuit taking SBSs as
inputs and outputs is called an SC core in this paper. With the
features of low circuit area and strong fault tolerance, it has
been successfully applied in image processing [2], digital filter
design [3], and neural network [4].

SC needs a component called stochastic number generators
(SNGs) to convert a binary number into an SBS as shown in
Fig. 1. Generally, SNG is composed of a random number source
(RNS) and a probability conversion circuit (PCC) [5]. RNS
generates random numbers R and is usually implemented by
a linear feedback shift register (LFSR). PCC converts an input
binary number X into an SBS with the random numbers R.
A typical choice of PCC is a comparator (CMP). In addition,
there are some other PCCs, such as weighted binary generator
(WBG) [6].
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Fig. 1: The general architecture of an SNG [7].

In general, SNGs occupy most of the area of an SC circuit.
Therefore, in order to reduce the area of an SC circuit, it
is vital to reduce the area of SNGs. Many strategies have

been proposed, such as sharing RNSs among SNGs [3] and
sharing PCCs among SNGs [7]. In this work, we focus on
another effective way, inserting D flip-flops (DFFs) into an
SC circuit [1]. This is illustrated in Fig. 2. Fig. 2(a) shows
a basic SC multiplier that uses two SNGs to generate two
independent SBSs. However, we can reduce one costly RNS
by inserting a few DFFs, as shown in Fig. 2(b). For example,
with 1 DFF inserted, the area of the SC multiplier can be
reduced by 28.5% [8]. In terms of the expectation of the
value encoded by the output SBS, the circuit still correctly
implements multiplication. This is because the random binary
numbers generated by the RNS at different clock cycles are
independent. Therefore, at each clock cycle, the two input bits
of the AND gate are independent and hence, the probability of
each bit in the output stream still equals the product of the two
input probabilities.
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Fig. 2: (a) The basic SC multiplier with 2 independent SNGs; (b) The
SC multiplier with DFF insertion.

Nevertheless, DFF insertion affects the computation accuracy,
because output bits at different clock cycles become correlated.
For example, for the SC multiplier in Fig. 2(b), with the bit-
width of the input binary numbers as 8 and the length of SBS as
256, when only 1 DFF is inserted, the mean square error (MSE)
of the output is 6.99 × 10−4, higher than that of the basic SC
multiplier, which is 5.49×10−4. Therefore, it is very important
to get a better understanding on the trade-off between hardware
cost reduction and accuracy reduction for the DFF insertion
technique, which can help us design SC circuits with a proper
balance among accuracy, area, and energy consumption [9].
Thus, it is critical to analyze the accuracy of an SC circuit
with DFF insertion. In the following, we refer to such a circuit
as SC-DFF for short.

A few recent works considered analyzing the accuracy of
SC-DFFs. Chen and Hayes analyzed the accuracy of SC-DFFs
for power-form expressions [10]. Neugebauer et al. further
proposed a method based on time-frame expansion to analyze
the accuracy of arbitrary SC-DFFs [9]. However, this method
fails to consider the impact of PCCs to the accuracy of SC-
DFF, which we find to be an important factor that cannot be
ignored. Furthermore, it relies on existing symbolic algebra
systems to generate the accuracy expression, which may miss
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the opportunity of applying some domain-specific properties to
speed up the computation.

To solve the above challenges, in this work, we propose a
novel systematic method to analyze the accuracy of SC-DFFs.
Since multiplication is an important operation in many appli-
cations, we further apply this method to analyze the stochastic
multiplier shown in Fig. 2(b), which we refer to as MUL-DFF.
We obtain several interesting claims. For example, MUL-DFF
using CMPs as the PCCs is less accurate than that using WBGs.

In summary, we make the following contributions.
• We propose a method to analyze the accuracy of SC-DFFs.

Our method exploits a few mathematical properties of SC-
DFF to accelerate the analysis (see Section II).

• For the first time, we reveal that PCCs can affect the
accuracy of SC-DFFs and our proposed method can char-
acterize their impact (see Sections II-C and III).

• We apply our method to analyze the MUL-DFF and obtain
some interesting claims (see Section III).

II. ACCURACY ANALYSIS METHOD FOR SC-DFF
In this section, we present a systematic method for analyzing

the accuracy of SC-DFFs.

A. Model, Assumptions, and Notations
The general model of the SC-DFF we consider in this work

is shown in Fig. 3. We make the following assumptions.
1) The circuit has just one RNS.
2) The PCCs of the circuit are all of the same type.
3) Before DFFs are inserted, the SC core is a combinational

circuit.
4) The random binary numbers produced by the RNS at

different clock cycles are independent and uniformly dis-
tributed.
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Fig. 3: General SC-DFF model.

Assumption 1 leads to the minimum RNS cost, which is usu-
ally desired. Assumption 2 follows the current design practice
of an SC circuit. Furthermore, by making all the PCCs the
same, it is possible to share some common parts of them and
reduce the circuit area [7]. In general, an SC core can either
be combinational or sequential. However, combinational design
covers a widely-used class of SC core [11], [12]. Thus, we focus
on combinational SC core here and we have Assumption 3.
Assumption 4 is a mathematical model to simplify our analysis.
Given Assumption 4, we have:

Claim 1 The bits of any input SBS’s at different clock cycles
are independent. Moreover, the bits of the same input SBS at dif-
ferent clock cycles are independent and identically distributed.

The following notations are used in the paper.

• We assume the number of binary inputs of an SC-DFF is
K and they are X1, . . . , XK (see Fig. 3). The bit-width of
each binary input is m. We denote the jth (0 ≤ j ≤ m−1)
least significant bit of Xi (1 ≤ i ≤ K) as Xi,j .

• We denote the random binary number produced by the
RNS at clock cycle i as R[i], which is also with m bits.

• We assume the SBS length is n. We denote the input SBS
produced by the PCC over Xi as xi and the output SBS
as z. The jth bits in the streams xi and z are denoted as
xi[j] and z[j], respectively.

• We use Pr(A) to denote the probability of an event A.
• We let pxi = Xi/2

m. We have Pr(xi[j] = 1) = pxi .
• We denote the accurate output as f and the output by the

SC circuit as Z . The value f is known. By the encoding
rule of SC, we have

Z =
1

n

n∑
i=1

z[i]. (1)

Since z[i]’s are random, the value Z is also a random variable.
Thus, the output error Z − f is also a random variable. To
capture how large it is on average, we consider the mean square
error (MSE), i.e., E[(Z − f)2]. We have

E[(Z − f)2] = E[Z2]− 2E[Z]f + f2. (2)

Given Eq. (2), in order to calculate the MSE, we need to
obtain E[Z] and E[Z2]. In the following, we will first show
how to derive the expression for the output Z . Then, we will
show how to calculate E[Z] and E[Z2].

B. Output Expression of an SC-DFF

For later calculation of E[Z] and E[Z2], we need to represent
Z as an arithmetic expression of the input bits xj [k]’s. By
Eq. (1), in order to obtain the arithmetic expression, we only
need to represent z[i]’s as an arithmetic expression of xj [k]’s.

We apply the method proposed in [8] to obtain the expression
for a z[i]. The method applies the arithmetic function of each
gate in the circuit in a topological sorting order. The arithmetic
function for a logic gate can be easily derived from the truth
table of the gate. For example, the function for an inverter is
z(x) = 1−x, while that for a 2-input AND gate is z(x, y) = xy.
Furthermore, an SC-DFF has some DFFs inserted. Each time a
DFF is visited, we should subtract all clock cycles in the input
expression by 1. Note that since xj [i] can only be 0 or 1, we
also have (xj [i])

k = xj [i]. By applying these rules, we can
eventually derive the expression of Z .
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Fig. 4: A simple example of SC-DFF.

Example 1 Consider the circuit shown in Fig. 4, where w1

and w2 indicate that there are w1 and w2 DFFs inserted at the
corresponding places. By applying the arithmetic function for
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each gate in a topological sorting order and considering the
effect of DFFs, we can obtain
s1[i] = x2[i− w1], s2[i] = x3[i− w2],

y1[i] = 1− x1[i], y2[i] = s1[i]s2[i] = x2[i− w1]x3[i− w2],

z[i] = y1[i]y2[i] = (1− x1[i])x2[i− w1]x3[i− w2]

= x2[i− w1]x3[i− w2]− x1[i]x2[i− w1]x3[i− w2].

C. Expectation of the Output Value
In this section, we show how to calculate E[Z]. Given Eq. (1),

we have

E[Z] =
1

n

n∑
i=1

E[z[i]]. (3)

First, based on Claim 1, we can prove that the probability
mass distributions of the random variables z[1] and z[i] are the
same. Thus, we have the following claim.

Claim 2 For any i, we have E[z[i]] = E[z[1]].

Combining the above claim with Eq. (3), we have
E[Z] = E[z[i]] = E[z[1]]. (4)

Next, we show how to calculate E[z[1]].
As Example 1 shows, z[1] is a sum of products. Assume

z[1] consists of M products H1, . . . , HM . By the linearity of
expectation, we have E[z[1]] =

∑M
i=1 E[Hi]. Thus, the problem

of obtaining E[z[1]] reduces to obtaining each E[Hi]. Next, we
show how to calculate it.

Assume a product term H can be represented as H =
cy1[v1]y2[v2] · · · yr[vr], where c is a constant coefficient and
for all 1 ≤ i ≤ r, yi ∈ {x1, . . . , xK} and vi indicates the
clock cycle. We call yi[vi] a factor of the product. We partition
all the factors yi[vi]’s into a number of subsets based on the
clock cycles of the factors. Assume there are L distinct clock
cycles among all the factors. Then, we will obtain L subsets
S1, . . . , SL. We denote the number of factors in subset Si as
di and the kth factor in Si as Sk

i . Given that the factors with
different clock cycles are independent, we have

E[H] = c

L∏
i=1

E[S1
i S

2
i · · ·Sdi

i ]. (5)

Example 2 Consider z[1] derived in Example 1. Assume that
w1 = 0 and w2 = 1. Then, we have z[1] = x2[1]x3[0] −
x1[1]x2[1]x3[0]. It includes two products, H1 = x2[1]x3[0] and
H2 = −x1[1]x2[1]x3[0]. Then, E[z[1]] = E[H1] + E[H2].

We further consider calculating E[H2] as an example.
H2 has 3 factors. They can be partitioned into 2 subsets,
S1 = {x1[1], x2[1]} and S2 = {x3[0]}. Given that the bits
at different clock cycles are independent, we have E[H2] =
−E[x1[1]x2[1]]E[x3[0]].

Given Eq. (5), the problem reduces to calculating each term
E[S1

i S
2
i · · ·Sdi

i ]. Since each factor Sk
i is either 0 or 1, the

product S1
i S

2
i · · ·Sdi

i is either 0 or 1. Thus, we have

E[S1
i S

2
i · · ·Sdi

i ] = Pr(S1
i S

2
i · · ·Sdi

i = 1).

Assume the clock cycle of the factor Sk
i (1 ≤ k ≤ di) is

b and its corresponding input binary number is Qk
i . In other

words, the random bit Sk
i is produced by the PCC over the

random number R[b] and the input binary number Qk
i . Based

on the choice of the PCCs, we can further obtain the value

Pr(S1
i S

2
i · · ·Sdi

i = 1). We consider two types of PCCs in this
paper, CMP and WBG.

CMP compares a random binary number R generated by the
RNS with an input binary number X . It outputs a 1 if R < X
and 0 otherwise. With CMP as the PCC, S1

i S
2
i · · ·Sdi

i = 1
if and only if R[b] is less than all Qk

i ’s, which means R[b] <
min{Q1

i , Q
2
i , . . . , Q

di
i }. Given that R[b] is uniformly distributed

in the set {0, 1, . . . , 2m − 1}, we can obtain that
Pr(S1

i · · ·Sdi
i = 1) = Pr(R[b] < min{Q1

i , . . . , Q
di
i })

= min

{
Q1

i

2m
,
Q2

i

2m
, . . . ,

Qdi
i

2m

}
.

(6)

WBG is another type of PCC. It first transforms the random
binary number R produced by the RNS into m random bits of
probabilities 1

2 ,
1
22 , . . . ,

1
2m to be a 1 and then applies a tree of

AND and OR gates on these bits and the input binary number
X to produce the final target probability [6]. In our case, for
each 1 ≤ k ≤ di, the bit Sk

i is produced by a WBG over the
random binary number R[b] and the input binary number Qk

i .
We denote the jth (0 ≤ j ≤ m− 1) least significant bit of R[b]
and Qk

i as Rj [b] and Qk
i,j , respectively. Then, by the Boolean

function of WBG, we have

Sk
i = (Rm−1[b] ∧Qk

i,m−1) ∨ (Rm−1[b] ∧Rm−2[b] ∧Qk
i,m−2)

∨ · · · ∨ (Rm−1[b] ∧Rm−2[b] ∧ · · · ∧R1[b] ∧R0[b] ∧Qk
i,0),

where ∧ and ∨ represent logical AND and OR, respectively.
By the above equation, we can further obtain

S1
i · · ·Sdi

i = (Rm−1[b] ∧Q1
i,m−1 ∧Q2

i,m−1 ∧ · · · ∧Qdi
i,m−1)

∨ (Rm−1[b] ∧Rm−2[b] ∧Q1
i,m−2 ∧Q2

i,m−2 ∧ · · · ∧Qdi
i,m−2)

∨ · · ·
∨ (Rm−1[b] ∧ · · · ∧R1[b] ∧R0[b] ∧Q1

i,0 ∧Q2
i,0 ∧ · · · ∧Qdi

i,0).

Since the random bits R0[b], . . . , Rm−1[b] are independent
and have probability 0.5 to be a 1, we can further derive that

Pr(S1
i · · ·Sdi

i = 1) =
1

2
Q1

i,m−1Q
2
i,m−1 · · ·Qdi

i,m−1

+
1

22
Q1

i,m−2 · · ·Qdi
i,m−2 + · · ·+ 1

2m
Q1

i,0 · · ·Qdi
i,0.

(7)

From Eqs. (6) and (7), it is obvious that Pr(S1
i · · ·Sdi

i = 1)
is affected by the PCC choice. Therefore, E[Z] is also affected
by it. Since the MSE calculation depends on E[Z], we can
conclude that the MSE of an SC-DFF is affected by the PCC
choice. An concrete example on this will be shown in Section III
using the MUL-DFF.

D. Expectation of the Output Square

In this section, we will show how to calculate E[Z2]. Given
that E[Z2] = 1

n2E[(nZ)2], we focus on calculating E[(nZ)2].
By Eq. (1), we have

E[(nZ)2] = E

⎡
⎣ n∑

i=1

n∑
j=1

z[i]z[j]

⎤
⎦ =

n∑
i=1

n∑
j=1

E [z[i]z[j]] .

The amount of computation by the above equation is Θ(n2).
Next, we derive a more efficient way to compute E[(nZ)2]. By
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reorganizing the above double sum diagonally and observing
that E[z[i]z[j]] = E[z[j]z[i]], we further have

E[(nZ)2] =

n∑
i=1

E[z[i]2] + 2

n−1∑
d=1

n−d∑
i=1

E[z[i]z[i+ d]]. (8)

Given that z[i] is either 0 or 1, we have z[i]2 = z[i]. Combining
this with Eq. (3), we can simplify the first term in Eq. (8) as

n∑
i=1

E[z[i]2] =

n∑
i=1

E[z[i]] = nE[Z]. (9)

To calculate the second term in Eq. (8), we first have the
following claim based on Claim 1.

Claim 3 For any 1 ≤ d ≤ n− 1 and 2 ≤ i ≤ n− d, we have
E[z[1]z[1 + d]] = E[z[i]z[i+ d]].

By Claim 3, the second term in Eq. (8) can be simplified as

2

n−1∑
d=1

n−d∑
i=1

E[z[i]z[i+ d]] = 2

n−1∑
d=1

(n− d)E[z[1]z[1 + d]].

Assume that the maximum number of DFFs along any path
from an input to the output of the given SC-DFF is t ≥ 0. It
can be proved that when d > t, the random variables z[1] and
z[1 + d] are independent. Combining this fact with Eq. (4), we
have the following claim.

Claim 4 For any t < d < n, E[z[1]z[1 + d]] = E[Z]2.

By Claim 4, the second term in Eq. (8) can be further
simplified as

2

n−1∑

d=1

n−d∑

i=1

E[z[i]z[i+ d]] = 2

t∑

d=1

(n− d)E[z[1]z[1 + d]]

+ (n− t)(n− t− 1)E[Z]2.

(10)

Given Eqs. (9) and (10), we can finally reduce Eq. (8) to
E[(nZ)2] = nE[Z] + (n− t)(n− t− 1)E[Z]2

+ 2

t∑
d=1

(n− d)E[z[1]z[1 + d]].
(11)

In order to eventually obtain E[(nZ)2], we only need to
obtain E[z[1]z[1 + d]] for d = 1, . . . , t. We define s[1] =
z[1]z[1 + d]. Then, we can just apply the method described
in Section II-C for obtaining E[z[1]] to obtain E[s[1]], which
gives E[z[1]z[1 + d]].

Typically, in order to minimize the circuit area, the value t
is much less than the SBS length n. From Eq. (11), we can
see that by using the properties specified in Claims 3 and 4, we
significantly reduce the amount of computation to get E[(nZ)2],
i.e., from a function quadratic on n to one independent of n.

E. The Accuracy Analysis Flow

In this section, we summarize the flow of the accuracy
analysis method for a general SC-DFF as follows.

1) Derive the expression for the output Z by the method
described in Section II-B.

2) Calculate E[Z] by the method described in Section II-C.
3) Calculate E[Z2] by the method described in Section II-D.
4) Obtain the MSE of the SC-DFF by Eq. (2).

III. APPLICATION: ACCURACY ANALYSIS FOR MUL-DFF

In this section, as an application, we will apply the proposed
accuracy analysis method to analyze the accuracy of the MUL-
DFF shown in Fig. 2(b). We assume w ≥ 1 DFFs are inserted
at the second input of the AND gate. The same notations used
in Section II are adopted.

A. Accuracy Analysis

For the MUL-DFF, we have z[i] = x1[i]x2[i−w], for any i.
Then, based on Eq. (1), the expression for the output Z is

Z =
1

n

n∑
i=1

z[i] =
1

n

n∑
i=1

x1[i]x2[i− w]. (12)

We now derive E[Z]. By Eq. (4), E[Z] = E[z[1]] =
E[x1[1]x2[1− w]]. Since w ≥ 1, we further have

E[Z] = E[x1[1]]E[x2[1− w]] = px1px2 . (13)
Thus, the expectation of the output of the MUL-DFF equals the
expected value, the product of the two input probabilities.

We now derive E[Z2]. By the procedure shown in Sec-
tion II-D, we first derive E[(nZ)2] by Eq. (11). The value t
in Eq. (11) is the maximum number of DFFs along any path
from an input to the output of the MUL-DFF. Clearly, t = w.
Thus, we have

E[(nZ)2] = npx1px2 + (n− w)(n− w − 1)p2x1
p2x2

+ 2

w∑

d=1

(n− d)E[x1[1]x2[1− w]x1[1 + d]x2[1 + d− w]].
(14)

The remaining problem is to obtain E[x1[1]x2[1−w]x1[1 +
d]x2[1+d−w]] for any 1 ≤ d ≤ w. As we stated in Section II-D,
this can be obtained by the method shown in Section II-C. For
any 1 ≤ d < w, we have 1−w < 1+d−w < 1 < 1+d. Thus,
the four factors x1[1], x2[1−w], x1[1 + d], and x2[1 + d−w]
have different clock cycles and they are independent. Therefore,

E[x1[1]x2[1− w]x1[1 + d]x2[1 + d− w]] = p2x1
p2x2

. (15)

When d = w, we have 1−w < 1+d−w = 1 < 1+d. Thus,
the four factors can be partitioned into three subsets of different
clock cycles, {x2[1 − w]}, {x1[1 + d]}, and {x1[1], x2[1]}. In
this case, we have

E[x1[1]x2[1− w]x1[1 + d]x2[1 + d− w]]

= E[x2[1− w]]E[x1[1 + d]]E[x1[1]x2[1]]

= px1px2Pr(x1[1]x2[1] = 1).

(16)

By Eqs. (14), (15), and (16), we can get
E[(nZ)2] = npx1

px2
+ (n2 − 3n+ 2w)p2x1

p2x2

+ 2(n− w)(px1
px2

Pr(x1[1]x2[1] = 1)).
(17)

Note that E[Z2] = 1
n2E[(nZ)2]. For MUL-DFF, the accurate

output is f = px1
px2

. By Eqs. (2), (13), and (17), the MSE of
the MUL-DFF can be eventually derived as

MSE =
1

n
(px1

px2
)(1− px1

px2
)

+
2(n− w)

n2
px1px2(Pr(x1[1]x2[1] = 1)− px1px2).

(18)

As shown in Section II-C, the value Pr(x1[1]x2[1] = 1) is
determined by the choice of the PCCs. We will further evaluate
the effect of the PCCs on the MSE in the next section.
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B. Claims for the Accuracy of MUL-DFF
In this section, we derive several claims from the MSE

expression for MUL-DFF shown in Eq. (18).
We use the MSE of a basic SC multiplier, which is shown

in Fig. 2(a), as the reference. For this multiplier, the two input
SBSs to the AND gate are generated by two independent SNGs.
Its MSE can be calculated as

MSE =
1

n
(px1px2)(1− px1px2). (19)

Comparing Eq. (19) with Eq. (18), we can see that with DFFs
inserted, the MSE of the MUL-DFF is increased by

Δ =
2(n− w)

n2
px1px2(Pr(x1[1]x2[1] = 1)− px1px2). (20)

Clearly, Δ decreases with the number of inserted DFFs w.
Furthermore, since Pr(x1[1]x2[1] = 1) is affected by the PCC
choice, as stated in Section II-C, Δ is also affected by it. We
further consider two PCC choices, CMP and WBG.

When PCCs are CMP, by Eq. (6), we have Pr(x1[1]x2[1] =
1) = min{px1 , px2}. It is easy to see that min{px1 , px2} ≥
px1

px2
. Thus, by Eq. (20), we have Δ ≥ 0. We can conclude

the following claim.

Claim 5 For any inputs X1 and X2, the output MSE of an
MUL-DFF with CMP as the PCCs is no less than that of a
basic SC multiplier.

When PCCs are WBG, by Eq. (7), we have

Pr(x1[1]x2[1] = 1) =

m∑
i=1

1

2i
X1,m−iX2,m−i. (21)

Given Eq. (21), we can see that for some input binary
numbers X1 > 0 and X2 > 0, it is possible that P (x1[1]x2[1] =
1) = 0. For example, consider m = 3, X1 = (011)2 > 0,
X2 = (100)2 > 0. Then, by Eq. (21), we have Pr(x1[1]x2[1] =
1) = 0. For this pair of X1 and X2, since px1 = X1/2

m > 0
and px2

= X2/2
m > 0, we have px1

px2
> 0. Thus, by Eq. (20),

we have Δ < 0. Therefore, we have the following claim.

Claim 6 For some inputs X1 and X2, the output MSE of an
MUL-DFF with WBG as the PCCs is less than that of a basic
SC multiplier.

This is a surprising result. It indicates that performing mul-
tiplication with an MUL-DFF that uses WBG as the PCC, the
accuracy sometimes can be improved.

Finally, we compare the MSEs between the MUL-DFF using
CMP as the PCCs and that using WBG as the PCCs. To make
distinction, we denote the Pr(x1[1]x2[1] = 1) value for the
former and the latter as PCMP and PWBG, respectively.

For all 0 ≤ i ≤ m − 1, since X1,i, X2,i ∈ {0, 1}, we have
X1,iX2,i ≤ X1,i. Thus, by Eq. (21), we have

PWBG =

m∑
i=1

1

2i
X1,m−iX2,m−i ≤

m∑
i=1

1

2i
X1,m−i = px1

.

Similarly, we have PWBG ≤ px2
. Since PCMP =

min{px1
, px2

}, we can further obtain that
PWBG ≤ min{px1

, px2
} = PCMP . (22)

By Eqs. (18) and (22), we can obtain the following claim.

Claim 7 For any inputs X1 and X2, the output MSE of an
MUL-DFF with WBG as the PCCs is no more than that of an
MUL-DFF using CMP as the PCCs.

This is another surprising result, which shows that using
WBG as the PCCs has better accuracy than using CMP as the
PCCs for MUL-DFFs.

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results to verify
the correctness and efficiency of the proposed accuracy analysis
method and the correctness of several claims on MUL-DFF
described in Section III-B. We implemented the algorithms
in C++. All the experiments were tested on a computer with
2.50GHz CPU and 8GB RAM. We used the random number
function in C++ to simulate the RNS. In the following, we
call our method the analysis method. In order to verify the
correctness of the analysis method, we compared it with the
simulation-based method. Since MSE is a statistical value, to
obtain the output MSE for a set of inputs, the simulation
method repeats the basic simulation of the SC-DFF for that
set of inputs N times and obtains the MSE as 1

N

∑N
i=1 e

2
i ,

where ei is the error of the i-th simulation. According to our
experiments, which is omitted here due to space limitation,
when simulation number N is less than 1000, the MSE obtained
by the simulation method has a large error over the true MSE.
Therefore, in our experiments, we chose N as 1000.

A. Correctness of the Proposed Method on General SC-DFFs

In this section, we verify the correctness of the proposed
analysis method for general SC-DFFs. We tested on 6 circuits
from [13], which implement arithmetic functions sin(x), cos(x),
tanh(x), log(1 + x), e−x, and sigmoid(x). To reduce the
number of gate types we need to consider, the SC core of each
circuit was transformed into an AND-inverter graph (AIG) by
ABC [14]. Both the analysis and the simulation methods were
run on the AIGs. The bit-width of the input binary numbers was
set as 7. We chose 6 different SBS lengths in our experiments,
which are 32, 64, 128, 256, 512, and 1024. For each circuit
and each SBS length, we chose 1000 different sets of input
probabilities and averaged the MSE values of these sets to derive
the final result for each method.

Fig. 5 shows the experimental results for the SC-DFFs with
CMP as the PCCs. The figure plots the average MSEs obtained
from the proposed analysis method and the simulation method
for different circuits and SBS lengths. As the figure shows, the
results obtained by the analysis method and those obtained by
the simulation method are very close, which verifies the cor-
rectness of the proposed analysis method. Similar conclusions
can be obtained when the PCCs are WBG.
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Fig. 5: The MSEs of the SC-DFFs using comparator as the PCCs.
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B. Efficiency of the Proposed Method on General SC-DFFs
In this section, we compare the runtimes of the proposed

analysis method and the simulation method. The experimental
setup is same as that in Section IV-A. For a fair comparison,
we also optimized the simulation method by implementing it
using bit operations.

We chose CMP as the PCCs. Figs. 6(a) and (b) show the
average runtimes of the proposed analysis method and the
simulation method, respectively, for each circuit and each SBS
length. We can see that the runtime of the analysis method
is far less than that of the simulation method. For example,
for obtaining the MSE of sin(x) with n = 1024, the proposed
method is 560× faster than the simulation method. Moreover, as
shown in Fig. 6(a), the runtime of the analysis method changes
little with the SBS length. In contrast, as shown in Fig. 6(b),
the runtime of the simulation method increases exponentially
with the logarithm of the SBS length. This is expected, since
the SBS length is just a parameter in the analysis method, while
the runtime of the simulation method is proportional to the SBS
length. Similar conclusions can be obtained when the PCCs are
WBG.
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Fig. 6: The runtime of the proposed analysis method (a) and the
simulation method (b).

C. Experimental Results on MUL-DFF
In this section, we verify the claims for MUL-DFF described

in Section III-B. We chose the number of inserted DFFs as
1. We considered two choices of PCCs, CMP and WBG. We
chose 4 products of input probabilities, which are 0.1 × 0.2,
0.3×0.8, 0.8×0.2, and 0.8×0.9. They represent various cases
where a small or a large probability multiplies another small or
a large probability. As a reference, we also considered a basic
SC multiplier with CMP as the PCCs. We chose the bit-width
of the input binary numbers as 10 and the bit stream length as
1024. The MSE comparison for the proposed analysis method
and the simulation method and for various SC multipliers is
shown in Fig. 7. In the figure, CMP and WBG refer to the
MUL-DFFs with the PCCs implemented by CMP and WBG,
respectively, while BSCM refers to the basic SC multiplier.

As shown in the figure, each MSE value calculated by the
analysis method is close to the corresponding value obtained
by the simulation method. This again verifies the correctness
of the proposed analysis method. Each MSE of the MUL-DFF
with CMP as the PCCs is neither less than the corresponding
value of the basic SC multiplier, nor less than the corresponding
value of the MUL-DFF with WBG as the PCCs. This verifies
the correctness of Claims 5 and 7. For the input probability
products 0.8 × 0.2 and 0.8 × 0.9, we can also see that the
MSE of the MUL-DFF with WBG as the PCCs is less than the

corresponding value of the basic SC multiplier. This verifies the
correctness of Claim 6.

Fig. 7: The MSE comparison for the proposed analysis method and the
simulation method and for the MUL-DFFs and the basic SC multiplier.

V. CONCLUSION

In this paper, we proposed a systematic method to analyze
the accuracy of stochastic circuits with DFF insertion. As an
important application, we analyzed the accuracy of the stochas-
tic multiplier with DFF insertion and derive some interesting
claims. Our experimental results verified the correctness of the
proposed method and the significant runtime efficiency over
the traditional simulation-based method. Besides, one important
advantage of this method is that it gives an analytical formula
on the accuracy. By knowing this, it is possible to further
derive some general conclusions, as it is done for the MUL-
DFF case in this study. The limitation of this work is that it
assumes that the random binary numbers generated by the RNS
at different cycles are independent and uniformly distributed.
This is not strictly true for some widely-used pseudo-random
number sources (PRNSs), such as linear feedback shift registers.
In our future work, we will consider how to analyze the accuracy
for SC-DFFs using these PRNSs.
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