
Scaling up Network Centrality Computations*

Alexander van der Grinten

Department of Computer Science
Humboldt-Universität zu Berlin

Berlin, Germany

avdgrinten @ hu-berlin.de

Henning Meyerhenke

Department of Computer Science
Humboldt-Universität zu Berlin

Berlin, Germany

meyerhenke @ hu-berlin.de

Abstract—Network science methodology is increasingly applied
to a large variety of real-world phenomena. Thus, network data
sets with millions or billions of edges are more and more common.
To process and analyze such graphs, we need appropriate graph
processing systems and fast algorithms. Many analysis algorithms
have been pioneered, however, on small networks when speed was
not the highest concern. Developing an analysis toolkit for large-
scale networks thus often requires faster variants, both from an
algorithmic and an implementation perspective.

In this paper we focus on computational aspects of vertex
centrality measures. Such measures indicate the importance of
a vertex based on the position of the vertex in the network.
We describe several common measures as well as algorithms
for computing them. The description has two foci: (i) our
recent contributions to the field and (ii) possible future work,
particularly regarding lower-level implementation.

Index Terms—algorithmic network analysis, centrality compu-
tations, shortest paths, linear systems

I. INTRODUCTION

Recent years have seen a proliferation of large graph-

structured data sets in the order of billions of edges. Applica-

tions are numerous and come from many different scientific

and industrial/commercial fields, see for example Newman [1].

Network analysis revolves around algorithmic and statistical

tools to analyze such data sets – in particular with the intent to

uncover non-trivial relationships between entities or groups of

entities. To this end, we view a network as a graph G = (V,E)
with n nodes (= vertices) and m > n edges in this paper.

One important class of interest for network analysis com-

prises complex networks – vaguely characterized by a nontriv-

ial combination of randomness and structure. Prime examples

are social networks, co-authorship networks, the web graph,

climate networks and some biological networks such as protein

interaction networks, also see [2]. Complex networks feature

the small-world effect (they have a small diameter), which

makes the exploitation of locality via caches challenging. The

degree distribution of such networks is typically skewed –

many nodes have a small neighborhood, but a few nodes

have a very large neighborhood. This makes load balancing in

parallel computations more difficult. These properties, along

with sparsity, community structure and others, require fresh

thinking about the effective usage of architectural features [3].

* This work was partially supported by grant ME 3619/3-2 within German
Research Foundation (DFG) Priority Programme 1736.

One of the arguably most popular computational kernels

in network analysis are based on the concept of centrality.

Centrality measures assign to each v ∈ V a score based on

its structural importance; this allows a corresponding node

ranking. (Edge centrality measures exist as well, but are

omitted here.) As an example, the well-known PageRank [4]

is a centrality measure for web pages. Visual illustrations of

popular measures can be found at https://en.wikipedia.org/

wiki/Centrality. Different applications may require different

centrality measures and none is universal; thus, dozens of

measures have been proposed in the literature, see [5].

Since today’s data sets easily reach millions of edges, some-

times billions, the scalability1 of analytical kernels has become

a major concern. As observed by Kang et al. [6], “measuring

centrality in billion-scale graphs poses several challenges.

Many of the “traditional” definitions such as closeness and

betweenness were not designed with scalability in mind.”

One could argue to use less compute-intensive centrality mea-

sures instead. But they are either application-specific (such as

PageRank) or, as pointed out by Chen et al. [7], not expressive

enough: “Global metrics such as betweenness centrality and

closeness centrality can better identify influential nodes, but

are incapable to be applied in large-scale networks (...).”

Well, not quite. The statement is true for complete exact

computations, of course. But in this paper, we describe some

successful attempts to scale up centrality computations in a

variety of scenarios: top-k rankings, dynamic graphs, approx-

imation, centrality improvement and group centralities. The

focus will be on our recent contributions to the field, available2

in the open-source C++/Python software NetworKit [8]. A

comprehensive survey of the field is beyond the scope of this

paper; nonetheless, we point to some related work as well.

Moreover, we discuss interesting future work – not only from

our algorithmic point of view, but also and in particular from

an implementation point of view.

II. SHORTEST-PATH CENTRALITY MEASURES

Information or goods (both considered in an abstract sense)

often propagate through networks in shortest paths (or at least

1Scalability refers here to the capability of an algorithm to process massive
data sets in reasonable time. This usually means that the time complexity
is (nearly-)linear. Scalability in terms of processing elements would be an
extension of this view not in the focus (but in the outlook) of this paper.

2https://networkit.github.io/

1306978-3-9819263-2-3/DATE19/ c©2019 EDAA

nearly-shortest paths). For applications where this usage of

shortest paths reflects reality, it makes sense to assess the

nodes’ importance based on them. Two very popular centrality

measures in this context are betweenness and closeness cen-
trality. Both require the solution of n single-source shortest

path (SSSP) searches. Generally, these searches can be accel-

erated by using problem-specific pruning and (in unweighted

graphs) by exploiting bit parallelism [9].

A. Betweenness Centrality

The rationale behind betweenness centrality (BC) is that

people in a social network (or in a company’s organization

chart) are important if they participate in many shortest paths.

Assume that a person on many shortest paths is for some

reason deleted from the network (e. g. due to sickness): this

will impede the information flow significantly.

Formally, the BC of a node v ∈ V , cB(v), is given as

cB(v) :=
∑

s �=v �=t

σst(v)

σst

, (1)

where σst is the number of shortest paths between s and t and

σst(v) is the number of such paths that contain v �= s, t.

1) Exact algorithms: The algorithm with the fastest asymp-

totic time complexity for computing all BC values is due to

Brandes [10]. It performs n augmented SSSP searches and

thus requires O(n ·m) time on unweighted graphs. For sparse

graphs, which are abundant in practice, this improved previous

approaches by a factor of n. The main algorithmic idea is to

express contributions to Eq. (1) by a recursive formula. This

recursion is evaluated after each SSSP search by accumulating

the contributions in a bottom-up manner in the SSSP tree.

Several improvements from a practical point of view exist,

both for static [11] and for dynamic graphs [12]. Yet, they do

not improve the worst-case complexity of Brandes’s algorithm.

In fact, recent results [13] suggest that it cannot be improved

under reasonable complexity-theoretic assumptions.

2) High-performance implementation techniques: As major

theoretical improvements seem unlikely, one can try to speed

the implementation up, e. g., by utilizing parallelism and

accelerators. Due to the large size of thread-local state, course-

grained parallelism – in particular running multiple SSSP

computations in parallel – is not well-suited for accelerators.

Thus, early GPU-based algorithms for betweenness employed

edge-parallel approaches that assign a thread to each edge of

the graph [14] during the SSSP computation. McLaughlin and

Bader [15] noticed that this is inefficient unless the current

breadth-first search (BFS) level is incident to a large fraction

of all edges (e. g. it contains a high-degree vertex in a complex

network). To alleviate this, they present a hybrid algorithm that

uses vertex parallelism by default. Vertex-parallel algorithms

need to store the SSSP frontier explicitly, McLaughlin and

Bader achieve this by implementing a queue based on atomic

compare-and-swap operations. Bernaschi et al. [16], in turn,

describe a multi-GPU algorithm based on graph partitioning

and integrate various optimizations like the removal of degree-

1 vertices from the graph into their GPU implementation.

For future work, note that most of those implementations

only work on unweighted graphs; for weighted graphs, Dijk-

stra’s algorithm is commonly used to compute SSSP – and

that algorithm is harder to parallelize than plain BFS.

3) Approximation algorithms: Since a quadratic time com-

plexity is too high in practice for large instances, several

approximation algorithms have been proposed over the years.

Different from previous sampling-based approaches (which we

omit due to space constraints) is the method by Riondato and

Kornaropoulos [17]: it samples node pairs (instead of SSSP

sources) and shortest paths between them. The algorithm,

let us call it RK, approximates the betweenness score of

v ∈ V as the fraction of sampled paths that contain v

as intermediate node. This approach yields a probabilistic

absolute approximation guarantee on the solution quality.

RK was recently improved by adaptively adjusting the

number of samples and using bidirectional searches [18]. As a

benchmark to compare different approximation algorithms for

BC, AlGhamdi et al. [19] computed exact betweenness values

on graphs with millions of nodes using a supercomputer.

Bergamini and Meyerhenke [20] extended RK to fully-

dynamic graphs, i. e. graphs that can change over time by

node/edge additions/deletions as well as weight changes. Such

changes are fed into the graph in batches; afterwards, the cen-

trality scores are updated. The dynamic algorithm asserts the

same guarantee as the static RK algorithm: the approximated

BC values differ by at most ε from the exact values with

probability at least 1−δ, where ε, δ > 0 can be arbitrarily small

constants. Running time and memory required depend on ε and

δ. While such an absolute approximation works well for highly

ranked nodes (as they have high scores), the relative position

of nodes with low ranks should be treated with caution.

The main algorithmic technique to save running time com-

pared to recomputing all results from scratch is to resample as

few shortest paths as possible. Not surprisingly, the approxi-

mation achieved this way is much faster than exact approaches

(also dynamic ones); it also yields significant speedups (several

orders of magnitude) compared to RK. As an example, the

dynamic approximation algorithm allows to track BC values

for a graph with 36 million edges in a few seconds on typical

workstation hardware.

We are not aware of any efficient implementations of the RK

algorithm (or the algorithm from [18]) that utilize accelerators

or GPUs to further improve performance.

4) Betweenness improvement problems: One way to im-

prove your ranking in a web search engine is to have influential

web pages link to yours. In more general terms, one wants to

increase the centrality of a node by creating a limited amount

of new edges incident to it. Restricted to BC, we considered

in Bergamini et al. [21] (i) the problem of maximizing the

betweenness score of a given node (MBI) and (ii) the problem

of maximizing the ranking of a given node (MRI). The

paper proves that both problems cannot be approximated very

well unless P = NP . That is why it proposes a simple

greedy approximation algorithm; it performs well in practice:

Design, Automation And Test in Europe (DATE 2019) 1307

approximate MBI results can be computed for (most) networks

with up to 105 edges in a matter of seconds or a few minutes.

MBI has also attracted attention from the FPT community,

see in particular [22]. It would certainly be interesting to use

FPT techniques in high-performance implementations as well.

B. Closeness Centrality

Let d(x, y) be the distance between nodes x and y, i. e.
the length of a shortest path between them. Then, closeness

centrality (CC) of a node v, cC(v), is defined as the inverse

average distance of v to all other nodes of the graph:

cC(v) =
n− 1∑

u∈V \{v} d(v, u)
. (2)

Generalizations to graphs that are not (strongly) connected

exist (see [23]). The textbook algorithm performs n SSSP

searches and accumulates the closeness scores on the fly. This

takes O(n · m) time in unweighted graphs – as Brandes’s

algorithm for BC. As with BC, there is reason to believe that

an exact approach cannot be faster [23].

1) High-performance implementation techniques: In con-

trast to BC, however, where more complicated data structures

(particularly the predecessor forest) need to be managed, com-

puting closeness simply amounts to performing a large number

of independent SSSP computations. Hence, for undirected

graphs, previous results for parallel and vectorized variants

of BFS carry over to closeness. Sariyüce et al. [24] describe

a closeness algorithm that computes all SSSP results from b

sources in parallel using b-bit SIMD operations. The kernel

of this algorithm is a multiplication of the sparse adjacency

matrix with a dense n × b matrix; this operation achieves a

favorable memory access pattern.

2) Relaxing the problem: One could also try to use ap-

proximation again (as with BC) – and several algorithms

have been proposed, see [25], [26]. Yet, closeness values

tend to be distributed within a narrow interval [1, p. 331].

Thus, an approximation would need to have a much better

accuracy (compared to BC approximation) in order to compute

a trustworthy ranking. Hence, let us observe that relevant

applications require only the top k nodes of the ranking (and

not the exact closeness values nor the complete ranking).

Such applications include visualization tasks, search engine

queries and facility location in graphs. As a consequence, we

proposed in Bergamini et al. [23] a new algorithm for selecting

the k most closeness-central nodes. The main rationale is to

compute (inexpensive, yet reasonably accurate) bounds on the

CC values of each node. The SSSP searches from different

sources are then executed in the order of the bounds. This

allows to stop the process when the bounds of the remaining

nodes are already worse than the top-k already found. For

k ≤ 100, the algorithm computes the top nodes in few dozens

of seconds in networks with millions of nodes and edges.

Recently, the top-k algorithm was extended to dynamic

networks [27]. We are not aware of GPU implementations for

the top-k scenario, neither for static nor for dynamic graphs.

C. Group Closeness Centrality

Everett and Borgatti [28] extended the notion of centrality

to groups of vertices: one asks how central groups of vertices

are – not individually, but as a group. For group closeness

centrality (GCC), we can define the closeness of a set S as

cC(S) := (n − |S|)/(
∑

v/∈S
d(S, v)). Computing cC(S) for

known groups S this way is similarly difficult as computing

closeness for individual nodes. Finding groups with high GCC,

however, leads to the NP-hard Group Closeness Maximiza-

tion (GCM) problem: find a set S� ⊆ V of a specified size k

with maximum GCC:

S� = argmax
S⊆V

{cC(S) : |S| = k}. (3)

Chen et al. [29] showed that the objective function is mono-

tonic and submodular. For such optimization problems, a

simple greedy algorithm yields a (1−1/e)-approximation [30].

It performs k iterations and adds the vertex to the current set

S that improves the marginal gain w. r. t. cC(S) the most. An

implementation of this greedy algorithm with time complexity

O(n · m) for preprocessing and O(kn2) for the loop was

proposed by Chen et al. [29]. Its space complexity is O(n2).
They also developed a faster heuristic without approximation

guarantee. The limited scalability of the greedy algorithm

motivated us to develop a less time- and space-consuming

algorithm with the same (1− 1/e)-approximation guarantee.

To this end, we adapted in Bergamini et al. [31] the

greedy algorithm without changing its output. Memory is

saved by not precomputing the pairwise distances; instead,

we compute them while finding the vertex with best marginal

gain with BFS techniques. To speed each search up, we use

pruning and exploit submodularity. Some techniques already

used for top-k closeness centrality [23] can be reused here

with minor changes. One can save additional running time (at

the expense of higher space complexity) if the BFS searches

use bit parallelism. While graphs with 100,000 edges can be

processed in fractions of a second, the largest graph in our

experimental study, a social network with 117M edges, still

requires 97 minutes. A further outcome is the comparison of

optimal GCC values with the approximated values – for small

instances that are solvable by an IP solver: on this sample all

greedy results show an approximation error of less than 3%.

These results trigger several directions for future work: Can

one explain the very good empirical approximation ratio with

theoretical arguments? Can one exploit bit parallelism for this

algorithm without increasing the space complexity? Can the

algorithm be transferred to GPUs with significant performance

gains (or does this hold only for certain parts such as BFS)?

Finally, can one develop algorithms that scale to large graphs

for other relevant group centrality measures?

III. ALGEBRAIC CENTRALITY MEASURES

So far, we looked at centrality measures based in some

way on shortest paths. This may not reflect how information

is exchanged between nodes in real-world applications. It is

reasonable to assume that shorter paths are preferred; but why

should slightly longer paths play no role at all?

1308 Design, Automation And Test in Europe (DATE 2019)

A. Electrical Closeness Centrality

Closeness centrality based on shortest-path distances has the

additional drawback that its ranking is not very robust for com-

plex networks. Since the diameter is small, all distances and

thus all centrality values lie within a small interval. Moreover,

adding a few edges can change the ranking significantly.

By taking paths of all lengths into account (with shorter

ones being more important), current-flow closeness centrality
(CFCC) alleviates the aforementioned drawbacks. Its ranking

is more robust and the values are spread more widely [32].

This is achieved by replacing shortest-path distances by (ef-

fective) resistance distances [33]:

cER(v) :=
n− 1∑

w �=v

dER(v, w)
. (4)

The (effective) resistance distance between nodes u and v,

dER(u, v), can be expressed as dER(u, v) = l†
uu

− 2l†
uv

+ l†
vv

(up to constant factors that do not matter here), where L† is

the Moore-Penrose pseudoinverse of the Laplacian matrix L.

Alternatively, one can use the solution p of the linear system

Lp = eu − ev , where ex is the canonical unit vector of

dimension n, i. e. all entries are 0 except the one at x. Then,

dER(u, v) = p(u)− p(v) [32].

To compute CFCC for all nodes of G, one would need

to (pseudo)invert L or solve n linear systems. In practice,

inversion has cubic time complexity and leads to a dense

matrix. This does not allow to scale to large networks with

millions of nodes and edges, even when we want to compute

the closeness of only a single node or a small subset of nodes.

With this approach, in fact, computing the closeness of one

node is just as expensive as computing it for all nodes.

When using the linear system approach with the fast multi-

grid solver LAMG [34] in its NetworKit implementation, one

can estimate the closeness of a single node fairly quickly,

though: as an example, for a network with 50 millions edges

one needs less than 2 minutes [32]. Two inexact algorithmic

approaches are proposed for this purpose: (i) a sampling-

based one similar to a method for BC approximation [35] and

(ii) a method based on the Johnson-Lindenstrauss transform

previously used for a related edge centrality measure [36].

Our experiments indicate that the sampling-based approach is

faster and preserves the ranking very well.

Recent algorithmic work has extended CFCC to the group

variant [37]. For all these methods, it would be important to

speed up the Laplacian solver. Algorithm theory has made

tremendous progress in this regard, see [38]; so far, only

few of these techniques have found their way into high-

performance implementations. Early attempts [39], also with

our participation [40], showed that strong theoretical worst-

case results in the O-notation do not necessarily yield good

practical performance. But this observation is probably ripe

for reconsideration in the light of recent algorithmic progress.

B. Katz Centrality

As the second algebraic centrality measure, we consider

Katz centrality. Let ωi(v) be defined as the number of walks

of length i that start at vertex v. Given a parameter α > 0,

the Katz centrality of v is given by:

cK(v) := c(v) :=
∞∑

i=1

αi ωi(v) . (5)

Equivalently, in the language of linear algebra, c can be

characterized as the solution of the linear system

(I − αA)z = 1 , c = αAz, (6)

where A is the adjacency matrix of G, I is the identity matrix,

1 is the all-ones vector and z ∈ R
|V | is an auxiliary variable.

Indeed, previous state-of-the-art algorithms to compute c used

to solve this system, e. g., using a conjugate gradient solver.

With our co-authors we presented recently the algorithm

described next; it improves upon this method if Katz centrality

rankings need to be computed (and not exact values) [41].

Definition. Let �(v) and u(v) be lower and upper bounds
on c(v), respectively. For ε > 0, we say that w, v ∈ V are
ε-separated iff the overlap of the intervals [�(w),u(w)] and
[�(v),u(v)], is smaller than ε.

It is easy to see that if all pairs of vertices are ε-separated,

sorting the vertices either by � or by u yields a correct central-

ity ranking, except that vertices w, v with |c(v) − c(w)| < ε

can be ranked incorrectly. To motivate why we want to allow

such errors, note that if ε is dropped from the definition, there

are vertices that cannot be separated: Certainly, that is true for

vertices w, v with identical Katz score c(w) = c(v).
Now assume that instead of � and u, we are given sequences

�i(v) and ui(v) for each vertex v so that (i) for each i, it

holds that �i(v) ≤ c(v) ≤ ui(v) and (ii) limi→∞ �i(v) =
limi→∞ ui(v) = c(v). It is indeed possible to construct such

sequences [41]. Our algorithm computes �i and ui for each

vertex of the graph and iteratively increases values of i until all

vertices are ε-separated for a predefined ε. In each iteration,

the algorithm sorts the vertices by their bounds to obtain a

tentative ranking. Then, it checks this ranking for convergence,

i. e., whether all vertices are ε-separated. To reduce the number

of such checks, the algorithm tracks a set of active vertices
that do not have a final position in the ranking yet.

For single core CPU systems, our algorithm improves the

computation time required for billions of edges down to a few

minutes. Furthermore, we provide an efficient GPU implemen-

tation using the Hornet [42] graph data structure. Our results

show a 10× speedup over a 20-core CPU implementation [41].

For graphs that fit into the memory of a GPU, this enables

centrality computations in less than a second.

As larger graphs can only be processed on the CPU,

we discuss two rather straightforward improvements to the

implementation of [41]: (i) instead of representing the graph

as adjacency lists, we compute �i and ui on a more cache-

friendly CSR representation of the adjacency matrix and

Design, Automation And Test in Europe (DATE 2019) 1309

(ii) we employ a parallel multiway mergesort to obtain the

ranking. The CSR representation yields a 1.3× speedup in

the single-threaded case. In parallel benchmarks, the matrix

representation becomes less important as a larger fraction of

time is required to sort the ranking. Thus, the parallel sorting

implementation results in a 2.3× speedup over the (already

parallel) baseline on a 36-core machine.

IV. CONCLUSIONS AND FUTURE WORK

Due to their inherent complexity, not all centrality measures

can be computed exactly on large graphs with reasonable

resources. Yet, as described, results can be computed much

faster when changing the task slightly and/or using high-

performance implementations. This way, many popular cen-

trality computations can be executed reasonably quickly, even

on large-scale graphs. Important challenges remain and shall

be mentioned next in some detail.

Massive graphs: If one wants to model the human connec-

tome (a map of neural connections in the brain), graphs with

ca. 1010 nodes and 1014 edges have to be processed [43].

This number of edges is well beyond current capabilities in

terms of space and time – also when considering distributed

computation because then time becomes an issue. How can we

scale to processing such large graphs efficiently? Clearly, the

algorithms used for this purpose need to run in (nearly-)linear

time. Moreover, such graphs are unlikely to fit into one

machine’s memory for the near future. Thus, partitioning

needs to distribute subgraphs onto compute nodes in a careful

manner. This partitioning step is still challenging for complex

networks, but recent progress is promising [44], [45].

High-performance techniques: Of course, being able to

store large graphs and to perform some calculations alone

is not sufficient. The implementations need to use high-

performance techniques if the computations shall terminate

in reasonable time. Distributed graph frameworks come with

a certain overhead that makes (or at least made them in

2015 [46]) significantly less efficient than shared-memory ap-

proaches. A stronger convergence between high-performance

and high-productivity frameworks is thus desirable. Emerging

hardware architectures tailored to data analytics tasks such as

Emu3 may become a game changer in this regard.

While efforts exist to utilize techniques such as accel-

erators, vectorization and SIMD for network analysis (e. g.
those mentioned in this paper), such optimizations are mostly

implemented as specialized programs or as small frameworks,

but rarely in feature-rich general-purpose network analysis

toolkits. An emerging technology to make high-performance

graph operations more widely available is the GraphBLAS

standard [47], [48]. This standard defines an API to perform

graph operations in the language of linear algebra. Kernels

such as SSSP can be expressed in this language and thus

benefit from highly-optimized GraphBLAS implementations.

3http://www.emutechnology.com/

Usability: While domain experts do care about perfor-

mance, they often care even more about usability. Hence, the

integration of high-performance techniques into general frame-

works should not decrease a tool’s usability (significantly).

NetworKit’s approach of combining C++ for fast algorithms

and Python for usability (also done by other toolkits) is an

attempt in this direction. Python is relatively easy to learn and

offers a rich ecosystem of interoperable modules. But that does

not mean it is a silver bullet for all scientific communities.

Data types: From an algorithmic point of view, the abstract

data type graph is not sufficient for all applications. As an

example, hypergraphs are more accurate in capturing non-

binary relationships. Graph attributes, if taken into account by

an algorithm, usually increase the computational complexity

as well. In graphs arising from experiments with measurement

errors, edges may exist only with a certain probability. These

changes may have dramatic effects on the definition and

computation of centrality measures, in particular in the context

of high-performance implementations.

Personal conclusion: Let us stress that we are certain

(but maybe not always aware) that very promising progress

has been reached in recent years on any individual aspect

mentioned above. Parts of this progress have been mentioned

in this paper (we admit a deliberate bias). If you already solved

future work items we pointed out, please let us know.

In our opinion a major gap to be filled by the research

community is the elegant combination of the improvements

already reached. Actually, this would mean to integrate several

diverse research communities, which is ambitious. But would

it not be great if these individual improvements could be

brought together in one (or a few interoperable) powerful, yet

convenient tool(s) with a rich set of efficient algorithms and

high-performance software/hardware support?

ACKNOWLEDGMENT

We thank the co-authors of our works described in this paper for

their indispensable contributions. Moreover, we thank all contributors

to NetworKit, see https://networkit.github.io/credits.html.

REFERENCES

[1] M. Newman, Networks. OUP Oxford, 2nd ed., 2018.
[2] K. Erciyes, Complex Networks. An Algorithmic Perspective. CRC Press,

2015.
[3] Y. Zhang, V. Kiriansky, C. Mendis, S. P. Amarasinghe, and M. Zaharia,

“Making caches work for graph analytics,” in 2017 IEEE International
Conference on Big Data, BigData 2017, pp. 293–302, 2017.

[4] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1,
pp. 107 – 117, 1998. Proceedings of the Seventh International World
Wide Web Conference.

[5] P. Boldi and S. Vigna, “Axioms for centrality,” Internet Mathematics,
vol. 10, no. 3-4, pp. 222–262, 2014.

[6] U. Kang, S. Papadimitriou, J. Sun, and H. Tong, “Centralities in large
networks: Algorithms and observations,” in Proceedings of the 2011
SIAM International Conference on Data Mining, pp. 119–130, SIAM,
2011.

[7] D. Chen, L. Lü, M.-S. Shang, Y.-C. Zhang, and T. Zhou, “Identifying
influential nodes in complex networks,” Physica a: Statistical mechanics
and its applications, vol. 391, no. 4, pp. 1777–1787, 2012.

[8] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: A tool
suite for large-scale complex network analysis,” Network Science, vol. 4,
no. 4, pp. 508–530, 2016.

1310 Design, Automation And Test in Europe (DATE 2019)

[9] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2013, pp. 349–360, ACM, 2013.

[10] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[11] R. Puzis, Y. Elovici, P. Zilberman, S. Dolev, and U. Brandes, “Topol-
ogy manipulations for speeding betweenness centrality computation,”
Journal of Complex Networks, vol. 3, no. 1, pp. 84–112, 2015.

[12] E. Bergamini, H. Meyerhenke, M. Ortmann, and A. Slobbe, “Faster
betweenness centrality updates in evolving networks,” in SEA 2017,
London, UK, vol. 75 of LIPIcs, pp. 23:1–23:16, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[13] M. Borassi, P. Crescenzi, and M. Habib, “Into the square: On the com-
plexity of some quadratic-time solvable problems,” Electronic Notes in
Theoretical Computer Science, vol. 322, pp. 51 – 67, 2016. Proceedings
of ICTCS 2015, the 16th Italian Conference on Theoretical Computer
Science.

[14] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart, “Edge v. node
parallelism for graph centrality metrics,” in GPU Computing Gems Jade
Edition, pp. 15–28, Elsevier, 2011.

[15] A. McLaughlin and D. A. Bader, “Scalable and high performance be-
tweenness centrality on the GPU,” in International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’14,
pp. 572–583, 2014.

[16] M. Bernaschi, G. Carbone, and F. Vella, “Scalable betweenness cen-
trality on multi-gpu systems,” in Proceedings of the ACM International
Conference on Computing Frontiers, CF’16, pp. 29–36, 2016.

[17] M. Riondato and E. M. Kornaropoulos, “Fast approximation of be-
tweenness centrality through sampling,” Data Mining and Knowledge
Discovery, vol. 30, no. 2, pp. 438–475, 2016.

[18] M. Borassi and E. Natale, “KADABRA is an adaptive algorithm for
betweenness via random approximation,” in 24th Annual European
Symposium on Algorithms, ESA’16, vol. 57 of LIPIcs, pp. 20:1–20:18,
2016.

[19] Z. AlGhamdi, F. Jamour, S. Skiadopoulos, and P. Kalnis, “A benchmark
for betweenness centrality approximation algorithms on large graphs,”
in Proceedings of the 29th International Conference on Scientific and
Statistical Database Management, SSDBM’17, pp. 6:1–6:12, 2017.

[20] E. Bergamini and H. Meyerhenke, “Approximating betweenness cen-
trality in fully dynamic networks,” Internet Mathematics, vol. 12, no. 5,
pp. 281–314, 2016.

[21] E. Bergamini, P. Crescenzi, G. D’angelo, H. Meyerhenke, L. Severini,
and Y. Velaj, “Improving the betweenness centrality of a node by adding
links,” Journal of Experimental Algorithmics, vol. 23, pp. 1.5:1–1.5:32,
Aug. 2018.

[22] C. Hoffmann, H. Molter, and M. Sorge, “The parameterized complexity
of centrality improvement in networks,” in SOFSEM 2018: Theory
and Practice of Computer Science - 44th International Conference on
Current Trends in Theory and Practice of Computer Science, pp. 111–
124, 2018.

[23] E. Bergamini, M. Borassi, P. Crescenzi, A. Marino, and H. Meyerhenke,
“Computing top-k closeness centrality faster in unweighted graphs,” in
Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments, ALENEX 2016, pp. 68–80, SIAM, 2016.

[24] A. E. Sariyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Regularizing
graph centrality computations,” Journal of Parallel and Distributed
Computing, vol. 76, pp. 106–119, 2015.

[25] D. Eppstein and J. Wang, “Fast Approximation of Centrality.,” Journal
of Graph Algorithms and Applications, pp. 39–45, 2004.

[26] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Computing classic
closeness centrality, at scale,” in Proceedings of the second ACM
conference on Online social networks, COSN 2014, pp. 37–50, ACM,
2014.

[27] P. Bisenius, E. Bergamini, E. Angriman, and H. Meyerhenke, “Comput-
ing top-k closeness centrality in fully-dynamic graphs,” in Proceedings
of the Twentieth Workshop on Algorithm Engineering and Experiments,
ALENEX 2018, pp. 21–35, SIAM, 2018.

[28] M. G. Everett and S. P. Borgatti, “The centrality of groups and classes,”
Journal of mathematical sociology, vol. 23, no. 3, pp. 181–201, 1999.

[29] C. Chen, W. Wang, and X. Wang, “Efficient maximum closeness
centrality group identification,” in Databases Theory and Applications -
27th Australasian Database Conference, ADC 2016, vol. 9877 of Lecture
Notes in Computer Science, pp. 43–55, Springer, 2016.

[30] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[31] E. Bergamini, T. Gonser, and H. Meyerhenke, “Scaling up group
closeness maximization,” in Proceedings of the Twentieth Workshop on
Algorithm Engineering and Experiments, ALENEX 2018, pp. 209–222,
SIAM, 2018.

[32] E. Bergamini, M. Wegner, D. Lukarski, and H. Meyerhenke, “Estimating
current-flow closeness centrality with a multigrid laplacian solver,” in
2016 Proceedings of the Seventh SIAM Workshop on Combinatorial
Scientific Computing, CSC 2016, pp. 1–12, SIAM, 2016.

[33] U. Brandes and D. Fleischer, “Centrality measures based on current
flow,” in Proceedings of the 22nd Annual Symposium on Theoretical
Aspects of Computer Science, STACS 2005, vol. 3404 of LNCS, pp. 533–
544, Springer, 2005.

[34] O. E. Livne and A. Brandt, “Lean algebraic multigrid (LAMG): Fast
graph laplacian linear solver,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. B499–B522, 2012.

[35] U. Brandes and C. Pich, “Centrality estimation in large networks,”
International Journal of Bifurcation and Chaos, vol. 17, no. 7, pp. 2303–
2318, 2007.

[36] C. Mavroforakis, R. Garcia-Lebron, I. Koutis, and E. Terzi, “Spanning
edge centrality: Large-scale computation and applications,” in Proceed-
ings of the 24th International Conference on World Wide Web, WWW
2015, pp. 732–742, ACM, 2015.

[37] H. Li, R. Peng, L. Shan, Y. Yi, and Z. Zhang, “Current flow group
closeness centrality for complex networks,” CoRR, vol. abs/1802.02556,
2018.

[38] R. Kyng and S. Sachdeva, “Approximate gaussian elimination for
laplacians - fast, sparse, and simple,” in IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, pp. 573–582, IEEE
Computer Society, 2016.

[39] K. Deweese, J. R. Gilbert, G. L. Miller, R. Peng, H. R. Xu, and S. C. Xu,
“An empirical study of cycle toggling based laplacian solvers,” in 2016
Proceedings of the Seventh SIAM Workshop on Combinatorial Scientific
Computing, CSC 2016, pp. 33–41, SIAM, 2016.

[40] D. Hoske, D. Lukarski, H. Meyerhenke, and M. Wegner, “Engineering
a combinatorial laplacian solver: Lessons learned,” Algorithms, vol. 9,
no. 4, p. 72, 2016.

[41] A. van der Grinten, E. Bergamini, O. Green, D. A. Bader, and H. Mey-
erhenke, “Scalable katz ranking computation in large static and dynamic
graphs,” in 26th Annual European Symposium on Algorithms, ESA 2018,
vol. 112 of LIPIcs, pp. 42:1–42:14, Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018.

[42] F. Busato, O. Green, N. Bombieri, and D. Bader, “Hornet: An Efficient
Data Structure for Dynamic Sparse Graphs and Matrices on GPUs,” in
IEEE Proc. High Performance Extreme Computing (HPEC), (Waltham,
MA), 2018.

[43] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E.
Ferretti, R. E. Leite, W. J. Filho, R. Lent, and S. Herculano-Houzel,
“Equal numbers of neuronal and nonneuronal cells make the human
brain an isometrically scaled-up primate brain,” Journal of Comparative
Neurology, vol. 513, no. 5, pp. 532–541.

[44] G. M. Slota, S. Rajamanickam, K. D. Devine, and K. Madduri, “Par-
titioning trillion-edge graphs in minutes,” in 2017 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2017, pp. 646–
655, IEEE Computer Society, 2017.

[45] H. Meyerhenke, P. Sanders, and C. Schulz, “Parallel graph partitioning
for complex networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 9, pp. 2625–2638, 2017.

[46] J. Koch, C. L. Staudt, M. Vogel, and H. Meyerhenke, “An empirical
comparison of big graph frameworks in the context of network analysis,”
Social Network Analysis and Mining, vol. 6, no. 1, pp. 84:1–84:20, 2016.

[47] J. Kepner, P. Aaltonen, D. A. Bader, A. Buluç, F. Franchetti, J. R. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. G. Mattson, and J. E. Moreira,
“Mathematical foundations of the graphblas,” in HPEC 2016, pp. 1–9,
IEEE, 2016.

[48] A. Buluç, T. Mattson, S. McMillan, J. E. Moreira, and C. Yang, “Design
of the graphblas API for C,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2017,
pp. 643–652, 2017.

Design, Automation And Test in Europe (DATE 2019) 1311

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

