
FIFOrder MicroArchitecture: Ready-Aware
Instruction Scheduling for OoO Processors

Mehdi Alipour1, Rakesh Kumar2, Stefanos Kaxiras1, and David Black-Schaffer1

1Department of Information Technology, Uppsala University, Sweden
1first.last@it.uu.se

2Department of Computer Science , Norwegian University of Science and Technology, Norway
2first.last@ntnu.no

Abstract—The number of instructions a processor’s instruction
queue can examine (depth) and the number it can issue together
(width) determine its ability to take advantage of the ILP in an
application. Unfortunately, increasing either the width or depth of
the instruction queue is very costly due to the content-addressable
logic needed to wakeup and select instructions out-of-order.

This work makes the observation that a large number of
instructions have both operands ready at dispatch, and therefore
do not benefit from out-of-order scheduling. We leverage this to
place such ready-at-dispatch instructions in separate, simpler, in-
order FIFO queues for scheduling. With such additional queues,
we can reduce the size and width of the expensive out-of-order
instruction queue, without reducing the processor’s overall issue
width and depth.

Our design, FIFOrder, is able to steer more than 60% of
instructions to the cheaper FIFO queues, providing a 50% energy
savings over a traditional out-of-order instruction queue design,
while delivering 8% higher performance.

I. INTRODUCTION

Out-of-order (OoO) processors identify, select, and execute

ready instructions out of program order to exploit instruction

level parallelism (ILP). To do so, they employ a number

of large, complex, and power-hungry hardware structures

such as the instruction queue (IQ), physical register files

(PRF), and load/store queues (LSQ). The IQ is responsible

for identifying and selecting ready instructions for execution,

and is arguably the most complex and power-intensive [1],

[2] structure. Its complexity stems mainly from two sources:

First, as instructions complete their execution, the IQ needs to

broadcast their results (destination register or instruction id) to

all other waiting instructions. When all the operands for such

a waiting instruction become available, it is marked as ready

for execution. Second, the IQ needs to select instructions for

execution from the pool of ready instructions, based on a set

of priorities and available functional units.

To support these functionalities, the IQ is implemented as

a content addressable memory (CAM). CAMs are particularly

expensive to scale up because they require logic for each entry

and each port port that detects if the port’s data matches that

particular entry. For broadcast, the IQ must have a broadcast

port for each instruction that can finish in any cycle to mark

all relevant instructions as ready. For instruction selection, the

CAM must include logic that examines all ready instructions

and chooses them by priority, as well as multiple output ports

GemsFDTD

bzip2
gcc

mcf
milc

gromacs

cactusADM

namd
gobmk

dealII
soplex

povray

calculix

hmmer

sjeng
libquantum

h264ref

lbm omnetpp

wrf
xalancbmk

average

0

10

20

30

40

50

60

70

80

90

100

D
is
t
r
ib
u
t
io
n
 o

f
re

a
d
y

o
p
e
ra

n
d
s
 a

t
d
is

p
a
tc

h

2 ready: R@D 1 ready: AR@D 1 ready : LD_Tail 0 ready: NR@D

Fig. 1. Classification of instructions at dispatch: both operands ready (ready-
at-dispatch, R@D), one operand ready (almost-ready-at-dispatch, AR@D),
one operand ready and one from a load (load-tail, LDTail), no operands ready
(not-ready-at-dispatch, NR@D). On average 20% of instructions are R@D,
and therefore do not benefit from out-of-order scheduling.

for reading out the selected instructions. The combination of

the per-entry and per-port logic required for broadcase and

selection, along with the selects and wires needed to output

the multiple instructions selected for issue, make the IQ an

incredibly complex and energy-hungry circuit that based on

figure 2, in average, contributes into 45% of the run-time

dynamic energy of the core .

Though OoO scheduling enables early execution of ready

instructions by bypassing the stalled ones, its complexity

leads to significant energy costs. Moreover, the complexity

increases superlinearly with the IQ size and issue width,

making it challenging to scale up the IQ. Indeed, the delays

associated with such complexity force instruction scheduling

to be implemented over multiple stages in modern processors.

In this work, we make the critical observation that not
all instructions benefit from the OoO instruction scheduling.

In particular, instructions whose operands are both ready-at-

dispatch (R@D) can be issued at any time an appropriate

functional unit is available. If such instructions can be moved

out of the IQ and scheduled using simpler hardware, such

as first-in first-out (FIFO) queues, the freed IQ space can be

utilized by other instructions that may require OoO scheduling.

As instructions can be issued for execution from these simpler

FIFO queues in addition to the IQ, the effective issue window

size increases, leading to better performance. As the FIFO

queues are much simpler and more energy-efficient than the

out-of-order IQ, they can deliver additional performance with

a very small additional energy cost compared to scaling the

IQ [1]. Conversely, for the same performance, the size of the

IQ can be reduced due to the instructions placed in the FIFO

queue, thereby saving energy.

710978-3-9819263-2-3/DATE19/ c©2019 EDAA

bzip2
cactusADM

calculix

dealII
gcc

GemsFDTD

gobmk
gromacs

hmmer

h264ref

lbm libquantum

mcf
milc

namd
omnetpp

povray

sjeng
soplex

wrf
xalancbmk

avg

0

10

20

30

40

50

60

70

80

90

100
C

o
re

 D
y
n
a
m

ic
 E

n
e
rg

y
 (
%
)

Dynamic Instruction window Rest of the Core

Fig. 2. Distribution of the run-time dynamic energy (both dynamic and static)
of a core based on detail parameters of table I and simulated in [3]. Each
bar has divided into the run-time energy of dynamic instruction window
and the rest of the core energy. Dynamic instruction window includes IQ
and its functionality between the dispatch and issue stage such instructions
scheduling, wake-up, select, etc. Based on this figure, in a single core
processor, more than 40% of the energy is consumed by the dynamic
instruction window in average across SPEC2006 benchmarks.

To understand which instructions do not benefit (or only

benefit minimally) from out-of-order scheduling, we classify

instructions into four categories based on their operand avail-
ability when they are dispatched to the IQ and the producer
instruction type for non-ready operands. The first category

of instructions are those that have all their operands Ready

at Dispatch (R@D). These instructions do not need to wait

in the IQ to become ready (as they already are) and can be

directly sent for execution if functional units are available. In

this work we steer R@D instructions to simpler, FIFO-based

instruction queues. Figure 1 shows that 20% of all dynamic

instructions are R@D in SPECcpu2006, for a typical 4-wide

OoO processor with 128 ROB entries.

The second category of instructions are those that have

only one non-ready operand at dispatch, and this operand is

produced by a R@D instruction. As the producers of these

instructions are likely to complete their execution soon (their

operands are already ready), these instruction are likely to

be ready shortly as well, and we call them Almost Ready

at Dispatch (AR@D). Also, we discover that if the only non-

ready operand of an instruction is generated by another AR@D
instruction, it does not result in frequent stalls. Therefore, we

include these instructions also in the AR@D category. Figure 1

shows that 22% of the dynamic instructions are AR@D.

The third category includes a dependent instructions with

the first instruction receiving at least one of its operands from

a load instruction, or Load Tails (LDTail). We observe that

such chains might reside in the IQ for long intervals, especially

if the load misses in the caches. These chains occupy space

in the IQ that could be used for other instructions that can

potentially be ready sooner. We propose to steer these chains

to a simple FIFO to reduce IQ pressure. Once the load receives

its data, these dependent instructions can be executed quickly

from the FIFO. Our analysis shows about 25% of the dynamic

instructions are LDTail.

The final category of instructions are Not Ready at Dispatch

(NR@D). In this category non -f the operands are ready

which includes instructions whose operands come from a load

dependant instruction, or whose operands come from other

NR@D instructions. The waiting time for these instructions in

the IQ is unpredictable, and they may become ready out-of-

order. Therefore, they do benefit from OoO scheduling, and

steering them to a FIFO would increase stalls. The remaining

33% of dynamic instructions are NR@D.

Based on these observations, we propose a new core design

that employs cheap, in-order FIFO queues for instructions

that do not need out-of-order scheduling (R@D, AR@D, and

LDTail), thus freeing up expensive, out-of-order IQ entries

for instructions that benefits the most from them (NR@D).

Offloading instructions from the IQ to FIFO queues frees

space in the IQ for instructions that would otherwise not

have been able to be dispatched. This increases the effective

issue window (IQ size plus FIFO queue size) and increases

performance. As more than 60% of instructions are placed in

and issued from the FIFO queues, our design allows us to

reduce the issue width of the IQ from 4 to 1. This trade-off,

of more, cheaper FIFO queues for a narrower expensive IQ,

allows us to reduce energy while improving performance. Our

primary contributions include:

• Identifying a easy-to-detect classes of instructions that

do not benefit from OoO scheduling (R@D: operands are

ready at the dispatch stage), or benefit minimally (AR@D:

operands are almost ready).

• Demonstrating that more than 60% of instructions fall

into these classes, and can be effectively offloaded from

the expensive IQ to simple FIFO queues, thereby improv-

ing energy efficiency.

• Proposing and evaluating a core design that steers these

instruction classes to simple FIFO queues and the remain-

ing instructions to a 1-wide out-of-order IQ to provide

a 50% energy savings while also delivering 8% perfor-

mance gain.

II. BACKGROUND AND MOTIVATION

A. The cost of OoO scheduling

OoO cores aim to execute instructions as soon as their

source operands become ready, even though older instructions

may be stalled [1], [4]. Bypassing stalled instructions to enable

early execution of ready instructions improves performance.

However, the ability to identify instructions as soon as they

become ready and select among all ready instructions results

in an immensely complex and energy-intensive IQ implemen-

tation. We describe the two main steps in OoO instruction

scheduling below:

Wake-up: Instructions wait in the IQ until their operands

become ready and they are selected for execution. The IQ then

wakes-up the waiting instructions (marks them as ready for

execution) as their producers finish execution and generate the

required operands. As a waiting instruction can be anywhere in

the IQ, the results1 of executed instructions must be broadcast

to all entries in the IQ. Furthermore, as multiple instructions

can be executed every cycle, multiple results need to be broad-

cast simultaneously. For every completed operand broadcast,

every instruction in the IQ needs to compare its input operands

to see if there is a match, indicating that the operand is ready.

This requires multiple comparators per IQ entry and broadcast

busses as many operands as can be generated in a cycle. In

1Depending on the implementation, the broadcast information can be the
result, destination register number, instruction id, or a combination of these.

Design, Automation And Test in Europe (DATE 2019) 711

PR1 PR2

Load

LDTail

I0

I5 I7

PR5

I2

I6

I3

PR3

I1

I8

PR1
PR2
PR3
PR5

Rename Table Map

Not ready (in IQ)

R@D

AR@D

Ready

Ready

Ready

Pending

OoO

Fig. 3. Instruction dependency graph showing R@D (green), AR@D (blue),
and LDTail (red) instructions. The register rename table is shown, indicating
that physical registers 1-3 have been written (inputs to the R@D and AR@D
instructions) while physical register 5 (PR5) has not. (I7) has PR5 and (I6)
as input operands. Apart from PR5, I6 is pending as well which is why (I7)
is not included in the LDTail. I6 is a load dependant instruction but it is not
a LDTail since it has two pending operands.

the case of a match, the operand is marked as available. The

instruction itself becomes ready when all operands are ready.

Selection: Instruction issue logic selects instructions for ex-

ecution from the ready instructions in the IQ by priority. As

ready instructions can be anywhere in the IQ, all IQ entries

need to be examined in parallel to be able to select among

them. Ready instructions are typically prioritized based on

their type (memory accesses first to increase MLP) or age

(oldest first to avoid chains of stalled instructions). Computing

these priorities requires complex comparison trees of instruc-

tion opcodes and tags. In addition to the priority logic, the IQ

requires as many output ports as the maximum issue width

to enable the selected instructions to be read out. As a result

of this complexity, the size and energy of the IQ increases

super-linearly with the number of entries and issue width [1].

B. Do all instructions need OoO scheduling?

We observe that not all instructions need an out-of-order

wakeup and select for early execution. For example, if an

instruction is R@D, it does not need the result broadcast

mechanism of the IQ wakeup to detect operand availability

(as they are already available). Such R@D instructions can

be dispatched to a simpler, and hence, cheaper, FIFO queue

to enable them to bypass the stalled instructions in the IQ.

As only R@D instructions placed in the FIFO queue, there

will not be any stalls in this queue. Offloading such R@D
instructions from the IQ to a simple FIFO queue provides a

significant energy saving opportunity as the issue width of

the IQ can be reduced because FIFO queue will also supply

instructions for execution.

Ready-at-Dispatch (R@D, 20%): These instructions have all

of their source operands ready when they are dispatched to the

IQ. Compiler optimizations that move producer instructions

as early as possible, such as load-hoisting or decoupled

access-execute [5], are particularly likely to result in R@D
instructions at runtime. In figure 3, instruction I1 is a R@D
instruction since both of its operands are ready when is it is

dispatched.

Almost-Ready-at-Dispatch (AR@D, 22%): These instruc-

tions have one of their operands ready while the non-ready

TABLE I
MICROARCHITECTURAL PARAMETERS (BASED ON NEHALEM [6])

Freq, ISA 3.4 GHz, x86-64
L1i/d 32KiB, 8-way, 4clk
L2 256KiB, 8-way, 12clk
L3 1MiB, 8-way, 36clk
DRAM 200clk
Branch Predictor Two level, front end penalty 10clk
ROB/IQ/RF(Int,FP)/LQ/SQ 128/56/(68,68),48/36
FIFO queues 32 entries, issue up to 3 from head
Technology/VDD/temp 22nm itrs-hp/0.8/360K

TABLE II
FIFO AND IQ CONFIGURATIONS

Design # FIFOs IQ Issue Width RF ports
Baseline 0 4 8
Design #1 1 1 8
Design #2 2 1 8
Design #3 3 1 8
FXA [7] 1 2 10

operand comes from either a R@D or AR@D instruction but

not from a load. As a result, these instructions are likely to be

ready soon, and are also good candidates for scheduling via

a FIFO queue. In figure 3, instruction I3 is AR@D. We do

not consider instruction I4 to be AR@D as it is likely to take

longer to be ready since neither of its operands are ready.

Load-tail (LDTail, 25%): Instructions with one ready operand

and the other one dependant on a load instructions are clas-

sified as load tails (LDTail). In figure 3 we see that the load

instruction, I0 has two dependent instructions whose sources

are either ready or come from R@D (I2) or AR@D (I6)

instructions. Only I2 is considered a LDTail instruction. I6
is not included as it is likely to take longer since its non-load

operand is not yet ready as well. I7 is not a LDTail because

it has a source coming from another register that has not yet

been written. Load and store instructions should always be

dispatched to the IQ to execute them as early as possible to

expose both MLP and ILP.

III. SIMULATION ENVIRONMENT

We use the Multi2sim simulator [8] (x86 target) with SPEC

CPU2006 [9], fast-forwarding 1B instruction, cache warming

for 250M, and then 1B instructions of detailed simulation. For

the energy model we use Cacti and McPAT[10], [3] .

IV. IMPLEMENTATION

To take advantage of the amenability of our identified

instruction classes to simpler scheduling, our approach relies

on steering appropriate classes to appropriate FIFOs or out-of-

order queues, and issuing them from there. This allows us to

improve efficiency by reducing the load on the IQ and reducing

its required width, as most instructions are steered to the FIFOs

and issued from them. To accomplish this, we need to be able

to cheaply classify instructions, steer them to the appropriate

queue, and identify when AR@D and LDTail instructions at

the head of a queue are ready for execution.

712 Design, Automation And Test in Europe (DATE 2019)

Single
FIFO

Double
FIFO

Triple
FIFO

0

10

20

30

40

50

60

70

80

90

100

S
ta
ll
e
d
 F

IF
O

(s
)

 o
v
e
r

ru
n
-t

im
e AR@D

LDTail

p
Fig. 4. The distribution of R@D FIFO stalls caused by AR@D and LDTail
instructions. Placing the instruction classes in separate queues provides
for more out-of-orderness between them, and allows different classes of
instructions to bypass each other when they are ready, thereby reducing stalls.

A. Classifying, steering, and waking instructions

The classification of R@D instructions simply requires

checking if both operands for an instruction are ready at

dispatch. We accomplish this by examining the existing Re-

name Map Table (RMT). Similarly, instructions with one

ready operand are either AR@D or LDTail. To detect LDTail
instructions, we need an additional bit in the RMT that

indicates whether an allocated register is coming from a

load instruction. We can then distinguish between AR@D
and LDTail at dispatch by checking that bit for the source

registers. The remaining instructions are NR@D. Instructions

are steered to the appropriate queue based on the FIFO design,

as discussed below.

R@D instructions at the head of a FIFO queue require no

check before issuing them to a functional unit for execution.

However, AR@D and LDTail instructions may not be ready

by the time they reach the head of a FIFO queue. Therefore,

we check the ready bit of the pending operation directly in the

Rename Map Table before issuing from the FIFO. The FIFOs

in our designs examine the three instructions closest to the

head of the FIFO and are able to issue up to 3 instructions

from the FIFO together. While the FIFOs can each issue up to

3 instructions per cycle, the total issue width of the processor

(FIFOs plus IQ) is kept to 4, as in the baseline design.

B. 1st Design: Single FIFO (reduce IQ pressure)

Our first design simply steers all R@D, AR@D, and LDTail
instructions to a single FIFO queue (issuing up to 3 instruc-

tions per cycle), with the remaining NR@D in the OoO IQ

(issuing up to 1 instruction per cycle.) The performance and

performance per energy results of this implementation are

shown in the leftmost bars of figure 6 and figure 7, normalized

to the baseline OoO processor (table I). As figure 6 shows,

a single 3-wide FIFO with a 1-wide OoO IQ deliers worse

performance than a baseline 4-wide OoO IQ.

The fundamental bottleneck of this design is that AR@D
and LDTail instructions are mixed with R@D instructions. This

causes the FIFO to frequently stall when non-ready AR@D or

LDTail instructions reach the head, which blocks other R@D
instructions in the FIFO from issuing. The breakdown of stall

sources for the single-FIFO design are shown in figure 4. We

can see that the FIFO queue was stalled and could not issue

instructions (issued zero or less than the bandwidth of three)

for 72% of the execution cycles, 40% due to AR@D and the

remaining 32% were due to LDTail. This suggests that keeping

the AR@D and LDTail instructions out of the FIFO that holds

R@D instructions would reduce R@D stalls.

Looking at performance per energy results in figure 7, the

single FIFO design outperforms the baseline OoO by 17% due

to the cheaper FIFO and 1-wide IQ replacing the much more

complex 4-wide IQ. The energy breakdown of the baseline

4-wide IQ vs. our 1-wide IQ and FIFOs is shown in figure 8.

We next seek to address the performance loss from a single

FIFO queue by adding additional FIFO queues to prevent

R@D isntrucitons from being stalled by AR@D and LDTail
instrucitons. In essence, by adding more FIFO queues, we

hope to increase the out-of-orderness without the need for the

full CAM functionality (and cost) of an OoO IQ.

C. 2nd Design: Dual FIFOs (unblocking the R@D FIFO)

To tackle the problem of FIFO stalls, we add a second FIFO

for AR@D and LDTail instructions. This leaves the first FIFO

exclusively for R@D instructions, which will never stall. As

with the previous design, the maximum issue width is 1 for

the OoO IQ and 3 across both FIFOs. For selecting between

the FIFOs, a higher priority is given to instructions from the

R@D FIFO.

The performance and performance per energy results of

the dual FIFO design are shown in the second set of bars

in figure 6 and figure 7. By eliminating the stalls caused by

AR@D and LDTail instructions in R@D instruction execution,

the dual FIFO design outperforms the single FIFO design

overall, and is even better than baseline 4-wide OoO IQ design

in a few benchmarks. On average, the dual FIFO design

matches the baseline performance, but does so with more

energy-efficient scheduling due to its 1-wide OoO IQ and two

3-wide FIFOs. From energy point of view, dual FIFO design

outperforms the baseline in terms of performance per energy

by over 30% on average.

Despite the second FIFO queue, there are still many FIFO

stalls, as seen in the middle bar of figure 4. For this design,

the majority of the stalls, 35% of all cycles, are coming from

LDTail instructions that are blocking the second FIFO. To

tackle this problem we separate the LDTail instructions from

the AR@D ones by placing them in a third FIFO queue.

Rename Issue

ROB

LSQ

D-Cache

Write Back Commit

O
ut
-O
f-O

rd
er 1

R@D

AR@D

LDTail

FIFO #1
3

Dispatch Execute

Al
lo
ca

on
to

FI
FO

s,
RO

B,
IQ

an
d
LS
Q RF

FIFO #2

FIFO #3

IQ

A
LU

A
G
U

B
R
U

FP
U

Re
na
m
e
M
ap

Ta
bl
e

Fig. 5. FIFOrder microarchitecture. Instructions are classified in the rename
stage based on the operand ready bits in Rename Map Table. In the dispatch
stage, they are steered to the IQ or FIFOs, depending on the instruction
classification. The issue stage stores the instructions in either the FIFOs or
IQ, and selects ready instructions across the queues for execution.

Design, Automation And Test in Europe (DATE 2019) 713

bzip2
cactusADM

calculix
dealII

gcc GemsFDTD

gobmk
gromacs

hmmer
h264ref

lbm libquantum

mcf
milc

namd
omnetpp

povray
sjeng

soplex
wrf xalancbmk

avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

o
rm

a
li
z
e
d
 I
P
C 1st design: Single FIFO 2nd design: Double FIFO 3rd design: Triple FIFO FXA

Fig. 6. IPC comparison between three designs of FIFOrder and a related work, FXA [7] normalized to baseline. Baseline: 4-wide OoO. Our designs: 1-wide
OoO plus 1, 2, or 3 FIFOs. FXA has a 2-wide OoO (see table I and table II).

bzip2
cactusADM

calculix
dealII

gcc GemsFDTD

gobmk
gromacs

hmmer
h264ref

lbm libquantum

mcf
milc

namd
omnetpp

povray
sjeng

soplex
wrf xalancbmk

avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
li
z
e
d
 I
P
C

 p
e
r

e
n
e
rg

y
 o

f
 d

y
n
a
m

ic
 i
n
s
tr

u
c
ti

o
n
 w

in
d
o
w 1st design: Single FIFO 2nd design: Double FIFO 3rd design: Triple FIFO FXA

Fig. 7. Normalized performance per energy of the dynamic instruction window. Both baseline and FXA [7] spend more energy on issuing instructions due
to their issue-widths of 4 and 2, respectively, compared to 1 in our designs.

D. 3rd Design: Triple FIFO (unblocking AR@D FIFO)

This design provides three separate FIFOs, one for each

of the instruction classes to prevent them from stalling each

other, along with a 1-wide OoO IQ. For instruction dispatch,

the highest priority is given to R@D instructions, then AR@D,

and lowest to LDTail. This order attempts to give priority to the

instructions that are most likely to be ready soonest. Figure 5

illustrates the final design and pipeline view of the FIFOrder

microarchitecture. The shaded and gray parts are the pipeline

parts that are affected by the FIFOrder. Functional unites are

shared between the IQ and the FIFOs to bring more flexibility

at issue time.

The performance and performance per energy result of the

three FIFO implementation are shown in the third set of bars

if figure 6 and figure 7. As a result of reducing FIFO stalls

(figure 4, right bar), this design outperforms the baseline out-

of-order by 8% on average and is 55% higher in energy

efficiency.

E. Energy Breakdown

For the baseline 4-wide OoO (table II) we consider the

size and width of the IQ, and use the number of writes and

reads to compute energy with [2]. Since our triple FIFO design

delivers the best performance per energy, we pick this design

to compare with the baseline in detail. Figure 8 shows the IQ

energy breakdown of this design compared to the 4-wide OoO

and the FXA [7] designs (both dynamic and static energy). The

total energy of the baseline is reduces by 50% in our design,

primarily due to an 80% reduction in IQ energy from the

smaller IQ width and a 73%-60% reduction in IQ reads/writes,

and due to the relatively small energy overheads of FIFO

queues.

V. RELATED WORK

A previously proposed technique, FXA [7], also aims to

reduce energy consumption of an OoO core by executing some

of the instructions in program order. FXA takes a brute force

approach of first trying to execute all instructions in program

order and then moving only those instructions that could not

be thus executed to an OoO queue. Our design splits the

instruction stream upfront for in-order and OoO execution.

FXA inserts a 4-stage in-order pipeline between the dispatch

and IQ of an OoO pipeline to filter out instructions that can

be executed early and in-order. This requires functional unit

replication in the front end. Our design, in contrast, shares

the same functional units among in-order and OoO execution.

To reduce the area overhead, FXA replicates only integer

functional units. As a result, floating point operations are

always executed through the OoO IQ. Our design has no

such limitation. FXA potentially increases register file reads as

operands first need to be read for in-order execution and then

again for OoO execution if in-order execution of an instruction

fails. A potential solution is to pass the operands from in-

order to OoO execution engine, but that requires moving the

operands and storing them int the IQ. (see the detail setup of

[7] in table I and table II).

We compared our three designs with FXA in terms of

performance and performance per energy, as shown by the

right most bars of figure 6 and figure 7, respectively. In terms

of performance, FXA outperforms the single FIFO design

because FXA uses an OoO IQ issue width of 2, or twice that

of our design. Our dual FIFO design performs about as well

as FXA. Finally, the triple FIFO design that address all stall

sources, outperforms FXA both in terms of performance and

performance per energy. The energy breakdown of FXA is

shown in the middle stacked bars of figure 8. It saves 40% of

the energy compare to the baseline. Based on this result, the

main reasons our final design consumes less energy compared

to FXA is having half of the IQ issue width of FXA and

OoO 100.0%

a) Baseline
OoO

53.0%

In-Order

10.0%

saved

37.0%

b) FXA

OoO

19.0%saved
51.0%

R@D-FIFO

14.0% AR@D-FIFO

13.0%

LDTail-FIFO3.0%

c) FIFOrder

Fig. 8. Energy breakdown of a) the dynamic instruction window for the out-
of-order 4-wide baseline, b) FXA [7], and c) the proposed FIFOrder micro-
architecture with three 3-wide FIFO queues and a 1-wide IQ across SPEC2006
benchmarks.

714 Design, Automation And Test in Europe (DATE 2019)

offloading the majority of the instructions from the IQ to the

FIFOs. Also since FXA passes all of the instructions through

the in-order pipeline, before forwarding them to OoO pipeline,

regardless of the readiness of their operands, about 7% of its

energy is consumed in the in-order part of the pipeline.

One of our contributions is reducing the instruction wake-

up and select while keeping the IQ size unchanged. The

execution can not get started even if only a single operand

of an instruction with multiple input operands is missing.

Therefore, including this type of instructions in the pool of

instruction to be selected not only does not provide more

flexibility for instruction selection but also increases the cost.

Ernst et al. [11] proposed a separate wake-up and select policy

for instructions with more than one pending-sources. For this

class of instructions, they only compare the register renaming

tag for the input operand which has the longest slack (last

arriving input) to reduce the total number of tag comparison.

This problem is addressed by introducing a last tag speculation

technique that predicts which input operand of an instruction

arrives last, and is used for scheduling execution. However, this

approach can identify instructions whose operands are both not

ready, which does not simplify later instruction selection as we

include them in NR@D instructions.

Brown et al. [12] reduced the cost of instruction wake-

up and selection by reintroducing pipeline techniques. They

pipeline the wakeup and select loops and introduce smaller

loops,a critical, single-cycle loop for wakeup; and a non-

critical, potentially multi-cycle, loop for select but still all of

the instruction pass through wakeup and select stages during

instruction scheduling. In comparison, our solution reduces the

cost of instruction scheduling for all classes of instructions

with all of their operands ready to the ones which have all

operands pending. For the ones with two pending operands it

is impossible to ignore wakeup and select however, we applied

a cheaper IQ (1-wide issue width) for this type of instructions.

Long Term Parking [13] and Load Slice Core [14] classified

instruction as urgent and non-urgent, where urgent instructions

form a chain of address generating instructions leading up to

a load. LDTail instructions are conceptually a subset of non-

urgent instructions. In [14] they steer the urgent instructions to

a secondary FIFO instruction queue to enable MLP-generating

urgent instructions to bypass other instructions in an in-order

pipeline. In LTP [13], they steer non-urgent instructions to a

FIFO (parking) to reduce the IQ pressure. Since non-urgent

instructions are woken-up out-of-order, and the FIFO does

not have an out-of-order search capability, all instructions

are inserted back to the IQ before wakeup. In our design

instructions that are placed in the FIFO queues are issued

directly from their respective queues, and do not need to pay

the latency and energy cost of being re-inserted into the IQ.

VI. CONCLUSION

Improving out-of-order processor performance has long

required increasing the size and width of the instruction queue.

However, as this structure must search for independent instruc-

tions and read out ready instructions with specific priorities,

scaling it up has proven to be extremely energy costly.

To address this problem, we identified classes of instructions

that do not benefit from out-of-order scheduling, and proposed

an architecture, FIFOrder, that takes advantage of this classi-

fication to efficiently execute them. In FIFOrder we use cheap

FIFO queues to store and issue instructions that are ready at

dispatch or soon to be ready (60% of dynamic instructions),

thereby reducing the load on the IQ, and allowing us to reduce

its issue width to just 1.
The combination of fewer instructions in the expensive IQ

and its reduced width allows us to provide a 50% energy

savings while delivering 8% improved performance over a

baseline 4-wide OoO processor.

ACKNOWLEDGEMENT

This work was supported by the Knut and Alice Wallen-

berg Foundation through the Wallenberg Academy Fellows

Program.
REFERENCES

[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” SIGARCH Comput. Archit. News, vol. 25, no. 2,
pp. 206–218, May 1997.

[2] Y. Kora, K. Yamaguchi, and H. Ando, “Mlp-aware dynamic instruction
window resizing for adaptively exploiting both ilp and mlp,” in Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-46, 2013, pp. 37–48.

[3] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO 42, 2009, pp. 469–480.

[4] M. Alipour, T. E. Carlson, and S. Kaxiras, “Exploring the performance
limits of out-of-order commit,” in Proceedings of the Computing Fron-
tiers Conference, ser. CF’17, 2017, pp. 211–220.

[5] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and
S. Kaxiras, “Fix the code. don’t tweak the hardware: A new com-
piler approach to voltage-frequency scaling,” in Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, ser. CGO ’14, 2014, pp. 262:262–262:272.

[6] I. Corporation, “Intel R© 64 and ia-32 architec-
tures optimization reference manual,” http://www.
intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html, Jun. 2016.

[7] R. Shioya, M. Goshima, and H. Ando, “A front-end execution archi-
tecture for high energy efficiency,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
47, 2014, pp. 419–431.

[8] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A
simulation framework for cpu-gpu computing,” in Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’12, 2012, pp. 335–344.

[9] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[10] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in Proceedings of the International
Conference on Computer-Aided Design, ser. ICCAD ’11, 2011, pp. 694–
701.

[11] D. Ernst and T. Austin, “Efficient dynamic scheduling through tag elim-
ination,” in Proceedings of the 29th Annual International Symposium on
Computer Architecture, ser. ISCA ’02, 2002, pp. 37–46.

[12] M. D. Brown, J. Stark, and Y. N. Patt, “Select-free instruction scheduling
logic,” in Proceedings of the 34th Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 34, 2001, pp. 204–213.

[13] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais,
A. Seznec, and P. Michaud, “Long term parking (ltp): Criticality-aware
resource allocation in ooo processors,” in Proceedings of the 48th
International Symposium on Microarchitecture, ser. MICRO-48, 2015,
pp. 334–346.

[14] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout,
“The load slice core microarchitecture,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ser. ISCA
’15, 2015, pp. 272–284.

Design, Automation And Test in Europe (DATE 2019) 715

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

