
Hardware-Accelerated Energy-Efficient
Synchronization and Communication for

Ultra-Low-Power Tightly Coupled Clusters
Florian Glaser∗, Germain Haugou∗, Davide Rossi†, Qiuting Huang∗ and Luca Benini∗†

∗Integrated Systems Laboratory, ETH Zürich, Switzerland, {glaser, haugoug, huang, benini}@iis.ee.ethz.ch
†Electrical, Electronic, and Information Engineering, University of Bologna, Italy, davide.rossi@unibo.it

Abstract— Parallel ultra low power computing is emerging
as an enabler to meet the growing performance and energy
efficiency demands in deeply embedded systems such as the
end-nodes of the internet-of-things (IoT). The parallel nature of
these systems however adds a significant degree of complexity as
processing elements (PEs) need to communicate in various ways
to organize and synchronize execution. Naive implementations of
these central and non-trivial mechanisms can quickly jeopardize
overall system performance and limit the achievable speedup
and energy efficiency. To avoid this bottleneck, we present an
event-based solution centered around a technology-independent,
light-weight and scalable (up to 16 cores) synchronization and
communication unit (SCU) and its integration into a shared-
memory multicore cluster. Careful design and tight coupling of
the SCU to the data interfaces of the cores allows to execute
common synchronization procedures with a single instruction.
Furthermore, we present hardware support for the common
barrier and lock synchronization primitives with a barrier latency
of only eleven cycles, independent of the number of involved
cores. We demonstrate the efficiency of the solution based on
experiments with a post-layout implementation of the multicore
cluster in a 22 nm CMOS process where the SCU constitutes less
than 2 % of area overhead. Our solution supports parallel sections
as small as 100 or 72 cycles with a synchronization overhead of
just 10 %, an improvement of up to 14× or 30× with respect
to cycle count or energy, respectively, compared to a test-and-set
based implementation.

I. INTRODUCTION

The trend for ever increasing single-core performance,
mostly through faster clock frequencies, has long come to
an end for desktop, server and portable computers [1] as
the resulting power consumption and heat dissipation became
impractical to handle. To still meet the demands for growing
performance, the usage of multi-core processors has become
a widely adopted standard. Their efficient utilization however
introduced a new and significant aspect of complexity both
for the surrounding hardware as well as software running
on them. The turn to multi-core or parallel processors, often
simply referred to as multicores, recently also reached the
embedded computing domain: Rapidly evolving capabilities of
mobile, handheld and wearable devices as well as the era of the
internet-of-things (IoT) [2] push the performance requirements
for both general-purpose and specialized computing to very
challenging levels. While energy efficiency is a crucial metric
for most emebedded devices, it is especially true for IoT
endpoints where self-sustainability and battery lifetime are key
features.

One of the predominant approaches to meet the stated high

performance and feature demands while maintaining energy
efficient operation is parallel near-threshold computing [3]–
[6] which heavily relies on parallel architectures combined
with digital voltage and frequency scaling (DVFS). Making
shared resources such as memories or peripherals available to
all PEs naturally incurs a non-negligible overhead in terms
of area and power for arbitration, interconnect and routing
hardware. In order to not jeopardize the intended energy-
saving efforts, consequently as many PEs as possible must
be (uniformly) utilized and the remaining ones aggressively
power managed. How small an application can be in order to
still profit from parallelization in terms of energy efficiency
while taking into account both hard- and software overhead is
therefore an important figure of merit for embedded parallel
systems [3]. Similar and even more important is the granularity
with which applications can be parallelized before any gain
gets defeated by energy spent for parallelization [4]. This
figure is not only relevant for data-dependent programs that
require constant thread interaction but also for those where
the required granularity is non-constant and varies during
execution.

To support the execution of parallel programs, there must
exist mechanisms that enable PEs to organize and synchronize
execution, communicate with each other and to manage access
to exclusive resources, implementing synchronization primi-
tives typical of shared memory parallel programming models
such as OpenMP [7]. In this work, we focus on cache-less
shared-memory multiprocessors as they can provide DSP-class
processing performance while maintaining microcontroller-
class energy efficiency [4] when programmed with awareness
of the memory hierarchy. The shared memory concept makes
data exchange between cores and communication thereby triv-
ial, however still a proper (atomic) handshake protocol is re-
quired to guarantee functional correctness. All synchronization
mechanisms exhibit two important aspects, namely 1) on which
basis they are implemented, both from a hard- and software
perspective and 2) how PEs are treated that have to wait for the
continuation of execution. While achieving near-ideal speedup
is already extremely challenging when synchronization and
communication overhead is completely neglected [8], both
aspects contribute largely to overall achievable energy and
performance gains; improper or straight-forward solutions can
consequently have strong adverse effects [4], [9].

A universal approach is to use atomic memory access in the
form of hardware-supported test-and-set (TAS) or compare-

552978-3-9819263-2-3/DATE19/ c©2019 EDAA

and-swap (CAS) and the like in combination with spin locks on
shared variables. While all synchronization mechanism can be
implemented on this basis, spin locks as a form of busy waiting
heavily violates the principle of aggressively power managing
idle cores, with the repeated variable polling causing not only
wasted energy through unnecessarily active cores and loaded
interconnect systems, but also deteriorated performance for the
working core(s) due to congestion on the processor-to-memory
interconnect. Additionally, as each memory location can only
concurrently be accessed by a single core, even best-case
latency for synchronization primitives grows with the number
of contestants. The limitation of busy waiting can be avoided
by employing interrupt-based approaches [10], [11] and power
managing cores after the first unsuccessful access to an atomic
variable. While the scalability issues remain unresolved, the
handling of interrupts usually incurs large software overhead
due to the associated context switches. Furthermore, complex
interrupt controllers that support nesting and (multi-level)
prioritization (e.g., [12]) are often not required in computation-
centric clusters, targeted to handle DSP kernels with maximum
energy efficiency.

In this paper, we therefore propose a hardware-supported
solution for heterogeneous multicore synchronization and com-
munication that is completely based on idle waiting on events,
i.e., halting execution when necessary and continuing after a
signaling event without context change. We focus on aggres-
sively reducing the overhead devoted to entering and returning
from restful wait-states as well as for PE-to-PE signaling and
communication in terms of cycles and therefore energy. We
thereby enable 1) energy efficient fine-grain parallelization
and 2) power managing during very short idle phases in the
order of 10s of cycles. Contrary to the majority of previous
art, we do not rely on atomic access to shared memory with
possibly adverse effects on system performance while also
not requiring large message buffers or content addressable
memories (CAMs) solely devoted to synchronization.

II. RELATED WORK & CONTRIBUTION

The topic of energy efficient synchronization for embedded
multicore systems has become of great interest simultaneously
with their rise as neglecting it can significantly hinder energy
and performance gains [4], [8], [9]. Previous art related to
the analysis of different software implementations of syn-
chronization primitives can be found in [9]; a wide range of
works follows the approach of employing specialized hardware
blocks, aimed to accelerate synchronization and ultimately
improving performance and energy efficiency of multicore
systems [9]–[11], [13], [14], which we also do. A multitude of
works [15]–[17] raises the question whether any kind of power
managing should at all be employed immediately in case a
core is blocked at a synchronization point due to the overhead
associated with entering and leaving idle modes. The authors
of [16], [17] further propose to equalize execution speeds
among all cores by automatically tuning the clock frequency of
each one. Ultimately, the assumption of asynchronous clocks
implies loosely coupled cores, which in turn implies significant

inter-core communication overhead (simply going across dual-
clock FIFOs causes several cycles of latency). Hence, all the
solutions presented in the literature are suitable for parallel
synchronization-free regions of thousands of instructions; we
however target one to two orders of magnitude smaller regions.

We follow a fundamentally different and more regular
approach where the whole cluster operates from a single clock
source and workload is distributed as equally as possible in the
application itself. The focus is set on making fine-grain power
management in the form of clock gating amenable by reducing
the latency to enter and leave idle mode in a deterministic way
to three cycles. We provide hardware support for the typically
required barrier and lock primitives, reducing the number of
required bus transactions per core for both to one. We present
the central enabler for these features, a light-weight, modular
and flexible hardware synchronization and communication
unit (SCU) designed for the usage in embedded multicore
clusters as the central components of computing-centered
embedded systems. We detail architectural aspects that enable
synchronization primitives with very small overhead in terms
of latency, code size as well as both hardware- and software
complexity. Furthermore, the integration of the unit into a
tightly-memory coupled RISC-V based cluster with minimal
adaption of its cores and interconnect systems is shown.

In particular, we propose 1) support for endogenous event-
based signaling between cores and hardware support for syn-
chronization primitives such as barriers or locks, 2) support
for exogenous events from both tightly coupled accelerators
as well as remote PEs and peripherals and 3) coupling of the
unit to the core data interfaces, enabling restful wait states
with fused information exchange in a single load operation.We
present a technology-independent hardware implementation of
the SCU, analyze the scalability of the design and give exper-
imental results obtained from the integration into the RISC-V
based cluster and post-layout simulations in 22 nm CMOS. The
efficiency of the architecture is demonstrated through speedup
and energy analysis of synchronization primitives in a parallel
programming model [7] for synthetic benchmarks.

III. ARCHITECTURE

A. Heterogeneous multi-core cluster

The employed parallel computing cluster is based on a
configurable number of RISC-V cores (typically up to 16) that
belong to the microcontroller-class, however are extended with
several powerful DSP extensions, increasing the achievable
computation performance for typical kernels significantly [18].
To cope with tasks that require even higher processing power
but are specialized, high-bandwidth tightly memory-coupled
heterogeneous processing elements such as neural network
accelerators or DMAs are additionally incorporated [19], [20].
The architecture is depicted in Fig. 1, showing all important
building blocks. All cores request their instructions from a
shared cache; the L1 data memory serves as a local, shared
scratchpad memory and is single-cycle accessible by all PEs
through a dedicated logarithmic interconnect. The L1 intercon-
nect further implements test-and-set on a small address subset

Design, Automation And Test in Europe (DATE 2019) 553

shared instruction cache

L1 logarithmic interconnect

Peripheral
interconnect

Timer

bank 0 bank 1 bank 2n...
L1 data memory (word interleaved)

cluster bus

(AXI 64 bit)

core 0 core 1 ...

...

core n

DMA
L1 L2

CNN
acceler.SCU

...
...

...

... ...

data demux

instr

data demux

instr

data demux

instr

EE E

E

master-slave bus
private demux link
event sourceE

E

test-and-set

Fig. 1. Heterogeneous multi-core cluster, incorporating the synchronization
and communication unit (SCU).

to provide generic atomic memory access, used as a baseline
for the experiments in this work. A peripheral interconnect sys-
tem with relaxed throughput requirements enables the cores to
configure and control the additional PEs as well as peripherals
such as e.g., timers or also the SCU.

B. SCU Concept & Base Unit

A simplified architecture diagram of the SCU is depicted
in Fig. 2; detailed insight is given into the architecture of
the SCU base unit, instantiated once per RISC-V core and
responsible for the fundamental functionality of the SCU, i.e.,
event and wait state management. The implemented concept
is based on 32 level-sensitive event lines per core that are
connected to associated event sources of generic nature. Per
core, each set event line is stored into an event buffer which
in turn is maskable through event masks and interrupt masks
with the resulting signals being used as fundamental trigger
points for the tasks of the SCU. Basic interrupt support is also
provided to handle exceptions and other irregular events. The
control flow within each base unit is orchestrated by a FSM
with the three states active, sleep and interrupt-handling which
closely reflects the state of the associated core but employs
SCU-internal information to decide about state transitions:
Few internally computed Boolean signals are used as inputs,
examples include whether the core requested a wait state or if
the masked versions of the event buffer have any bit set.

C. SCU Extensions

While some of the 32 manageable event sources per base
unit are located outside of the SCU (e.g., specialized PEs
or cluster-internal peripherals), the bigger share of the events
is responsible for core-to-core signaling and thus generated
within the SCU by a set of SCU extensions. All extensions
generate a (usually) core-specific event that allows the in-
volved cores to continue execution. All extensions have trigger
and configuration signals connected to each base unit; the
associated functionality is reachable through memory-mapped
address regions. The set of all trigger signals gets processed
and results in the aforementioned per-core event source; for
extension types where simultaneous usage of more than one

BarrierNotifier

cfg, triggerext. trigger

trigger lock/
unlock message

read

write

ev
en

t
b

u
s

fr
o

m
 p

er
.

in
te

rc
o

n
n

ec
t

trigger
sources

empty

8

32

8
...

...

...

...

...

...

...

Base unit

Mutex

NB

NC

NC

NC

32

5

32

32

32

...

...
..

...

...

NC
NC+1

NC

NB NMx

...

...

Event FIFO

routing,
decoding ID

decode

clear
logic

FSM

register
write

extension routing / decode

sleep
req?

auto
clear?

cl
u

st
er

 e
v

en
ts

32

32

32
32

32

NMx×328×NB

NMx

evt
buff

evt
mask

arbiter

irq_req clock_oncore_busyirq_idack_id irq_ack

> 0

> 0

irq
mask

NB NMx

5

active

sleepirq

FSM

trigger

trigger_en

ad
d
r

w
d
at

a

rd
at

a

gnt

clear

32

ad
d
r

rd
at

a

...

...

......

regular signalsnumber of cores
number of barriers

number of mutexes private demux bus
shared crossbar bus
event linesNB

NC

NMx

Fig. 2. Simplified architecture of the SCU and extensions, functional overview
of the base units. Signals on the bottom connect to the cores, signals on the
left to the cluster and higher hierarchies.

instance by a core has no sensible usecase, all event lines
targeting a specific core get logically ORed to a single line
over all instances. The most relevant extensions for the targeted
parallel programming frameworks are the barrier and mutex
types as they realize the functionality of the fundamental
programming elements parallel sections and critical sections
for parallel programming models such as e.g., OpenMP [21],
which we have implemented on top of a bare-metal runtime.
The number of barrier units can be anything between a single
and 16 to support every team-building variant even for the
maximum number of supported cores. Whenever a set of target
cores may only continue execution after a (possibly different)
set of triggering cores has reached a defined point in the
program, this extension allows to reduce the overhead spent
for such orchestration. The possibly different or even disjoint
sets of target and triggering cores are reflected in independent
registers with the target cores getting sent an event once all
triggering cores have arrived at the barrier and entered restful
wait states.

The functionality of each mutex instance is realized with a
single address, with read access corresponding to lock attempts
and write access to unlocking it. The core who gets ownership
of the mutex is, consequently following our modular approach,
informed through an event. The notifiers realize a general-
purpose, matrix-style single-, multi- and broadcast core-to-
core signaling mechanism. Each notifier is connected to an
independent event source per core and is triggerable from every
core.

An additional, heterogeneous trigger source is provided
through a system-wide peripheral bus, allowing higher-level
cores to wake up idle clusters. Since complex SoCs can feature
more than 32 distinct event sources (e.g., from medium/low-
speed on- or off-chip peripherals), the event FIFO is used to
serialize one event line, shared with all base units. In this way,
an ample amount of non-time critical event sources (up to
256) can be handled. A simple 8 bit event bus with handshake
pushes the identifier of incoming events into the FIFO; the
associated event remains asserted until the buffer is empty.

554 Design, Automation And Test in Europe (DATE 2019)

2 4 8 16
number of cores N

C

10-1

100

101

un
it

 a
re

a
[k

G
E

]

to
ta

l a
re

a
[k

G
E

]

Base unit
Barrier unit
External event FIFO
Mutex unit

2 4 8 16
number of cores N

C

0

20

40

60

80
Basic units
Barrier units
External event FIFO
Mutex unit
Interconnect

Fig. 3. Area scaling of the basic unit and the available extensions.

D. SCU Scalability

Fig. 3 shows the area scaling of the SCU when the main
parameter, the number of cores NC, is increased, both for the
total area (with the number of barriers NB = NC/2, number of
mutexes NMx = 1) as well as for the individual sub-units; the
plots show post-synthesis numbers in a 22 nm process with
a timing constraint of 500 MHz. We restrict the maximum
number of cores to 16 as the low-latency interconnect systems
of the hosting cluster do not scale well beyond this config-
uration. An analysis of the slopes in the double-logarithmic
unit area plot in Fig. 3 yields that the individual components
of the SCU scale at worst mildly super-linear (barrier units),
most however sub-linearly or even remain constant in size. The
resulting overall area favorably scales sub-linearly or linearly
for up to eight cores and mildly super-linearly when further
increasing NC to the maximum configuration. In all cases, the
base units make up for the lion share while the essential barrier
and mutex extensions contribute little extra area; routing for the
system-wide peripheral interconnect to the connected base- and
barrier units also contributes significantly for the two largest
configurations.

E. SCU Integration

Wherever possible, the SCU is connected as a regular,
memory mapped slave to the shared peripheral interconnect. In
this way however, only a single core can get access in a given
cycle, additionally latency is non-deterministic. Concurrent
access to the event buffering and –triggering base units is
crucial for synchronization performance, as otherwise the
performance bottleneck originating from the race for access to
shared variables known from atomic memory implementations
effectively remains. Consequently, additional private, one-to-
one links between each core and its corresponding base unit
are employed. As can be seen in Fig. 1, a demux at the data
port of each core routes requests to the L1 interconnect, the
peripheral interconnect or the private link; in the last case a
final routing decision between SCU and DMA is made since
the latter similarly requires a fast path for configuration. The
private link is purely combinational between core data interface
and SCU, enabling single-cycle access. In the example of
the barrier extensions, the private links allow any number of
cores to concurrently trigger a barrier, rendering the associated
synchronization primitive cycle cost constant.

event in

event buffer

ext. trigger

request

grant

resp. valid

resp. data ebuf

-x -1 elw +1 +2

core clock

core busy

program counter (instr. decode stage)

private link core SCU

SCU base

Fig. 4. Interfacing of the SCU with a RISC-V core and corresponding timing.
Shaded intervals correspond to transitions from and to sleep state, respectively.

As the one-to-one correspondence between each core and
associated base unit is equivalent to aliasing its address space,
no address calculations dependent on the core-ids are required,
accelerating and simplifying synchronization primitives. Even
though usually not necessary, all base units are accessible
by every core as well as cluster-external masters through the
peripheral interconnect and a global address space. Registers
that would put the corresponding core to sleep when accessed
are excepted from this access method.

IV. SINGLE-INSTRUCTION SYNCHRONIZATION

When arriving at a synchronization point, systems relying
on event-based signaling usually require cores to execute
very similar sequences independent of the concrete nature of
the synchronization point: First, the synchronization-managing
entity has to be informed about the arrival, followed by a
special instruction that initiates power managing of the issuing
core, i.e., in our approach, clock gating it. Once execution can
continue, the triggering event has to be cleared in order to be
able to enter following wait states. In case of multiple active
event sources, prior to clearing, the event buffer must also be
read in order to direct program flow accordingly.

Following our goal of aggressively reducing synchronization
overhead, we extensively exploit the dedicated link between
each core and corresponding SCU base, the available address
space (1 Kibit, per-core aliased) as well as the in-order execu-
tion model of the used core to handle the described, frequent
sequence with a single instruction. We employ the basic load-
word (lw) instruction with an altered opcode in order for the
core controller to distinguish regular and event-related word
loads; our added instruction has the mnemonic elw (for event-
load-word). The resulting transactions at the data ports of the
cores are identical to those originating from regular loads;
event-load-word operations addressing the private core-SCU
links however have the following desired side-effects:

1) If within a defined set, the employed address causes the
sleep-req logic in Fig. 2 to flag the request of a wait state to
the FSM which in turn blocks the grant of the read transaction.
Consequently, the core pipeline gets stalled; the core controller
flags idleness to the SCU as soon as any potentially ongoing
multi-cycle instruction is completed. Finally, the SCU sends
the core into a restful wait state by turning off its clock.
2) In addition, a subset of the sleep-req address-set causes the

Design, Automation And Test in Europe (DATE 2019) 555

2 4 8
participating cores

0

5

10

15

E
ne

rg
y

[n
J]

2 4 8
participating cores

0

50

100

150

200

[c
yc

le
s]

 SCU barrier
 test-and-set

Fig. 5. Barrier primitive cost in terms of cycles and energy.

SCU base to trigger an extension prior to sleeping. Examples
include to request ownership of a mutex, triggering of a barrier
or sending notifiers. 3) Once an activated event is present
in the event buffer, the FSM initiates the core wakeup by
re-enabling its clock and simultaneously asserting the so far
blocked grant. 4) The response channel, valid one cycle after
a granted request, is used to inform the issuing core about the
content of its event buffer. For extensions that require message
passing, this mechanism can also be leveraged to intrinsically
pass up to one word between cores. In the example of the
mutex extension, we added the possibility for the unlocking
core (which does so through a non-blocking write transaction)
to pass a message to the following locking core. 5) Again
controllable through the address, all events that are activated
and present in the event buffer can be automatically cleared.

The process is illustrated in Fig. 4 with all optional possibili-
ties used (extension triggering on wait-state entering, automatic
buffer clear). The required changes in the core to support
this powerful mechanism are limited to decoding the elw
instruction to release the busy-signal which would otherwise
remain asserted on a pipeline stall due to the pending load.

V. EXPERIMENTAL RESULTS

To demonstrate the efficiency of the proposed SCU-based
solution, we provide an overhead analysis for the two most
commonly used synchronization primitives, namely barriers
used in parallel, and mutexes, used in critical sections [21]. As
our primary goal of energy reduction for fine-grain parallelized
tasks is mainly achieved by reducing the execution time of
synchronization primitives, we provide a comparison of our
solution with a software-based test-and-set approach both in
terms of cycles as well as in terms of the resulting energy.

A. Hardware Platform

Energy results were obtained from a placed and routed
implementation of the multicore cluster in Fig. 1 in a 22 nm
CMOS process. It features eight RISC-V cores, 64 kByte L1
memory and 8 kByte of instruction cache. The implemented
module measures 0.8 mm×1.4 mm with pre-placed SRAM
macros for the L1 memory and a 250 MHz timing constraint1;
the SCU with four barriers and one mutex extension account
for less than 2 % of the cluster area. Energy was computed as
the product of used cycles and average power consumption,
obtained through simulations of the resulting gate-level netlist
(typical process corner, 0.8 V supply, 25 ◦C).

1Tools used: Synopsys Design Compiler 2016-12, Cadence Innovus 17.11

101 102 103 104

parallel section size [cycles]

0

20

40

60

80

100

ba
rr

ie
r

cy
cl

e
ov

er
he

ad
 [

%
]

10% overhead

 test-and-set, 8 cores
 test-and-set, 4 cores
 test-and-set, 2 cores
 SCU barrier

Fig. 6. Relative overhead vs. parallel section size with respect to cycles of
test-and-set software-based and SCU hardware-based barrier implementations.

B. Synthetic Benchmarks

To accurately quantify the synchronization overhead, we
execute a parallel section of controllable size on a varying
number of cores. At the end of the parallel section, the
involved cores need to synchronize execution which is done
both through a test-and-set (TAS) based software barrier as
well as with the SCU barrier extension. For fair comparison,
the TAS-based version does not let the early arriving cores spin
at the barrier but also uses the idle-wait mechanism described
in Sec. IV. To quantify the savings for mutual exclusive code
sections, we add a critical section at the end of the parallel
section, implemented either with TAS-based atomic memory
access or the SCU mutex extension. The placement of the
critical section reflects typical kernel usecases where a shared
variable needs to be updated by all worker cores at the end of
a parallel section, taking only very few (up to ten) cycles. The
benchmarks were compiled with an extended version of the
riscv-gcc 7.1.1 toolchain that supports the elw instruction.

Fig. 5 shows the cost of a barrier in cycles for both imple-
mentations. As already mentioned in Sec. IV, the possibility of
concurrent access to the SCU for all cores allows to keep the
cycle overhead constant, no matter how many involved cores;
the low SCU access latency and instruction count for a barrier
results in only eleven cycles for the execution of the primitive.
Since the length of the parallel section has no influence on the
execution time of following synchronization primitives for both
implementations, the relative cycle overhead can be calculated
for arbitrary parallel section sizes, as is shown in Fig. 6 for
parallel and Fig. 7 for critical sections. For parallel sections
of up to 100 cycles, the relative overhead is reduced by at
least 24 %; when allowing for a 10 % synchronization cycle
overhead, our solution allows for 4.7 to 14× smaller minimum
parallel section sizes. The difference between the two imple-
mentations gets even larger when energy is considered; Fig. 5
shows that the SCU supported variant consumes between 4×
(two active cores) and 30× (all eight cores) less energy, in
the latter case allowing for parallel sections as small as 72
instead of 2154 cycles with only 10 % of the energy spent for
synchronization. While a large part of the improvement stems
from the reduced cycle count, the TAS-based implementation
also suffers from energy-intensive L1 accesses.

The behavior for mutual exclusive sections is evaluated by
measuring the actual amount of cycles required for all cores

556 Design, Automation And Test in Europe (DATE 2019)

101 102 103

parallel section size [cycles]

0

50

100

150

200
m

ut
ex

 c
yc

le
 o

ve
rh

ea
d

[%
]

4-cycle critical section

101 102 103

parallel section size [cycles]

10-cycle critical section

 test-and-set, 8 cores
 test-and-set, 2 cores
 SCU mutex, 8 cores
 SCU mutex, 2 cores

Fig. 7. Relative cycle overhead for critical sections vs. parallel section
length for TAS-based and SCU mutex supported implementations. The lines
corresponding to four cores have been omitted to improve graph readability.

to execute the parallel plus critical section. Ideally, this should
take Tideal = Tpara +TcritNC cycles with Tpara and Tcrit being the
length of the parallel and critical section respectively, and NC
the number of involved cores. The relative cycle overhead is
computed as (Ttotal −Tideal)/Tideal and shown in Fig. 7 for two
different Tcrit. Compared to the cycle reduction for parallel
sections, the savings achieved with the SCU mutex are much
smaller; in the extreme case of Tcrit = 4 and NC = 2, no
difference is perceptible. However, for Tcrit = 4, eight cores and
very small parallel sections, causing the relative overhead to
exceed 100 % with both implementations, the dedicated SCU
architecture can reduce the overhead for e.g., Tpara = 20 from
188 % to 140 %. The main reason for the limited performance
gains through the SCU based implementation is that a TAS-
variable inherently allows for cycle-efficient mutex implemen-
tation while for the barrier case a counter must be made
exclusively accessible.

The picture is different however for the energy spent for
small critical sections: As can be seen in Fig. 8, the energy
consumed by the TAS-based solution is between five and 62 %
higher (Tcrit = 10, NC = 8), in the latter case translating into a
minimum parallel section size of 992 instead of 1603 cycles for
10 % energy overhead, an improvement of 38 %. Similar to the
barrier case, the avoidance of expensive L1 memory accesses
makes the SCU superior with respect to energy efficiency, even
with significantly smaller cycle count reduction.

VI. CONCLUSION

We showed that straight-forward implementations of syn-
chronization mechanisms can significantly compromise energy
efficiency of embedded multicore systems and prohibit fine-
grain parallelization [4]. We proposed a hardware-supported
solution that aggressively reduces the overhead used for syn-
chronization primitives to enable parallel sections in the order
of 10s of cycles. Careful and tailored design of the presented
SCU improves energy efficiency by reducing instruction and
cycle count through low-latency and parallel access as well
as by doing away with contending shared variable access.
An extended version of this work is currently in preparation,
including a detailed analysis of the impact of the proposed
synchronization solution on the performance and energy of
parallel kernels and benchmarks.

4-cycle critical section

2 4 8
participating cores

0

2

4

6

8

10

E
ne

rg
y

[n
J]

 SCU mutex
 test-and-set

10-cycle critical section

2 4 8
participating cores

0

2

4

6

8

10

E
ne

rg
y

[n
J]

Fig. 8. Energy spent for the execution of critical sections.

REFERENCES

[1] D. Geer, “Chip makers turn to multicore processors,” IEEE Computer,
vol. 38, no. 5, pp. 11–13, May 2005.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(IoT): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, Sept. 2013.

[3] A. Y. Dogan et al., “Power/performance exploration of single-core and
multi-core processor approaches for biomedical signal processing,” Int.
Workshop on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pp. 102–111, Sept. 2011.

[4] D. Rossi et al., “Energy-efficient near-threshold parallel computing: The
PULPv2 cluster,” IEEE Micro, vol. 37, no. 5, pp. 20–31, Sept. 2017.

[5] R. G. Dreslinski, B. Zhai, T. Mudge, D. Blaauw, and D. Sylvester, “An
energy efficient parallel architecture using near threshold operation,” Int.
Conf. on Parallel Architecture and Compilation Techniques (PACT), pp.
175–188, Sept. 2007.

[6] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming Moore’s Law through
energy efficient integrated circuits,” Proc. of the IEEE, vol. 98, no. 2,
pp. 253–266, Feb. 2010.

[7] A. Marongiu and L. Benini, “An OpenMP compiler for efficient use
of distributed scratchpad memory in MPSoCs,” IEEE Transactions on
Computers, vol. 61, no. 2, pp. 222–236, Feb 2012.

[8] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE
Trans. on Computers, vol. 41, no. 7, pp. 33–38, July 2008.

[9] O. Golubeva, M. Loghi, and M. Poncino, “On the energy efficiency
of synchronization primitives for shared-memory single-chip multipro-
cessors,” Proc. of ACM Great Lakes Symp. on VLSI (GLSVLSI), pp.
489–492, March 2007.

[10] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient syn-
chronization for embedded on-chip multiprocessors,” IEEE Trans. Very
Large Scale Integ. (VLSI) Syst., vol. 14, no. 10, pp. 1049–1062, Oct.
2006.

[11] C. Yu and P. Petrov, “Low-cost and energy-efficient distributed synchro-
nization for embedded multiprocessors,” IEEE Trans. Very Large Scale
Integ. (VLSI) Syst., vol. 18, no. 8, pp. 1257–1261, Aug. 2010.

[12] ARM Holdings, ARM Cortex-M7 Processor Technical Reference
Manual, Chapter 7. Nested Vectored Interrupt Controller,
https://developer.arm.com/docs/ddi0489/latest/nested-vectored-interrupt-
controller, July 2015.

[13] H. Xiao, T. Isshiki, D. Li, H. Kunieda, Y. Nakase, and S. Kimura,
“Optimized communication and synchronization for embedded multipro-
cessors using ASIP methodology,” Information and Media Technologies,
vol. 7, no. 4, pp. 1331–1345, Jan. 2012.

[14] S. H. K. et al., “C-Lock: Energy efficient synchronization for embedded
multicore systems,” IEEE Trans. on Computers, vol. 63, no. 8, pp. 1962–
1974, Aug. 2014.

[15] C. Ferri, R. I. Bahar, M. Loghi, and M. Poncino, “Energy-optimal
synchronization primitives for single-chip multi-processors,” Proc. of
ACM Great Lakes Symp. on VLSI (GLSVLSI), pp. 141–144, 2009.

[16] M. Loghi, M. Poncino, and L. Benini, “Synchronization-driven dynamic
speed scaling for MPSoCs,” Proc. of Int. Symp. on Low Power Electron-
ics and Design (ISLPED), pp. 346–349, Oct. 2006.

[17] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J. Irwin, “Exploiting
barriers to optimize power consumption of CMPs,” Proc. of Int. Parallel
and Distributed Processing Symp. (IPDPS), April 2005.

[18] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions
for scalable IoT endpoint devices,” IEEE Trans. Very Large Scale Integ.
(VLSI) Syst., vol. 25, no. 10, pp. 2700–2713, Oct 2017.

[19] F. Conti et al., “An IoT endpoint System-on-Chip for secure and energy-
efficient near-sensor analytics,” IEEE Trans. Circuits Syst. – I: Reg.
Papers, vol. 64, no. 9, pp. 2481–2494, Sept 2017.

[20] A. Pullini, D. Rossi, I. Loi, A. D. Mauro, and L. Benini, “Mr. Wolf:
a 1 GFLOP/s energy-proportional parallel ultra low power SoC for
IoT edge processing,” Proc. IEEE European Solid-State Circuits Conf.
(ESSCIRC), Sept. 2018.

[21] OpenMP Architecture Review Board, The OpenMP API specification for
parallel programming, https://www.openmp.org.

Design, Automation And Test in Europe (DATE 2019) 557

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

