
Abstract—Heterogeneous multicore systems help meet design
goals by using disparate hardware components that are suitable
for different application requirements/design goals. The
individual cores may also have different tunable hardware
parameters for additional specialization. However, this
complicates scheduling since to reap the benefits of specialization,
applications should be scheduled to the core that offers the best
configuration based on the application’s requirements and design
goals. This scheduling decision could be made by exploring the
design space to evaluate different configurations to determine the
best configuration, or by executing the application in a base
configuration to gather execution statistics to predict the best
configuration. However, given increasingly complex systems,
these methods may be infeasible given extremely large design
spaces or difficulty in choosing a representative base
configuration. In this paper, we present a dynamic scheduling
methodology that uses predictive methods to schedule
applications to best configurations for reduced energy
consumption for a system with configurable caches. We use an
artificial neural network (ANN) to train our predictive model
using hardware counters. The trained ANN can then be used to
predict the best core and a tuning heuristic explores the design
space to determine the best configuration on non-best cores. If the
best core is busy, our scheduler considers alternative idle cores or
the application is stalled depending on which decision is energy
advantageous. Our experiments show that system energy can be
reduced by 28% on average as compared to a fixed-core system
where all cores offer the same configuration.

Index Terms — Dynamic scheduling, embedded systems, Machine
Learning.

I. Introduction
Energy efficiency, high performance, quality of service, etc. are key
design goals in the embedded computing domain. Application-
specific hardware specialization can be leveraged to meet these goals.
Many hardware components can be specialized, such as the cache
subsystem, processor bit-width, instruction set architecture (ISA)
type, instruction issue width, etc.

Heterogeneous multicore systems offer a powerful mechanism for
specialization since each core can provide different configurable
architectural components—different configurations. For example, a
system with different core ISA types may include MIPS, ARM,
PowerPC, etc., and even different versions of the ISAs can be offered,
such as ARM big.LITTLE, Intel Quick IA, etc. This heterogeneity
offers a coarse-grained specialization, but to further improve design
goal adherence, each core can offer different configurable hardware
parameters for more fine-grained specialization, such as voltage,
frequency, cache size, etc.

All combinations of different core types and different per-core
configurable parameter values constitutes the configuration design
space, of which each configuration offers different design goal
tradeoffs (e.g., energy versus performance). An application’s best

(optimal or near-optimal) configuration is the configuration that most
closely adheres to design goals, and this configuration is offered by
the application’s best core.

In configurable heterogeneous multicore systems, scheduling can
be viewed as two separate steps: scheduling the application to the core
that offers the best configuration, then configuring that core to the best
configuration. Both steps are considerably challenging since the
scheduler must be aware of all of the cores’ configurations and make
scheduling decisions based on many factors such as core availability,
application deadlines, design goals, etc. If the application’s best core
is idle, the application is scheduled to that core and if the best
configuration is already known on that core, the core is immediately
configured to the best configuration. However. if the best
configuration is unknown, design space exploration introduces tuning
overhead in the form of system degradation as the configuration(s)
is/are physically executed to determine the best configuration. If the
best core is busy, the scheduler must additionally consider the
tradeoffs between stalling the application until the application’s best
core is idle or running the application on a non-best core, thus
incurring additional overhead while stalling, and tuning, and/or
executing in a non-best configuration. Therefore, ineffective
scheduling significantly impacts system operation and quickly
obviates any benefits from such a configurable system [13].

Many approaches have been proposed to determine an
application’s best configuration. Exhaustive and heuristic-based [9]
approaches evaluate all or a subset of potential configurations,
respectively. However, for large design spaces in complex systems,
this physical exploration is infeasible. Even though the large design
space helps to increase design goal adherence due to the presence of
numerous configurations, searching too many configurations incurs
too much overhead, reducing/eliminating the benefits that the system
would gain from specialization, since executing non-best
configurations can incur tremendous energy and performance
overheads. This makes determining the best configuration while
limiting tuning overhead an arduous task.

To reduce or eliminate tuning overhead, predictive methods have
also been proposed, such as regression models [3][11][22], and
recently, machine learning techniques [19][25], which have vast
potential and are the focus of our proposed work. Based on the
prediction power of many machine learning techniques, we base our
design on an artificial neural network (ANN), which we train to
predict the best core for an application using execution statistics (e.g.,
instructions per cycle (IPC), number of stall cycles,
memory/computation intensity).

In this work, we design a scheduler for a heterogeneous multicore
system with disparate cores and disparate core configurations that
optimizes energy consumption while considering performance.
Without loss of generality, we consider a system with configurable
caches, wherein each core offers a different total cache size, since
cache size has the largest impact on energy and performance, and each
core has configurable line sizes and associatvities. Our scheduler
schedules applications to the application’s best core based on the
application’s predicted best cache size using the trained ANN. If the

Dynamic Scheduling on Heterogeneous Multicores
Ayobami Edun, Ruben Vazquez, Ann Gordon-Ross* and Greg Stitt*

Department of Electrical and Computer Engineering, University of Florida
Gainesville, Florida, USA

Email: {aedun, ruben.vazquez, anngordonross, gstitt}@ufl.edu
*Also affiliated with the NSF Center for Space, High-Performance, and Resilient Computing (SHREC) at UF

1664978-3-9819263-2-3/DATE19/ c©2019 EDAA

best core is idle, the application is scheduled to that core, but if the
best core is busy, an equation evaluates if it is energy advantageous to
schedule the application to an idle non-best core or to stall the
application until the best core is idle. After scheduling, if the best
configuration on that core (best or non-best core) is known, the cache
is directly configured to that configuration, and if the best
configuration is not known, the application is profiled on the profiling
core. Even though we focus on the cache system due to the cache’s
large contribution to system energy consumption [30], our work is
generally applicable to any configurable system parameter. Our
experiments show that total energy can be reduced by 28% on average
as compared to a system that uses the same fixed cache configuration
for all the cores.

II. Related Work
Multicore systems can execute applications efficiently since
execution can be parallelized across the cores and the cores can be
specialized to meet different application goals/requirements. Much
research has focused on leveraging heterogeneous systems for energy
efficient computing. Several algorithms scheduled applications to
cores offline [10][23][24] while others do this scheduling at runtime
[2][6][8]. Kumar et al. [9] used a heuristic to schedule applications to
cores using a single ISA system. That method had a sampling phase
where all possible scheduling of jobs to cores was examined and then
the best scheduling was determined. However, the sampling approach
is not realistic as the number of cores and applications increases since
all possible combinations must be examined. Becchi et al. [2] also
used a sampling technique where threads were executed periodically
on all types of cores, however, that approach posed high tuning
overhead.

Recent works have been able to build models that can predict what
core configurations are suitable for an application [20][28]. Silva et
al. [21] attempted to optimize both performance and energy using an
offline data mining approach to determine the best core, then
suggested the best scheduling of applications to cores, however, that
work was limited due the offline scheduling that could not consider
runtime variations. Sayadi et al. [20] used different machine learning
algorithms for energy efficient prediction and scheduling. That work
is most closely related to our proposed work, however, their work
focused more on different core architecture compositions while we
focus on configurable caches. The authors showed the impact of using
several machine learning techniques, including neural networks, to
obtain more accurate results. Van Craeynest et al. [29] used
Performance Impact Estimation (PIE) to predict the scheduling of
workloads to cores by extracting performance information, such as
cycles per instruction (CPI), number of cache misses, instruction level
parallelism (ILP), etc., to estimate the performance of a workload if
the workload executed on a different core. This information was used
to determine if the application should continue executing on the

current core or if the application should be migrated to a different core
based on the core’s PIE prediction. Chen et al. [4] used Euclidean
distance to schedule applications by mapping the core’s configuration
and the application’s resource demands in to a multidimensional
space. That work reduced energy by approximately 6.1%, which
shows the limitation of heuristics since, as the core count increases,
thus so will the design space, resulting in design space exploration
becoming an increasingly arduous task.

Other works focused on optimizing different design goals using
different scheduling techniques. Salamy et al. [18] used ILP to
schedule applications on multicores under energy and power
constraints. Munawar et al. [14] evaluated peak power management
for real time tasks by introducing sleep cycles on each active core to
ensure power consumption was within the thermal constraints. Other
authors optimized for reliability [15] and temperature [27]. Liu et al.
[12] used optimal cluster scheduling for real time task scheduling on
heterogeneous systems to reduce energy, however, their system
incurred a high tuning overhead due to task migrations.

Our work focuses on optimizing energy consumption. We build on
prior work [1] where the authors proposed a scheduling and tuning
(SaT) algorithm that used data mining to subset core configurations
and scheduled applications to both best and non-best cores. However,
that work executed applications with each configuration on each core,
while our work uses machine learning to reduce tuning overhead. Our
scheduler uses a single application execution to predict the best core
and a tuning heuristic to determine best configuration on non-best
cores. To the best of our knowledge, this is the first dynamic
scheduling solution that combines machine learning techniques and a
heuristic for energy optimization.

III. System Architecture and Core Configurations
Figure 1 depicts our sample quad-core heterogeneous system
architecture, which is suitable for our experimental benchmarks
(Section VI). This general structure could be scaled up or down for
different system requirements. Each core has a dedicated private level
one (L1) cache, a cache tuner that configures the L1 cache parameters,
and a private non-configurable level two (L2) cache.

Table 1 shows the complete cache configuration design space,
which lists the cache size in Kbytes (KB), the associativity in number
of ways (W), and the line size in Bytes (B). Since the cache size has
the largest impact on energy and performance, tuning overhead is
reduced by subsetting the design space across all cores, wherein each
core has a fixed cache size. Core 1, Core 2, Core 3, and Core 4 use
2KB, 4KB, 8KB, and 8KB cache sizes, respectively. On each core,
the line size can be configured to 16B, 32B, or 64B, and the
associativity can be configured to 1-, 2-, or 4-way. These values were
chosen based on prior work on cache configuration [1] and the
requirements of our experimental benchmarks, however, we note that
these values can be altered for different application requirements.

To gather execution statistics for the ANN predictor, we profile the
application and predict the best configuration - cache size, line size
and associativity using Core 4 (a core with the largest cache size)
while executing in a base cache configuration of 8KB_4W_64B. This
configuration provides a pessimistic view with respect to energy
consumption, has the lowest number of cache misses, and has been
shown in prior work to be an ideal general configuration [1]. Even

Figure 1: Core architecture.

Table 1:
Cache configuration design space

2KB_1W_16B 2KB_1W_32B 2KB_1W_64B
4KB_1W_16B 4KB_1W_32B 4KB_1W_64B
4KB_2W_16B 4KB_2W_32B 4KB_2W_64B
8KB_1W_16B 8KB_1W_32B 8KB_1W_64B
8KB_2W_16B 8KB_2W_32B 8KB_2W_64B
8KB_4W_16B 8KB_4W_32B 8KB_4W_64B

Design, Automation And Test in Europe (DATE 2019) 1665

though for simplicity Core 4 is the primary profiling and prediction
core, Core 3 can also be used as a secondary profiling core if Core 4
is busy. Likewise, when Core 4 is idle (not profiling), Core 4 can
execute applications.

IV. Scheduler
A. Overview
Cores 3 and 4 are profiling cores and both cores can run our scheduler,
the ANN predictor, and orchestrate tuning, which is part of the
operating system kernel. Since we designate Core 4 as the primary
profiling core, Core 4 also contains a profiling table that stores
profiling information for all applications, including the execution
statistics for the base configuration, and the performance and energy
consumption of any core configurations that have been explored
during design space exploration (Section IV.E). This storage
eliminates future profiling executions and enables the tuning heuristic
to operate across multiple application executions. We assume that
when Core 3 is used as the secondary profiling core, Core 3 can access
Core 4’s profiling information using the existing communication
network.

Figure 2 shows our proposed system’s operational flow. Incoming
applications are stored in a ready queue and are processed in first-
come first-served (FIFO) order. When an application is to be
executed, the application is dequeued from the ready queue. If the
application has no profiling information, the application is profiled on
Core 4 (Section IV.B) and the ANN (Section IV.C) predicts the best
core (Section IV.D). If there is profiling information, a scheduling
decision is made. If the best core is idle, the application is scheduled
to that core. If the best core is busy, and the best configurations are
not known for the idle core(s), the scheduler is unable to determine if
it is energy advantageous to schedule to a non-best core (Section
IV.E) because there is not enough information about the design space.

In this situation, the application is scheduled to an arbitrary idle core.
Regardless of the scheduled idle core, if the best configuration on that
core is known, the core is directly configured to that configuration,
otherwise a tuning heuristic (Section IV.F) iteratively explores the
design space on that core to determine the best configuration on that
core. If the application’s best configuration is known for the idle non-
best core(s), the scheduler can evaluate whether it is energy
advantageous to stall the application until the best core is idle or to
run the application on a non-best core. If the application is stalled, the
application is enqueued back into the ready queue.

B. Profiling
During profiling, the application’s execution statistics while
executing in the base configuration are recorded using built in
hardware counters, such as memory access counts, cache misses, etc.
This profiling could be eliminated if the applications were known a
priori with profiling-based statistics recorded at design time and this
profiling information can be pre-loaded. However, since this does not
provide much flexibility, we assume that the profiling is done
dynamically during runtime. After profiling the application, the
execution characteristics are stored in the profiling table. This
information is used to predict the best core using the ANN predictor.

C. ANN predictor
Figure 3 shows the 3-layer ANN that our scheduler uses to predict the
best core (i.e., best cache size). The ANN is made up of the inputs (x),
the weights (w), the processing elements (PEs) that compute an output
from the given inputs and weights, and the final output (y). The inputs
to the ANN are the cache-relevant execution statistics for each of the
training applications. The vertically aligned PEs constitute a layer and
the number of layers defines the ANN’s size and is notated as {n1, n2,
…, nm}, where nm is the number of PEs in m-th layer. Empirical
analysis determined that the best ANN size for the best cache size
prediction was {10, 18, 5, 1}.

D. Best core prediction
To make accurate best core predictions, the ANN must be trained
using applications from a similar application domain using features
that reflect execution statistics of the configured hardware
components. Prior work showed that applications from similar
application domains have similar execution statistics [16]. Since we
target embedded systems, we trained the machine learning algorithm
offline using the EEMBC benchmark suite as training data and an
energy model (Section V).

The training data consisted of 270 total inputs—18 different cache-
relevant execution statistics for each of the 15 benchmarks. We note
that for diverse systems executing different application domains, the
scheduler could have multiple ANNs each of which would be
specialized for a different domain. After feature selection, the
execution statistics most relevant for cache size prediction where the
total number of instructions, the number of cycles for one complete
benchmark execution, the number of load and store instructions, the
number of branches, and the number of integer and floating-point
instructions.

We split our training data into three sets: the ANN was trained with
70% of the input data, 15% was used as the validation set, and 15%
was used as the test set. We used bagging to improve the ANN’s
accuracy and generalization, which trains several different ANNs
using a subset of the input data and averages the ANNs’ outputs to
determine the final prediction. We trained 30 ANNs and initialized
the model weights randomly, resulting in ANNs that may result in
more accurate predictions for certain inputs. Results obtained using
methods described in Section V showed that the ANNs predicted best
cache sizes (indicating the best core) only degraded the average

Figure 2: Our proposed scheduler

Figure 3: 3-layer ANN to predict the application’s best core

1666 Design, Automation And Test in Europe (DATE 2019)

energy consumption by less than 2% over all the benchmarks as
compared to the optimal cache size.

E. Scheduling on a non-best core
If the application’s best core is busy, and there are other cores that are
idle, the application can be scheduled to run on a non-best core. Since
these cores are expending idle energy anyway, it may be energy
advantageous to utilize this idle energy to execute the application on
a non-best core. However, since the application will require more
dynamic energy executing on a non-best core, this extra energy must
be considered when making scheduling decisions.

To make this decision, the scheduler must know the energy
consumption of the application executing with the best configuration
offered on the non-best core. If this configuration is known, the
configuration and the configuration’s energy and performance are
stored in the profiling table. The scheduler evaluates whether or not it
is energy advantageous: stalling the application until the best core is
idle or scheduling the application to a non-best core.

This decision can be explained using a simple example. Assuming
a system with two applications A and B where A and B have the same
best core C1, the energy advantageous decision (Eadv, a Boolean value
where 1 indicates that stalling is energy advantageous) is evaluated
using the following equation:

where and are the energy consumptions of A
and B executing on these applications’ best core C1, is the
energy of B executing on a non-best core C2, and is
the idle energy of core C2.. If A is executing on the best core C1 when
B arrives and C2 is idle, the scheduler compares the energy expended
by executing B on C2 () to the energy expended by stalling
B until A completes. The stall energy is calculated as the energy that
will be consumed while executing the remaining portion of A, plus the
idle energy expended by C2 for that same period, plus the energy to
execute B on C1 after A completes execution. The remaining execution
time in cycles for A is equal to the total number of cycles to execute
A for one complete execution minus the number of cycles that A has
already been executing for. The remaining energy consumption can
be estimated by multiplying this remaining number of cycles by the
average energy consumption per cycle. This stall energy is evaluated
for all idle cores where the best configuration on that core is known.
If this stall energy is greater than the energy expended by running B
on C2 (), and A on C1, B will be scheduled to the non-best
core C2 if and only if the best configuration is known for all cores,
else B will be enqueued back into the ready queue and will stall for
B’s best core.

Even though this evaluation may indicate that B should be
scheduled to a non-best core, the scheduler must gather information
about all system cores to make more accurate future scheduling

decisions. If there any core’s best configuration is unknown, the
scheduler will schedule B to one of these cores arbitrarily.

F. Cache tuning heuristic
When an application is scheduled to a non-best core, if the best
configuration is unknown, the cache tuning heuristic depicted in
Figure 5 determines the best configuration. This tuning process takes
several application iterations since the application is executed in a
single configuration each time the application is scheduled that same
core, and that configuration’s energy consumption and performance
are stored in the profiling table. Each time the application executes on
a core, the heuristic can continue where the exploration left off using
the configuration information stored in the profiling table.

The tuning heuristic explores the associativity followed by the line
size, since the associativity has the second largest impact on energy
after the size. Each parameter is explored from the smallest to the
largest value to minimizing cache flushing. Exploration begins with
the smallest value for both parameters, and the energy consumption
of that configuration is the currently known lowest energy
configuration. The associativity is iteratively increased while there is
a reduction in energy, which updates the currently known lowest
energy configuration to that configuration, or the maximum
associativity is reached. After determining the lowest energy
associativity, the associativity is fixed to that associativity and the line
size is similarly iteratively increased and the currently known lowest
energy configuration is updated. At the end of this tuning process, the
best configuration on that core is known.

V. Experimental Setup
We evaluated our proposed system by simulating different systems
using MATLAB, the architecture in Figure 1, and the complete
EEMBC suite [5]. Each benchmark was assigned an identification
number, which indexed into the profiling table. We created 5000
uniform distribution arrival times of these benchmarks to ensure that
the system executed long enough to depict stable results. On arrival,
benchmarks were enqueued and processed on a FIFO basis. The
scheduler was invoked to make scheduling decisions each time a
benchmark arrived or when a core became idle.

Figure 4 shows our energy model [1]. We used SimpleScalar [26]
to record the benchmarks’ cache accesses and miss rates for every
cache configuration. We used CACTI [17] and assumed a 0.18um
technology to obtain dynamic energy values and estimated off-chip
memory access energy using a standard low-power Samsung
memory. We assumed a fetch from main memory took forty times
longer than an L1 cache fetch and the memory bandwidth was 50% of
the miss penalty [1], which are reasonable assumptions for our
application domain.

To measure the impact of our proposed system on energy and
performance, including the ANN predictor, the tuning heuristic, and

Figure 4: Energy model

Figure 5: Cache tuning heuristic

Design, Automation And Test in Europe (DATE 2019) 1667

the energy advantageous scheduling decisions, we created three
different systems assuming no form of preemption or priority, which
is the focus of future work. The base system’s cores all used the base
configuration of 8KB_4W_64B, thus there was no profiling, and the
ANN and tuning heuristic were not used. The optimal system used the
core configuration subsets in Figure 1, profiled the benchmark on the
profiling core, but did not use the ANN predictor to determine the best
core. This system executes each benchmark using all possible
configurations to determine what the best configuration is and only
schedules to the best core when that core is idle. Even though we
denote this as the optimal system, we are referring to the fact that the
benchmark only executed in the optimal configuration on the core that
the benchmark was scheduled to, and not a system where all possible
scheduling decisions (e.g., stall rather than run on a non-best core)
were made to determine the lowest energy. This system enabled
evaluation of the effect of eliminating excess stall energy incurred
while waiting for best cores and comparison with ANN enabled
system. The energy-centric system only scheduled benchmarks to the
benchmark’s best core even if idle cores were available. Even though
it may have been energy advantageous to schedule the benchmark to
a non-best core, this stall decision left non-best cores free to execute
future benchmarks that otherwise might stall due to a benchmark
executing on a non-best core. This system profiled the benchmark on
the profiling core, used the ANN predictor to determine best
configuration for each benchmark. This system enabled evaluation of
our system’s energy advantageous scheduling decision.

Finally, we note that direct comparison could not be made with
past work that used machine learning techniques since these prior
works evaluated tuning the core type and frequency and not the cache
configuration.

VI. Results
In this section, we present our experimental results comparing our
proposed system to the systems defined in Section V in terms of idle
energy, dynamic energy, total energy, and performance in number of
cycles. Figure 6 shows the idle, dynamic, and total energy consumed
for each system normalized to the base system. The optimal system
reduced idle, dynamic, and total energy by approximately 3%, 35%,
and 6%, respectively. We note that even though this system is denoted
as the optimal system, as discussed in Section VI, this system may not
have the lowest energy. Since the energy-centric system used the
ANN predictor, the energy-centric system reduced dynamic energy by
58%, with a slight increase in idle and total energy of 6% and 2%,
respectively. Comparing the optimal and energy-centric systems
showed that the optimal system had lower idle energy and higher
dynamic energy compared to the energy-centric system, the dynamic
energy revealed that, scheduling benchmarks using a system with the

ANN predictor (energy-centric system) outperforms a system with an
exhaustive search (optimal system). This advantage is even more
pronounced when the design space is extended beyond cache
configuration and a predictor is used. Our system reduced idle,
dynamic, and total energy by 27%, 55%, and 29%, respectively. These
results reveal the importance of the energy advantageous scheduling
decision, revealed in the lower total energy even though there was a
slight increase in dynamic energy.

Figure 7 depicts the total number of cycles, idle energy, dynamic
energy, and total energy of the energy-centric system and our system
normalized to the optimal system. The energy-centric system and our
system reduced the total number of cycles by 17% and 25%,
respectively. Even though the energy-centric system stalled
benchmarks until the best core was idle, the energy-centric system
was able to improve performance, showing the advantage of
predictive schemes in a system. Our system revealed an additional
10% improvement even though performance was only partially
considered in the energy advantageous decision.

Comparing to the optimal system showed a more detailed analysis
of the energy effects shown in Figure 6. The energy-centric system
decreased the dynamic energy by 35%, but increased the idle and total
energy by 10% and 9%, respectively, resulting in an overall increase
in total energy. As compared to the optimal system, our system
reduced idle, dynamic, and total energy by 26%, 31%, and 24%,
respectively. As compared to the energy centric system, our system
reduced the idle and total energy by 32% and 31%, respectively, but
increased the dynamic energy slightly by 7%.

These results revealed an interesting observation about our system
and the energy-centric systems. When designing these systems, we
hypothesized that the fixed scheduling decisions (never stall vs.
always stall, respectively) would result in the intended solution.
Another words, the hypothesis that stalling benchmarks until the
benchmarks’ best core was idle, thereby leaving non-best cores free
to execute future benchmarks did not result in the best total energy
savings, showing that this decision can not be made naively, and
requires an energy advantageous evaluation—our proposed system.

Finally, we evaluated the profiling overhead and tuning heuristic’s
efficiency. Profiling only introduced less than .5% overhead in total
energy consumption. Even though our heuristic may explore a
minimum of three configurations and a maximum of nine
configurations, out of 18, no benchmark explored more than six
configurations, thus our tuning heuristic explored significantly fewer
configurations than the optimal system

Figure 6: Energy consumption normalized to base system

Figure 7: Performance in number of cycles and energy
normalized to the optimal system

0

0.2

0.4

0.6

0.8

1

1.2

Idle Energy Dynamic Energy Total Energy

Optimal System Energy-centric System Proposed System

0

0.2

0.4

0.6

0.8

1

1.2

Cycles Idle Energy Dynamic Energy Total Energy

Energy-centric System Proposed System

1668 Design, Automation And Test in Europe (DATE 2019)

VII.
VIII. Conclusion and Future Work

Scheduling on heterogeneous cores is a very challenging problem
given the wide variety of configurable hardware parameters, thus
leaving large design spaces that are difficult to explore. Configuring
these parameters to specific application requirements and scheduling
applications to cores that offer the best configuration can reveal large
optimization potential. In this paper, we used an ANN predictor to
predict the best core for an application given profiling statistics for
heterogeneous cores that offered different cache sizes, and a tuning
heuristic to determine the best configuration on non-best cores. We
also presented a scheduling method that scheduled applications to the
applications best core if the core was idle. If the core was not idle, the
scheduler evaluated whether or not it was energy advantageous to
schedule applications to an idle non-best core, or stall the application
until the best core was idle. Results showed a reduction in total energy
of 28% and a 17% increase in performance.

Future work includes evaluating different machine learning
techniques and considering systems with preemption, priority, and
deadlines, and additional levels of private and shared caches. We will
also evaluate overheads introduced by the machine learning
algorithm.

IX. Acknowledgements
This work was supported by the National Science Foundation (CNS-
0953447 and CNS-1718033). Any opinions, findings, and
conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National
Science Foundation.

X. References
[1] M. H. Alsafrjalani; A. Gordon-Ross; "Dynamic Scheduling for Reduced

Energy in Configuration-Subsetted Heterogeneous Multicore Systems," Int.
Conf. on Embedded and Ubiquitous Computing. 2014

[2] M. Becchi and P. Crowly, “Dynamic thread assignment on
heterogeneous multiprocessor architectures,” in Proceedings of the 3rd
conference on Computing frontiers. New York, NY, USA: ACM, 2006, pp.
29–40.

[3] J. L. Berral, R. Gavalda, and J. Torres, “Adaptive scheduling on power
aware managed data-centers using machine learning,” in Proceedings of the
2011 IEEE/ACM 12th International Conference on Grid Computing, ser.
GRID ’11. Washington, DC, USA: IEEE Computer Society, 2011, pp. 66–
73.

[4] J. Chen and L. K. John. Efficient program scheduling for heterogeneous
multi-core processors. In Proceedings of the 46th Design Automation
Conference (DAC), pages 927–930, July 2009.

[5] EEMBC. The Embedded Microprocessor Benchmark Consortium.
https://www.eembc.org/ benchmark/automotive_sl.php, Sept. 2013.

[6] C. Goh, E. Teoh, and K. Tan, “A hybrid evolutionary approach for
heterogeneous multiprocessor scheduling,” Soft Computing, vol. 13, no. 8-
9, pp. 833–846, March 2009.

[7] V. J. Jimenez, L. Vilanova, I. Gelado, M. Gil, G. Fursin,and N. Navarro,
“Predictive runtime code scheduling for heterogeneous architectures,” in
Lecture notes in Computer Science, vol. 5409, 2009, pp. 19–33.

[8] D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proceedings of the 5th European conference
on Computer systems, April 2010, pp. 125–138.

[9] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, June 2004, pp. 64–75.

[10] N. Lakshminarayana, J. Lee, and H. Kim, “Age based scheduling for
asymmetric multiprocessors,” in Super Computing, November 2009.

[11] M. Y. Lim, A. Porterfield, and R. Fowler, “Softpower: fine-grain power
estimations using performance counters,” in Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, ser.
HPDC ’10. New York, NY, USA: ACM, 2010, pp. 308– 311.

[12] D. Liu, J. Spasic, G. Chen, and T. Stefanov, “Energy-efficient mapping
of real-time streaming applications on cluster heterogeneous mpsocs,” in
Proceedings of ESTIMedia, Oct 2015, pp. 1–10.

[13] A. Lukehahr et al., “Composite cores: Pushing heterogeneity into a core”,
In MICRO-45, pp. 317-328, 2012.

[14] W. Munawar et al., “Peak power Management for scheduling real-time
tasks on heterogeneous many-core systems,” in proceedings of the 20th IEE
International Conference on Parallel and Distributed Systems (ICPADS) pp.
200-209, Dec. 2014.

[15] A. Naithani, S. Eyerman, and L. Eeckhout, “Reliability-aware scheduling
on heterogeneous multicore processors,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2017, pp. 397–408

[16] M. Rawlins and A. Gordon-Ross. An Application Classification Guided
Cache Tuning Heuristic for Multi-core Architecture (ASP-DAC), Jan 2012

[17] G. Reinman, and N.P. Jouppi, COMPAQ Western Research Lab:
CACTI2.0: An Integrated Cache Timing and Power Model, 1999.

[18] H. Salamy, S. Aslan, D. Methukumalli, “Task scheduling on multicores
under energy and power constraints,” in proceedings of the 26th IEEE
Canadian Conference on Electrical and Computer Engineering (CCECE).
May 2013.

[19] R. Sarikaya, C. Isci, and A. Buyuktosunoglu, “Program behavior
prediction using a statistical metric model,” in Proceedings of the ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems, ser. SIGMETRICS ’10. New York, NY, USA: ACM,
2010, pp. 371–372.

[20] H. Sayadi, N. Patel, A. Sasan, H. Homayoun, “Machine learning-based
approaches for energy-efficiency prediction and scheduling in composite
cores architectures,” ICCD-17, Nov. 2017.

[21] B. Silva, L. Cuminato, A. Delbem, P. Diniz, and V. Bonato. Application
oriented cache memory configuration for energy efficiency in multi-cores.
IET Computers & Digital Techniques. 1 (9). January 2015. pp. 73–81.

[22] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation
and thread scheduling via performance counters,” SIGARCH Comput.
Archit. News, vol. 37, no. 2, pp. 46–55, Jul. 2009.

[23] D. Shelepov, J. Carlos, S. Alcaide, S. Jeffery, A. Fedorova,N. Perez, Z.
F. Huang, S. Blagodurov, and V. Kumar, “HASS: a scheduler for
heterogeneous multicore systems,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 2, pp. 66–75, April 2009.

[24] D. Shelepov and A. Fedorova, “Scheduling on heterogeneous multicore
processors using architectural signatures,” in Proceedings of the Workshop
on the Interaction between Operating Systems and Computer Architecture,
June 2008.

[25] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in
Proceedings of the 30th annual international symposium on Computer
architecture, ser. ISCA ’03. New York, NY, USA: ACM, 2003, pp. 336–
349.

[26] SimpleScalar: http://www.simplescalar.com, July 2018.
[27] Q. Tang, S. K. Gupta, and G. Varsamopoulos. Energy-efficient thermal

aware task scheduling for homogeneous high-performance computing data
centers: a cyber-physical approach. IEEE Transactions on Parallel and
Distributed Systems, 19:1458–1472, 2008.

[28] M. K. Tavana et al., “ElasticCore: enabling dynamic heterogeneity with
joint core and voltage/frequency scaling,” DAC-15, pp. 1-6, June 2015.

[29] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in ACM SIGARCH Computer Architecture News, vol.
40, no. 3. IEEE Computer Society, 2012, pp. 213–224.

[30] C. Zhang; F. Vahid; W. Najjar, A highly configurable cache architecture
for embedded systems. In Proceedings of the 30th Annual International
Symposium on Computer Architecture, San Diego, CA, USA, 9–11 June
2003; pp. 136–146.

Design, Automation And Test in Europe (DATE 2019) 1669

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

