
Abstract—Heterogeneous multicore systems help meet design 
goals by using disparate hardware components that are suitable 
for different application requirements/design goals. The 
individual cores may also have different tunable hardware 
parameters for additional specialization. However, this 
complicates scheduling since to reap the benefits of specialization, 
applications should be scheduled to the core that offers the best 
configuration based on the application’s requirements and design 
goals. This scheduling decision could be made by exploring the 
design space to evaluate different configurations to determine the 
best configuration, or by executing the application in a base 
configuration to gather execution statistics to predict the best 
configuration. However, given increasingly complex systems, 
these methods may be infeasible given extremely large design 
spaces or difficulty in choosing a representative base 
configuration. In this paper, we present a dynamic scheduling 
methodology that uses predictive methods to schedule 
applications to best configurations for reduced energy 
consumption for a system with configurable caches. We use an 
artificial neural network (ANN) to train our predictive model 
using hardware counters. The trained ANN can then be used to 
predict the best core and a tuning heuristic explores the design 
space to determine the best configuration on non-best cores. If the 
best core is busy, our scheduler considers alternative idle cores or 
the application is stalled depending on which decision is energy 
advantageous. Our experiments show that system energy can be 
reduced by 28% on average as compared to a fixed-core system 
where all cores offer the same configuration. 
 
Index Terms — Dynamic scheduling, embedded systems, Machine 
Learning.   
 

I. Introduction  
Energy efficiency, high performance, quality of service, etc. are key 
design goals in the embedded computing domain. Application-
specific hardware specialization can be leveraged to meet these goals. 
Many hardware components can be specialized, such as the cache 
subsystem, processor bit-width, instruction set architecture (ISA) 
type, instruction issue width, etc.  

Heterogeneous multicore systems offer a powerful mechanism for 
specialization since each core can provide different configurable 
architectural components—different configurations. For example, a 
system with different core ISA types may include MIPS, ARM, 
PowerPC, etc., and even different versions of the ISAs can be offered, 
such as ARM big.LITTLE, Intel Quick IA, etc. This heterogeneity 
offers a coarse-grained specialization, but to further improve design 
goal adherence, each core can offer different configurable hardware 
parameters for more fine-grained specialization, such as voltage, 
frequency, cache size, etc. 

All combinations of different core types and different per-core 
configurable parameter values constitutes the configuration design 
space, of which each configuration offers different design goal 
tradeoffs (e.g., energy versus performance). An application’s best 

(optimal or near-optimal) configuration is the configuration that most 
closely adheres to design goals, and this configuration is offered by 
the application’s best core. 

In configurable heterogeneous multicore systems, scheduling can 
be viewed as two separate steps: scheduling the application to the core 
that offers the best configuration, then configuring that core to the best 
configuration. Both steps are considerably challenging since the 
scheduler must be aware of all of the cores’ configurations and make 
scheduling decisions based on many factors such as core availability, 
application deadlines, design goals, etc. If the application’s best core 
is idle, the application is scheduled to that core and if the best 
configuration is already known on that core, the core is immediately 
configured to the best configuration. However. if the best 
configuration is unknown, design space exploration introduces tuning 
overhead in the form of system degradation as the configuration(s) 
is/are physically executed to determine the best configuration. If the 
best core is busy, the scheduler must additionally consider the 
tradeoffs between stalling the application until the application’s best 
core is idle or running the application on a non-best core, thus 
incurring additional overhead while stalling, and tuning, and/or 
executing in a non-best configuration. Therefore, ineffective 
scheduling significantly impacts system operation and quickly 
obviates any benefits from such a configurable system [13].  

Many approaches have been proposed to determine an 
application’s best configuration. Exhaustive and heuristic-based [9] 
approaches evaluate all or a subset of potential configurations, 
respectively. However, for large design spaces in complex systems, 
this physical exploration is infeasible. Even though the large design 
space helps to increase design goal adherence due to the presence of 
numerous configurations, searching too many configurations incurs 
too much overhead, reducing/eliminating the benefits that the system 
would gain from specialization, since executing non-best 
configurations can incur tremendous energy and performance 
overheads. This makes determining the best configuration while 
limiting tuning overhead an arduous task.  

To reduce or eliminate tuning overhead, predictive methods have 
also been proposed, such as regression models [3][11][22], and 
recently, machine learning techniques [19][25], which have vast 
potential and are the focus of our proposed work. Based on the 
prediction power of many machine learning techniques, we base our 
design on an artificial neural network (ANN), which we train to 
predict the best core for an application using execution statistics (e.g., 
instructions per cycle (IPC), number of stall cycles, 
memory/computation intensity). 

In this work, we design a scheduler for a heterogeneous multicore 
system with disparate cores and disparate core configurations that 
optimizes energy consumption while considering performance. 
Without loss of generality, we consider a system with configurable 
caches, wherein each core offers a different total cache size, since 
cache size has the largest impact on energy and performance, and each 
core has configurable line sizes and associatvities. Our scheduler 
schedules applications to the application’s best core based on the 
application’s predicted best cache size using the trained ANN. If the 
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best core is idle, the application is scheduled to that core, but if the 
best core is busy, an equation evaluates if it is energy advantageous to 
schedule the application to an idle non-best core or to stall the 
application until the best core is idle. After scheduling, if the best 
configuration on that core (best or non-best core) is known, the cache 
is directly configured to that configuration, and if the best 
configuration is not known, the application is profiled on the profiling 
core. Even though we focus on the cache system due to the cache’s 
large contribution to system energy consumption [30], our work is 
generally applicable to any configurable system parameter. Our 
experiments show that total energy can be reduced by 28% on average 
as compared to a system that uses the same fixed cache configuration 
for all the cores. 

II. Related Work 
Multicore systems can execute applications efficiently since 
execution can be parallelized across the cores and the cores can be 
specialized to meet different application goals/requirements. Much 
research has focused on leveraging heterogeneous systems for energy 
efficient computing. Several algorithms scheduled applications to 
cores offline [10][23][24] while others do this scheduling at runtime 
[2][6][8]. Kumar et al. [9] used a heuristic to schedule applications to 
cores using a single ISA system. That method had a sampling phase 
where all possible scheduling of jobs to cores was examined and then 
the best scheduling was determined. However, the sampling approach 
is not realistic as the number of cores and applications increases since 
all possible combinations must be examined.  Becchi et al. [2] also 
used a sampling technique where threads were executed periodically 
on all types of cores, however, that approach posed high tuning 
overhead. 

Recent works have been able to build models that can predict what 
core configurations are suitable for an application [20][28]. Silva et 
al. [21] attempted to optimize both performance and energy using an 
offline data mining approach to determine the best core, then 
suggested the best scheduling of applications to cores, however, that 
work was limited due the offline scheduling that could not consider 
runtime variations. Sayadi et al. [20] used different machine learning 
algorithms for energy efficient prediction and scheduling. That work 
is most closely related to our proposed work, however, their work 
focused more on different core architecture compositions while we 
focus on configurable caches. The authors showed the impact of using 
several machine learning techniques, including neural networks, to 
obtain more accurate results. Van Craeynest et al. [29] used 
Performance Impact Estimation (PIE) to predict the scheduling of 
workloads to cores by extracting performance information, such as 
cycles per instruction (CPI), number of cache misses, instruction level 
parallelism (ILP), etc., to estimate the performance of a workload if 
the workload executed on a different core. This information was used 
to determine if the application should continue executing on the 

current core or if the application should be migrated to a different core 
based on the core’s PIE prediction. Chen et al. [4] used Euclidean 
distance to schedule applications by mapping the core’s configuration 
and the application’s resource demands in to a multidimensional 
space. That work reduced energy by approximately 6.1%, which 
shows the limitation of heuristics since, as the core count increases, 
thus so will the design space, resulting in design space exploration 
becoming an increasingly arduous task. 

Other works focused on optimizing different design goals using 
different scheduling techniques. Salamy et al. [18] used ILP to 
schedule applications on multicores under energy and power 
constraints. Munawar et al. [14] evaluated peak power management 
for real time tasks by introducing sleep cycles on each active core to 
ensure power consumption was within the thermal constraints. Other 
authors optimized for reliability [15] and temperature [27]. Liu et al. 
[12] used optimal cluster scheduling for real time task scheduling on 
heterogeneous systems to reduce energy, however, their system 
incurred a high tuning overhead due to task migrations.  

Our work focuses on optimizing energy consumption. We build on 
prior work [1] where the authors proposed a scheduling and tuning 
(SaT) algorithm that used data mining to subset core configurations 
and scheduled applications to both best and non-best cores. However, 
that work executed applications with each configuration on each core, 
while our work uses machine learning to reduce tuning overhead. Our 
scheduler uses a single application execution to predict the best core 
and a tuning heuristic to determine best configuration on non-best 
cores. To the best of our knowledge, this is the first dynamic 
scheduling solution that combines machine learning techniques and a 
heuristic for energy optimization. 

III. System Architecture and Core Configurations 
Figure 1 depicts our sample quad-core heterogeneous system 
architecture, which is suitable for our experimental benchmarks 
(Section VI). This general structure could be scaled up or down for 
different system requirements. Each core has a dedicated private level 
one (L1) cache, a cache tuner that configures the L1 cache parameters, 
and a private non-configurable level two (L2) cache. 

Table 1 shows the complete cache configuration design space, 
which lists the cache size in Kbytes (KB), the associativity in number 
of ways (W), and the line size in Bytes (B). Since the cache size has 
the largest impact on energy and performance, tuning overhead is 
reduced by subsetting the design space across all cores, wherein each 
core has a fixed cache size. Core 1, Core 2, Core 3, and Core 4 use 
2KB, 4KB, 8KB, and 8KB cache sizes, respectively. On each core, 
the line size can be configured to 16B, 32B, or 64B, and the 
associativity can be configured to 1-, 2-, or 4-way. These values were 
chosen based on prior work on cache configuration [1] and the 
requirements of our experimental benchmarks, however, we note that 
these values can be altered for different application requirements.  

To gather execution statistics for the ANN predictor, we profile the 
application and predict the best configuration - cache size, line size 
and associativity using Core 4 (a core with the largest cache size) 
while executing in a base cache configuration of 8KB_4W_64B. This 
configuration provides a pessimistic view with respect to energy 
consumption, has the lowest number of cache misses, and has been 
shown in prior work to be an ideal general configuration [1]. Even 

 
Figure 1: Core architecture. 

Table 1: 
Cache configuration design space 

2KB_1W_16B 2KB_1W_32B 2KB_1W_64B 
4KB_1W_16B 4KB_1W_32B 4KB_1W_64B 
4KB_2W_16B 4KB_2W_32B 4KB_2W_64B 
8KB_1W_16B 8KB_1W_32B 8KB_1W_64B 
8KB_2W_16B 8KB_2W_32B 8KB_2W_64B 
8KB_4W_16B 8KB_4W_32B 8KB_4W_64B 
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though for simplicity Core 4 is the primary profiling and prediction 
core, Core 3 can also be used as a secondary profiling core if Core 4 
is busy. Likewise, when Core 4 is idle (not profiling), Core 4 can 
execute applications.  

IV. Scheduler 
A. Overview  
Cores 3 and 4 are profiling cores and both cores can run our scheduler, 
the ANN predictor, and orchestrate tuning, which is part of the 
operating system kernel. Since we designate Core 4 as the primary 
profiling core, Core 4 also contains a profiling table that stores 
profiling information for all applications, including the execution 
statistics for the base configuration, and the performance and energy 
consumption of any core configurations that have been explored 
during design space exploration (Section IV.E). This storage 
eliminates future profiling executions and enables the tuning heuristic 
to operate across multiple application executions. We assume that 
when Core 3 is used as the secondary profiling core, Core 3 can access 
Core 4’s profiling information using the existing communication 
network.  
 

Figure 2 shows our proposed system’s operational flow. Incoming 
applications are stored in a ready queue and are processed in first-
come first-served (FIFO) order. When an application is to be 
executed, the application is dequeued from the ready queue. If the 
application has no profiling information, the application is profiled on 
Core 4  (Section IV.B) and the ANN (Section IV.C) predicts the best 
core (Section IV.D). If there is profiling information, a scheduling 
decision is made. If the best core is idle, the application is scheduled 
to that core. If the best core is busy, and the best configurations are 
not known for the idle core(s), the scheduler is unable to determine if 
it is energy advantageous to schedule to a non-best core (Section 
IV.E) because there is not enough information about the design space. 

In this situation, the application is scheduled to an arbitrary idle core. 
Regardless of the scheduled idle core, if the best configuration on that 
core is known, the core is directly configured to that configuration, 
otherwise a tuning heuristic (Section IV.F) iteratively explores the 
design space on that core to determine the best configuration on that 
core. If the application’s best configuration is known for the idle non-
best core(s), the scheduler can evaluate whether it is energy 
advantageous to stall the application until the best core is idle or to 
run the application on a non-best core. If the application is stalled, the 
application is enqueued back into the ready queue. 

B. Profiling 
During profiling, the application’s execution statistics while 
executing in the base configuration are recorded using built in 
hardware counters, such as memory access counts, cache misses, etc. 
This profiling could be eliminated if the applications were known a 
priori with profiling-based statistics recorded at design time and this 
profiling information can be pre-loaded. However, since this does not 
provide much flexibility, we assume that the profiling is done 
dynamically during runtime. After profiling the application, the 
execution characteristics are stored in the profiling table. This 
information is used to predict the best core using the ANN predictor.  

C. ANN predictor 
Figure 3 shows the 3-layer ANN that our scheduler uses to predict the 
best core (i.e., best cache size). The ANN is made up of the inputs (x), 
the weights (w), the processing elements (PEs) that compute an output 
from the given inputs and weights, and the final output (y). The inputs 
to the ANN are the cache-relevant execution statistics for each of the 
training applications. The vertically aligned PEs constitute a layer and 
the number of layers defines the ANN’s size and is notated as {n1, n2, 
…, nm}, where nm is the number of PEs in m-th layer. Empirical 
analysis determined that the best ANN size for the best cache size 
prediction was {10, 18, 5, 1}.  

D. Best core prediction 
To make accurate best core predictions, the ANN must be trained 
using applications from a similar application domain using features 
that reflect execution statistics of the configured hardware 
components. Prior work showed that applications from similar 
application domains have similar execution statistics [16]. Since we 
target embedded systems, we trained the machine learning algorithm 
offline using the EEMBC benchmark suite as training data and an 
energy model (Section V).  

The training data consisted of 270 total inputs—18 different cache-
relevant execution statistics for each of the 15 benchmarks. We note 
that for diverse systems executing different application domains, the 
scheduler could have multiple ANNs each of which would be 
specialized for a different domain. After feature selection, the 
execution statistics most relevant for cache size prediction where the 
total number of instructions, the number of cycles for one complete 
benchmark execution, the number of load and store instructions, the 
number of branches, and the number of integer and floating-point 
instructions.  

We split our training data into three sets: the ANN was trained with 
70% of the input data, 15% was used as the validation set, and 15% 
was used as the test set. We used bagging to improve the ANN’s 
accuracy and generalization, which trains several different ANNs 
using a subset of the input data and averages the ANNs’ outputs to 
determine the final prediction. We trained 30 ANNs and initialized 
the model weights randomly, resulting in ANNs that may result in 
more accurate predictions for certain inputs. Results obtained using 
methods described in Section V showed that the ANNs predicted best 
cache sizes (indicating the best core) only degraded the average 

 
Figure 2: Our proposed scheduler 

 
Figure 3: 3-layer ANN to predict the application’s best core  
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energy consumption by less than 2% over all the benchmarks as 
compared to the optimal cache size.  

E. Scheduling on a non-best core 
If the application’s best core is busy, and there are other cores that are 
idle, the application can be scheduled to run on a non-best core. Since 
these cores are expending idle energy anyway, it may be energy 
advantageous to utilize this idle energy to execute the application on 
a non-best core. However, since the application will require more 
dynamic energy executing on a non-best core, this extra energy must 
be considered when making scheduling decisions.  

To make this decision, the scheduler must know the energy 
consumption of the application executing with the best configuration 
offered on the non-best core. If this configuration is known, the 
configuration and the configuration’s energy and performance are 
stored in the profiling table. The scheduler evaluates whether or not it 
is energy advantageous: stalling the application until the best core is 
idle or scheduling the application to a non-best core.  

This decision can be explained using a simple example. Assuming 
a system with two applications A and B where A and B have the same 
best core C1, the energy advantageous decision (Eadv, a Boolean value 
where 1 indicates that stalling is energy advantageous) is evaluated 
using the following equation: 

 
 

 
where  and  are the energy consumptions of A 
and B executing on these applications’ best core C1,  is the 
energy of B executing on a non-best core C2, and  is 
the idle energy of core C2.. If A is executing on the best core C1 when 
B arrives and C2 is idle, the scheduler compares the energy expended 
by executing B on C2 ( ) to the energy expended by stalling 
B until A completes. The stall energy is calculated as the energy that 
will be consumed while executing the remaining portion of A, plus the 
idle energy expended by C2 for that same period, plus the energy to 
execute B on C1 after A completes execution. The remaining execution 
time in cycles for A is equal to the total number of cycles to execute 
A for one complete execution minus the number of cycles that A has 
already been executing for. The remaining energy consumption can 
be estimated by multiplying this remaining number of cycles by the 
average energy consumption per cycle. This stall energy is evaluated 
for all idle cores where the best configuration on that core is known. 
If this stall energy is greater than the energy expended by running B 
on C2 ( ), and A on C1, B will be scheduled to the non-best 
core C2 if and only if the best configuration is known for all cores, 
else B will be enqueued back into the ready queue and will stall for 
B’s best core.  

Even though this evaluation may indicate that B should be 
scheduled to a non-best core, the scheduler must gather information 
about all system cores to make more accurate future scheduling  

decisions. If there any core’s best configuration is unknown, the 
scheduler will schedule B to one of these cores arbitrarily.  

F. Cache tuning heuristic 
When an application is scheduled to a non-best core, if the best 
configuration is unknown, the cache tuning heuristic depicted in 
Figure 5 determines the best configuration. This tuning process takes 
several application iterations since the application is executed in a 
single configuration each time the application is scheduled that same 
core, and that configuration’s energy consumption and performance 
are stored in the profiling table. Each time the application executes on 
a core, the heuristic can continue where the exploration left off using 
the configuration information stored in the profiling table.  

The tuning heuristic explores the associativity followed by the line 
size, since the associativity has the second largest impact on energy 
after the size. Each parameter is explored from the smallest to the 
largest value to minimizing cache flushing. Exploration begins with 
the smallest value for both parameters, and the energy consumption 
of that configuration is the currently known lowest energy 
configuration. The associativity is iteratively increased while there is 
a reduction in energy, which updates the currently known lowest 
energy configuration to that configuration, or the maximum 
associativity is reached. After determining the lowest energy 
associativity, the associativity is fixed to that associativity and the line 
size is similarly iteratively increased and the currently known lowest 
energy configuration is updated. At the end of this tuning process, the 
best configuration on that core is known. 

 

V. Experimental Setup 
We evaluated our proposed system by simulating different systems 
using MATLAB, the architecture in Figure 1, and the complete 
EEMBC suite [5]. Each benchmark was assigned an identification 
number, which indexed into the profiling table. We created 5000 
uniform distribution arrival times of these benchmarks to ensure that 
the system executed long enough to depict stable results. On arrival, 
benchmarks were enqueued and processed on a FIFO basis. The 
scheduler was invoked to make scheduling decisions each time a 
benchmark arrived or when a core became idle. 

Figure 4 shows our energy model [1]. We used SimpleScalar [26] 
to record the benchmarks’ cache accesses and miss rates for every 
cache configuration. We used CACTI [17] and assumed a 0.18um 
technology to obtain dynamic energy values and estimated off-chip 
memory access energy using a standard low-power Samsung 
memory. We assumed a fetch from main memory took forty times 
longer than an L1 cache fetch and the memory bandwidth was 50% of 
the miss penalty [1], which are reasonable assumptions for our 
application domain. 

To measure the impact of our proposed system on energy and 
performance, including the ANN predictor, the tuning heuristic, and 

 

 

 
Figure 4: Energy model 

 
Figure 5: Cache tuning heuristic 
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the energy advantageous scheduling decisions, we created three 
different systems assuming no form of preemption or priority, which 
is the focus of future work. The base system’s cores all used the base 
configuration of 8KB_4W_64B, thus there was no profiling, and the 
ANN and tuning heuristic were not used. The optimal system used the 
core configuration subsets in Figure 1, profiled the benchmark on the 
profiling core, but did not use the ANN predictor to determine the best 
core. This system executes each benchmark using all possible 
configurations to determine what the best configuration is and only 
schedules to the best core when that core is idle. Even though we 
denote this as the optimal system, we are referring to the fact that the 
benchmark only executed in the optimal configuration on the core that 
the benchmark was scheduled to, and not a system where all possible 
scheduling decisions (e.g., stall rather than run on a non-best core) 
were made to determine the lowest energy. This system enabled 
evaluation of the effect of eliminating excess stall energy incurred 
while waiting for best cores and comparison with ANN enabled 
system. The energy-centric system only scheduled benchmarks to the 
benchmark’s best core even if idle cores were available. Even though 
it may have been energy advantageous to schedule the benchmark to 
a non-best core, this stall decision left non-best cores free to execute 
future benchmarks that otherwise might stall due to a benchmark 
executing on a non-best core. This system profiled the benchmark on 
the profiling core, used the ANN predictor to determine best 
configuration for each benchmark. This system enabled evaluation of 
our system’s energy advantageous scheduling decision.  

Finally, we note that direct comparison could not be made with 
past work that used machine learning techniques since these prior 
works evaluated tuning the core type and frequency and not the cache 
configuration. 

 

VI. Results 
In this section, we present our experimental results comparing our 
proposed system to the systems defined in Section V in terms of idle 
energy, dynamic energy, total energy, and performance in number of 
cycles. Figure 6 shows the idle, dynamic, and total energy consumed 
for each system normalized to the base system. The optimal system 
reduced idle, dynamic, and total energy by approximately 3%, 35%, 
and 6%, respectively. We note that even though this system is denoted 
as the optimal system, as discussed in Section VI, this system may not 
have the lowest energy. Since the energy-centric system used the 
ANN predictor, the energy-centric system reduced dynamic energy by 
58%, with a slight increase in idle and total energy of 6% and 2%, 
respectively. Comparing the optimal and energy-centric systems 
showed that the optimal system had lower idle energy and higher 
dynamic energy compared to the energy-centric system, the dynamic 
energy revealed that, scheduling benchmarks using a system with the 

ANN predictor (energy-centric system) outperforms a system with an 
exhaustive search (optimal system). This advantage is even more 
pronounced when the design space is extended beyond cache 
configuration and a predictor is used. Our system reduced idle, 
dynamic, and total energy by 27%, 55%, and 29%, respectively. These 
results reveal the importance of the energy advantageous scheduling 
decision, revealed in the lower total energy even though there was a 
slight increase in dynamic energy. 

Figure 7 depicts the total number of cycles, idle energy, dynamic 
energy, and total energy of the energy-centric system and our system 
normalized to the optimal system. The energy-centric system and our 
system reduced the total number of cycles by 17% and 25%, 
respectively. Even though the energy-centric system stalled 
benchmarks until the best core was idle, the energy-centric system 
was able to improve performance, showing the advantage of  
predictive schemes in a system. Our system revealed an additional 
10% improvement even though performance was only partially 
considered in the energy advantageous decision.  

Comparing to the optimal system showed a more detailed analysis 
of the energy effects shown in Figure 6. The energy-centric system 
decreased the dynamic energy by 35%, but increased the idle and total 
energy by 10% and 9%, respectively, resulting in an overall increase 
in total energy. As compared to the optimal system, our system 
reduced idle, dynamic, and total energy by 26%, 31%, and 24%, 
respectively. As compared to the energy centric system, our system 
reduced the idle and total energy by 32% and 31%, respectively, but 
increased the dynamic energy slightly by 7%.  

These results revealed an interesting observation about our system 
and the energy-centric systems. When designing these systems, we 
hypothesized that the fixed scheduling decisions (never stall vs. 
always stall, respectively) would result in the intended solution. 
Another words, the hypothesis that stalling benchmarks until the 
benchmarks’ best core was idle, thereby leaving non-best cores free 
to execute future benchmarks did not result in the best total energy 
savings, showing that this decision can not be made naively, and 
requires an energy advantageous evaluation—our proposed system. 

Finally, we evaluated the profiling overhead and tuning heuristic’s 
efficiency. Profiling only introduced less than .5% overhead in total 
energy consumption. Even though our heuristic may explore a 
minimum of three configurations and a maximum of nine 
configurations, out of 18, no benchmark explored more than six 
configurations, thus our tuning heuristic explored significantly fewer 
configurations than the optimal system 

 

 
Figure 6: Energy consumption normalized to base system 

 
Figure 7: Performance in number of cycles and energy 
normalized to the optimal system 
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VII.  
VIII. Conclusion and Future Work 

Scheduling on heterogeneous cores is a very challenging problem 
given the wide variety of configurable hardware parameters, thus 
leaving large design spaces that are difficult to explore. Configuring 
these parameters to specific application requirements and scheduling 
applications to cores that offer the best configuration can reveal large 
optimization potential. In this paper, we used an ANN predictor to 
predict the best core for an application given profiling statistics for 
heterogeneous cores that offered different cache sizes, and a tuning 
heuristic to determine the best configuration on non-best cores. We 
also presented a scheduling method that scheduled applications to the 
applications best core if the core was idle. If the core was not idle, the 
scheduler evaluated whether or not it was energy advantageous to 
schedule applications to an idle non-best core, or stall the application 
until the best core was idle. Results showed a reduction in total energy 
of 28% and a 17% increase in performance.  

Future work includes evaluating different machine learning 
techniques and considering systems with preemption, priority, and 
deadlines, and additional levels of private and shared caches. We will 
also evaluate overheads introduced by the machine learning 
algorithm. 
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