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Abstract—Accelerating deep neural networks on resource-con-
strained embedded devices is becoming increasingly important for 
real-time applications. However, in contrast to the intensive re-
search works on specialized neural network inference architectures, 
there is a lack of study on the acceleration and parallelization of 
deep learning inference on embedded chip-multiprocessor archi-
tectures, which are favored by many real-time applications for su-
perb energy-efficiency and scalability. In this work, we investigate 
the strategies of parallelizing single-pass deep neural network in-
ference on embedded on-chip multi-core accelerators. These meth-
ods exploit the elasticity and noise-tolerance features of deep learn-
ing algorithms to circumvent the bottleneck of on-chip inter-core 
data moving and reduce the communication overhead aggravated 
as the core number scales up. The experimental results show that 
the communication-aware sparsified parallelization method im-
proves the system performance by 1.6×-1.1× and achieves 4×-1.6× 
better interconnects energy efficiency for different neural networks. 

Keywords—parallelization, multi-core, inference, neural network, 
embedded devices 

I. INTRODUCTION  
Enabling real-time deep neural network inference is becoming 

an increasingly important requirement on embedded devices due 
to the popularity of edge visual recognition, robotics control and 
speech recognition. However, the large quantity of numerical 
operations and parameters induced by CNN inference poses a 
significant challenge to the resource-constrained devices [6]. As 
an alternative to conventional general-purpose CPU and GPU 
cores, customized neural network accelerators (NNA) like  [2, 4] 
are gaining popularity for their efficiency. While the trend of 
general-purpose processor design has been shifting from single-
core to on-chip multi-core architectures in the past decade, some 
of the recent neural accelerators are also scaling up to chip-mul-
tiprocessors (CMP) architectures to deal with the massive data-
level parallelism in deep neural network inference [1, 3, 5, 8]. 
Accompanied by core-level gating, multi-core neural accelera-
tors are also showing better elasticity and energy efficiency [4]. 

When more and more CMP-like neural accelerators begin 
connecting multiple separate PE arrays or clusters through on-
chip networks for higher processing throughput [1, 5, 8], the 
discussion on how to parallelize single-pass neural network 
inference on such architectures is scarce. Most of the prior works 
on deep neural network parallelization confine themselves to the 
node-level or rack-level machine and generally concern more 
about the model training instead of network inference [6]. 
Recently, there are also many proposals studying the parallelism 
of deep learning inference in both specialized architectures like 
TPU [8] or conventional general-purpose processors [11]. 
However, they are more concerned with the datacenter applica-
tions and pursue high-throughput service by providing the ability 

of running many threads of network inference concurrently on 
the single chip to service many incoming queries or input data. 
DaDianNao [5] that connects all the tiles using a fat tree 
Network-on-Chip (NoC) is also oriented at data-level parallelism 
in server machines. These designs focus on the throughput boost 
by running multiple network models or multiple inputs 
concurrently. They are not geared towards the embedded or 
mobile systems that highlight the response speed of single-pass 
network invocation to satisfy the Quality-of-Service (QoS) 
constraint of a single task.  

While running multiple network models or processing 
multiple inputs on different cores independently does not involve 
intensive inter-core communications [1], parallelizing single-
pass network inference on CMP architectures has to handle the 
soaring overhead of inter-core communications. It is due to the 
data dependence and dense neuron connections if a single-pass 
network inference is partitioned and parallelized on different 
cores of CMP architec-ture. For example, the data 
communication may account for more than 30% inference 
latency in DaDianNao and grows up rapidly with the increase  of 
system scale when mapping one single network on it [5].   

To accelerate a single inference task on multi-core neural 
accelerators and reduce the communication overhead that could 
be prohibitively expensive, as illustrated in Fig. 1, we investigate 
and propose several inference parallelization techniques: (1) 
Traditional parallelization. For the target network, each core is 
in charge of a layer partition and routinely broadcasts its output 
neurons values to all the other cores to synchronize data for the 
process of the next layer, as indicated by dashed arrows in Fig.1 
(a). This method induces intensive inter-core traffics and poten-
ially causes performance penalty. (2) Structure-level paralleliza-
ion. By exploiting the algorithmic resilience and redundancy in 
deep networks, we deliberately and slightly modify the original 
network without influencing the functionality of the model so 
that the cores do not broadcast the output neurons values in 
specific layers and no inter-core communications are induced 
consequently as Fig. 1(b) shows. (3) Communication-aware 
sparsiied parallelization. Our key observation is that the zero-
value neural weights/neurons, which are deemed as sparsity in 
neural networks, do not affect the inference results and need not 
be transmitted across the cores in computation. Instead of forcing 
the network model to break up the intra-layer connections by 
design as in Fig.1 (b), this method leverages the sparsification 
technique to let the networks “learn” to converge on a both 
accurate and communication-overhead reduced structure by 
themselves in the training phase without modifying the network 
configurations as illustrated in Fig.1 (c). These techniques show 
some useful clues on how to speed-up deep neural network 
inference on embedded CMP architectures composed of either  
neural accelerators or even general-purpose cores like [7, 10]. 
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Fig. 1. (a). Traditional parallelization. (b). Structure-level parallelization. (c). 
Communication-aware sparsified parallelization mapped on four cores. 

Specifically, this paper makes the following contributions: 
� We study and propose several communication-aware 

approaches to parallelize the single-pass network inference on 
multi-core architectures. 

�  We propose the communication-aware network training 
method to reduce the inter-core data moving on multi-core 
neural accelerator. The proposed training method not only 
reduces the on-chip traffics, but also aims to reduce the 
communication activities between two distant cores, 
significantly contributing to communication cost reduction. 

� We evaluate the deep neural network parallelization schemes 
on simulated CMP architectures integrated with specialized 
NNA cores, and show conspicuous performance and energy-
efficiency speedup. In addition, we investigate their scalability 
on CMP architectures. 

II. RELATED WORK 
A. Deep Learning on Multi-core Architectures 

A lot of prior works are conducted in these years to accelerate 
Deep NNs on GPGPUs, high-end CPUs [9] and FPGAs[15]. 
There are also closely related researches utilizing the many-core 
architecture of CPUs to accelerate deep learning [11]. However, 
these works are conducted at the arithmetic-level, and only 
concern about how to accelerate the matrix multiplication 
operations on multi-processor architecture, but do not investigate 
the inference parallelization problem from the aspects of network 
model design as in this work. 

There are also plenty of researches that parallelize the training 
phase of large-scale neural networks on distributed systems by 
exploiting the capability of multiple GPGPUs and CPUs [6]. 
Compared to distributed training on rack-scale machines, 
powerful single-chip solutions like TPU and other designs [4] are 
more related to our work. However, unlike our work targeted on 
embedded scenarios, they seek to pursue input-level parallelism 
by concurrently inferring many independent networks to process 
the incoming input data or requests on high-throughput chips. 

B. Deep Learning Parallelization 
The studies on neural network parallelization implementations 

can be categorized into two types [17] : (1) Model parallelism. 
Different workers train different parts of the model, which needs 
frequent communication across workers to synchronize data. (2) 
Data parallelism. Different workers train the same model on 
different data batches. These methods are widely applied to large 
distributed systems or GPUs for neural network training. For 
example, work [13, 14] focuses on data parallelism and work [6] 
concentrates on model parallelism while both techniques are 
adopted by work [17]. However, unlike the above model 
parallelization method that generally partitions the model by 

layers ( inter-layer ) and processes them in pipelined manner, our 
techniques partition one layer into several concurrent and 
independent parts, then map them to different cores, which is 
more viable on embedded multi-core architectures because 
pipelining layers with distinct hyper-parameters cause severe 
load-imbalance issue on cores. One important point worth 
mentioning is that the inter-core parallelization policies proposed 
in this work are orthogonal to the intra-core neural network 
parallelism extracted by the many PEs in single-core 
architectures as in [2, 4].  

III. BACKGROUND AND MOTIVATION 
A. Chip Multi-core Neural Accelerator Architecture   

We assume the tiled architecture with Network-on-Chip (NoC) 
is adopted to implement the multi-core neural accelerator. This 
CMP-like architecture comprises a number of replicated tiles 
connected via the NoC. A tile typically incorporates a processing 
core which could be general-purpose CPU or specialized 
accelerator core, local buffers for weight and data, and  network 
interfaces ported to a router. Fig. 2 depicts a CMP architecture 
that consists of 16 neural network accelerator cores [2] connected 
with a Mesh NoC. The NoC is responsible for transferring on-
chip data between cores and off-chip data between memory 
controller and cores as well. Based on this CMP-like architecture, 
we split and map the single-pass of CNN inference to the 
distributed on-chip cores to exploit the computation parallelism. 
B. Motivational Study 

Fig. 3 shows an example of partitioning and mapping a layer 
of convolutional neural network to two cores. The first 
convolutional layer (Conv1) contains four filters ( also known as 
kernels ) to abstract the high-level features from the input maps. 
The kernels can be organized in  tensors, where  
equals the number of input feature maps. The four kernels are 
mapped to two cores to exploit the parallelism and the kernels 
shown in the same color are mapped to one core.  

One kernel computes with the input data will generate an 
output feature map. After the computation of the first layer, the 
generated four output feature maps are in two different cores. 
Thus, the following data synchronization induces the 
communication overhead between cores. We estimate this 
traditional parallelization approach using several representative 
neural networks on 16-core CMP-like architecture. The data 
volume needed to be exchanged in NoC for different layers are 
shown in TABLE I. As the table shows, the data size is increasing 
as the size of the neural network model and the input image 
become larger. When larger and deeper networks like VGG19 
and Resnet-incept are deployed on such architectures, the 
partitioning-induced traffics will be rocketing. In such cases, the 
data packets are injected in burst during layer transition and are 
prone to block each other due to the limited bandwidth of the on-
chip network, and eventually cause communication congestion 
in the NoC communication, potentially degrading the system 
performance. When the processors become stronger, the relative 

NBin NBout

 
Fig. 2. Chip multi-core neural accelerator architecture. 
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Fig. 3. Traditional parallelization of CNN inference on two cores. The dashed 
arrows mean data communication between cores. 
TABLE I.  DATA VOLUME TO TRANSMIT IN NOC AFTER LAYER PARTITIONING 

AND PARALLELIZATION 
Net- 

works 
Datasets Data moving size a  (Byte) 

Conv2 Conv3 Conv4 Conv5 Ip1 Ip2/3 
MLP MNIST - - - - 28K 17K 
LeNet MNIST 225K - - - 57K 29K 

Convnet Cifar-10 450K 113K - - 57K - 
AlexNet ImageNet 2M 2.4M 1.8M 1.8M 450K 57K 
VGG19 ImageNet 42M 22M 11M 5.4M 1.4M 57K 

a. Both Conv2_1 and Conv2_2 of VGG19 are showing with Conv2.  

performance penalty caused by these burst traffics tends to be 
more significant. According to our analysis, it costs about 23% 
time for AlexNet to communicate between cores during a single-
pass inference on one embedded chip integrated with NNAs [2].  

In conclusion, in order to accelerate the CNNs inference on 
latency-focused and energy-efficient mobile systems, paralleliz-
ing neural network layers on multiple cores is an effective solu-
tion to amortize the large-quantity operations, but the effective-
ness is highly correlated to the inter-core communication penalty 
entailed by task partitioning and synchronization. In considera-
tion of both computation and communication overhead, we 
evaluate several approaches that exploit the parallelism of neural 
network inferences in different manners, and discuss their impli-
cation on on-chip communication and system performance. 

IV. CMP ORIENTED CNN INFERENCE PARALLELIZATION 
In this section, we discuss three parallelization methods as 

briefly illustrated in Fig. 1, which are investigated and evaluated 
for their performance and scalability on CMP architectures. 
A. Traditional Parallelization 

Fig. 3 illustrates the traditional parallelization process on two 
cores. Suppose there are four convolution kernels divided into 
two groups for Conv1 layer and each group with two kernels is 
mapped to one core. All the cores have the same input image. 
When the input image is convolved with the according kernels, 
each core then outputs two feature maps. After that, the 
computation of the next layer is invoked, and the related core 
needs the data of the rest feature maps on the other core to start 
the computation of current layer. Thus, every core needs to 
broadcast the output feature maps of the previous layer to the 
other core through the NoC and receive the response data sent by 
the other core as well to synchronize the data, which lead to 
communication overhead in NoC. This method will produce the 
same output result as the non-parallelized network in single-core 
implementation. However, as the computing power and the core 
number scale up, the performance of NoC is likely to be the 
bottleneck of the whole system because of the intensive inter-
core traffics. 

This type of parallelism technique loyally maps the network to 
multi-core architectures and thus is adopted by many works on 
neural network acceleration [17] and state-of-the-art mathematic 
library like MKL [12] for speed-up in multi-core CPUs or 
GPGPUs. Therefore, the traditional parallelization technique is 

also regarded as the baseline to be optimized in this work.  
B. Structure-level Parallelization 

One effective method to resolve the communication problem 
is to seek the structure-level parallelization as shown in Fig. 4. 
Each core generates two output feature maps as the traditional 
parallelization does. However, the cores do not broadcast the 
feature maps to other cores for certain convolutional layers. In 
other words, the output neurons of the next layer are connected 
only to those neurons on the same core generated by the previous 
layer, to avoid the communication between cores. If we 
intentionally transform the neural networks into this partly-
connected structure, there will be no necessity to transfer the 
activation data to certain cores. In Fig. 4, the kernels in Conv2 
layer take input only from those Conv1 feature maps that reside 
on the same core. This design intuition is borrowed from the 
classic structure of AlexNet [9] that partitions some of the middle 
convolutional layers (the second convolutional layer for instance) 
into two non-interactive groups to reduce the parameters updates 
in training on GPUs, which is also called “grouping”. Grouping 
is originally proposed to reduce the memory space demand in 
training. However, we observe that this structure modification 
can also be extended to reduce inter-core data moving in 
inference with little impact on model functionality if we partition 
the dense convolutional layer into independent sub-groups. 
However, this grouping technique is not randomly applied to all 
layers for accuracy sake. In general, we choose to “split” the 
convolutional layers with high-dimension kernels because these 
layers induce higher energy and penalty to transmit the 
intermediate computing results according to TABLE I.  

For large-scale neural networks, structure-level parallelization 
will significantly reduce the communication and the computation 
complexity as well. This is because that the input data of the next 
layer is incomplete and the kernel size is reduced 
correspondingly, as a consequence, the operation amount is 
decreased significantly. However, this method may cause 
accuracy loss sometimes. A compensational solution is to replace 
the model with a stronger but more complex one to recompense 
the loss. The details are discussed in Section . 
C. Communication-aware Sparsified Parallelization 

The structure-level parallelization makes it convenient to 
parallelize CNNs at a lower cost, and it needs experience to find 
the best grouping strategy about which and how many layers are 
split in a net. If not properly configured, it may cause accuracy 
loss due to inadequate feature learning and extraction. Therefore, 
instead of splitting the network directly, we also propose to 
utilize the inherent resilient training characteristic of neural 
networks and let themselves “learn” the network architecture 
and parameters that are most suitable to be parallelized on 
CMPs. We observe that neural network sparsification techniques 
can be used to learn this type of CMP-friendly neural networks 
with reduced communication between cores.  

1) Overview: Pruning the over-parameterized neural net-
works is an efficient approach to reduce network complexity and 
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Fig. 4.  Structure-level parallelization on two cores. 
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also the chances of over-fitting by removing redundant 
connections and nullifying the according neural parameters. 
Therefore, this work utilizes the neural network sparsification 
technique to obtain the desired models without influencing their 
functionality.  For details, as Fig. 5 shows, the convolutional 
kernel size ( ) is consistent with the number of the input feature 
maps and each feature map is convolved by the corresponding 
part of the kernel. As a result, when the corresponding 
parameters in that kernel are purposely sparsified in training to 
be all zero (white parts), the result of the according output 
feature map will eventually be zero whatever the data values of 
the input feature map are (shown in gray). Thus, it is 
unnecessary to transfer the activations that will be eventually 
multiplied by zeros from core to core.  For example, to obtain 
the input data for Conv2 layer computation, the cores need to 
communicate with each other to obtain the output results from 
Conv1 layer according to traditional manner. However, if the 
weight kernels of Conv2 layer are so sparsified that the to-be-
transmitted input feature maps are destined to generate zero-
value outputs after convolution operation, then there would be 
unnecessary for the other core to send the previous layer results.  

Based on this observation, we employ a structured 
sparsification method to train the networks.  Compared to early 
non-structured sparse networks, which are pruned indepen-
dently and without a specific constraint and the trained models 
are possessing randomly distributed zero-value weights, 
structured sparsity approaches purposely distribute the non-zero 
weights at pre-assigned locations, so that the zero-value neural 
weights or activations could be more hardware-friendly for 
acceleration [16]. This work uses structured sparsification 
technique, specifically group Lasso, to obtain a communication-
reduced network model with regularized weights distribution 
(e.g., the kernels of Conv2 layer in Fig. 5) for embedded multi-
core accelerators.  

In addition, since the communication overhead between two 
arbitrary cores depends on their Hamming Distance from each 
other in NoC with Mesh topology, the system performance will 
be influenced by the distribution of non-zero parameters in a 
kernel because they determine which node in this NoC a certain 
feature map will be sent to. Thus, we further propose 
communication-aware sparsified parallelization technique that 
takes the Hamming Distances between cores into consideration 
to train the CNN models that have the best zero-weight 
distribution for CMP-like architecture performance. 

2) Group Lasso Regularization: Specifically, we use group 
Lasso regularization to learn structured sparsification for CNNs 
models [16]. The corresponding optimization target in training 
can be formulated as: 

        
1

( ) ( ) ( ) ( )
l

l
D g g

l
L W L W R W R W� �

�

� � � � ��             (1) 

here,  is the collection of all weights in the DNN and 
represents the loss on data as specified by the prediction 

task.  is the generic regularization term applied to every 
weight that are non-structured, such as 2l -norm. ( )gR �  is the struc-
tured sparsity regularization term on each layer and the group 
Lasso regularization method makes it possible that any specified 
group of weights in the whole network are more likely to be zero 
than weights in other locations. Then the weights distribution is 
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Fig. 5. Communication-aware sparsified parallelization on two cores, kernels and 
feature maps in different color indicate they are mapped to different cores while 
kernel parts in white are automatically zeroed in training. 

changed and re-structured at group-level. The regularization of 
group Lasso on a group of weights can be represented as: 

                                  g

1
( ) || ||

G

g g
g

R W w
�

��                                  (2) 

where 
g|| ||� is the group Lasso, gw is a group of weights in w  and 

G is the total number of groups. We formulate 
g|| ||� as: 

                                   
| |

2

1
|| || ( )

gw
g g

g i
i

w w
�

� �                                 (3) 

where | |gw  is the number of weights in gw .  
3) Detailed Methodology: We firstly partition the weight 

matrix into several groups of the same number as the square of 
the core number. Then, we use the distances between cores as a 
factor to influence the learning process by assigning different 
sparsity strength1 to the weights according to their involved 
communication cost. Therefore, we obtain a model with few 
data moving activities between two distant cores in NoC, which 
is measured with data volume and core distance (decided by 
routing algorithm).  

Suppose the chip has 16 cores as shown in Fig. 2, and the 
distance between two adjacent cores is 1. The distances of the 
first four cores are as Fig. 6 (a) shows, given that dimensional-
ordered routing is adopted. We use this 16×16 distance matrix as 
the factor mask to sparsify the weight groups during training, so 
the groups of parameters will be sparsified with the priority as 
specified in the factor matrix. Consequently, the parameters that 
induce higher communication overhead will be the first to be 
pruned. For example, the weights on the diagonal groups will not 
cause any communication between any two cores because the 
corresponding data are on their own cores. Therefore, we assign 
lower sparsity strength to these groups to keep their values while 
pruning those groups that cause high communication overhead 
because of long distance.  

Finally, we obtain a structured and optimized communication-
aware network model, which is more energy-efficient than the 
baseline in terms of on-chip parallelization cost. The theory 
behind this technique is that in network training there are various 
choices of weight values that all make the model generate an 
accurate prediction, which is also called redundancy in network. 
Fig. 6 (b) shows an example of the final grouped weights matrix 
obtained in experiments.  
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Fig. 6. (a). Distance for 4 cores. (b). Final weights matrix in group-level. 

1 The strength to sparsify the weights, the higher, the weights are more 
likely to be pruned down. 
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Each line is mapped to a core which has two convolutional 
kernels sized as 2×2×32. The two kernels in one core are further 
divided into 16 groups (Fig. 6 (b) only shows the first four 
groups). The number 1 represents that the value is not zero. The 
shaded area means the group sparsification is unnecessary and 
the communication cost caused by this block of weights is 
marginal because the two cores are adjacent to each other ( only 
one hop from core3 to core2 ), so that the training procedure will 
freely parameterize groups like this to preserve accuracy. The 
figure shows that all the groups of weights that induce long-
distance communication are pruned away as an ideal case.  

V. EXPERIMENTAL EVALUATION 
The experimental platform is a simulated embedded CMP with 

16 cores connected with a mesh NoC as shown in TABLE II. 
Two variants of ConvNet are used to evaluate the effectiveness 
of the structure-level parallelization by varying the kernel 
numbers of the convolutional layers on ImageNet10 (images 
containing ten object classes of ILSVRC 2012) as shown in 
TABLE III. In addition, we choose several representative neural 
network models, including MLP and LeNet on MNIST, ConvNet 
on Cifar-10, and AlexNet on ImageNet as the benchmarking 
networks for communication-aware sparsified parallelization. 
MLP has three fully-connected layers with the neuron number of 
512/304/10 respectively. The inference performances of 
networks that are parallelized with the traditional manner are 
used as the baselines for comparison. The neural cores are 
simulated with an in-house simulator that could faithfully 
simulate the design of Diannao [2]. BookSim2 and DSENT are 
used to simulate the NoC communication process. We also test 
the sensitivity of the proposals to core number in experiments to 
investigate their scalability on CMP-like architectures.  
A. Performance and Energy Evaluation 

1) Structure-level parallelization: As TABLE III  shows, 
Parallel#1 and Parallel#2 are two different implementations of 
the same ConvNet variant, and they are parallelized using 
different grouping methods. To evaluate this technique, we 
divide the convolutional kernels in Conv2 and Conv3 layers of 
these two neural networks into n groups so that each group could 
be mapped to one core for inference. When n equals 1 as in 
Parallel#1, it indicates that the network is parallelized in a 
traditional way, which is used as the baseline. 
 In Fig. 7, the metric of performance speedup gauges both the 

speedup of computation and the NoC transmission in CNN 
inference caused by network grouping. The normalized commu- 

TABLE II.  SYSTEM CONFIGURATIONS  
Component Parameters 

Specialized acceler-
ator core [2]  

Each core has 16×16 PEs, one 128KB weight 
buffer per core, two 32KB data buffers per core, 
16-bit fixed-point integer operation 

Network-on-chip 
512-bit flit, 20-flit packet, 2D mesh topology, 3 
stages, 2 physical channels, dimensional-or-
dered routing, 3 VCs 

Main memory 1 channel, 1 rank, LPDDR3, 1GB, 4-bank  

TABLE III.  PERFORMANCE OF STRUCTURE-LEVEL PARALLELIZATION 
ConvNet Conv kernel number a Group num. (n) Accu. Speedup  

Parallel#1 64 – 128 – 256 1 0.726 1 
Parallel#2 64 – 128 – 256  16 0.698 4.9× 
Parallel#3 64 – 160 – 320  16 0.742 4.6× 

a. In the order of conv1-conv2-conv3. 

 
Fig. 7. System performance speedup (left) and communication energy reduction 
(right) for structure-level parallelization. 
nication performance speedup measures the ratio between the 
computation-blocking communication cycles of the baseline 
and that of the proposed structure-level parallelization. Fig. 7 
shows that the structure-level parallelization accelerates both 
computation and communication for the reduction of the com-
puting complexity and communication (Conv2 and Conv3 lay-
ers do not need data transmission according to Fig. 4). However, 
this method eventually results in 2.8% accuracy loss. By adding 
the kernel number, we obtain a more accurate model, which is 
Parallel#3. Although Parallel#3 entails more operations due to 
the increased convolutional filters, the experimental results 
show that the system performance speedup is still higher than 
the baseline result (4.6×) with 1.6% increased accuracy. The 
overall energy consumption reductions are 91% and 88% for 
Parallel#2 and Parallel#3 respectively. 

2) Communication-aware sparsified parallelization: We 
train four different neural networks for performance and energy 
evaluation. It is noted that because this method is deployed in 
training phase and the trained CMP-friendly neural network 
model is already prepared when enabling inference, therefore, 
no extra overhead is induced. The experimental results shown in 
TABLE IV demonstrate that our proposed method is very 
effective for the parallelization of both fully-connected layers 
(MLP) and large-scale convolutional layers (CaffeNet, Caffe-
provided version of AlexNet with minor changes). The scheme 
named SS are also structured-sparsified with group Lasso and 
the neural connections in the same layer of SS method share the 
same sparsity strength factor without considering the distance 
between cores in training phase. The baselines are the same 
network implementations without structured sparsification. 
Compared to SS, SS_Mask is fully aware of the inter-core 
communication cost in NoC by using the sparsity mask matrices 
that reflect the locations of cores in Mesh. These mask matrices 
are used to impose different levels of sparsity strength factor on 
different groups of weights according to the potential 
communication overhead decided by data moving distance. 
TABLE IV.  PERFORMANCE AND ENERGY REDUCTION OF COMMUNICATION-

AWARE SPARSIFIED PARALLELIZATION  

Networks Type Accu.  NoC traffic 
rate  

System 
speedup 

Energy Re-
duction 

MLP 
Baseline 98.36% 100% 1× 0% 

SS 98.38% 30% 1.40× 59% 
SS_Mask 98.36% 11% 1.59× 81% 

LeNet 
Baseline 99.17% 100% 1× 0% 

SS 98.98% 82% 1.20× 15% 
SS_Mask 98.60% 23% 1.51× 89% 

ConvNet 
Baseline 78.75% 100% 1× 0% 

SS 80.15% 46% 1.19× 25% 
SS_Mask 79.61% 35% 1.32× 55% 

CaffeNet 
Baseline 55.19% 100% 1× 0% 

SS 55.02% 98% 1.02× 17% 
SS_Mask 54.21% 57% 1.10× 38% 
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TABLE IV shows that our proposed parallelization method 
significantly reduces the size of NoC traffics. For example, we 
reduce the size of transmitted packets to only 11% on average for 
MLP without any accuracy loss. This method significantly 
speeds up the system performance and reduces the NoC energy 
consumption due to the large amount of NoC traffics reduction. 
The SS_Mask scheme performs better than SS because the NoC 
traffics in SS_Mask are constrained to be between only close 
cores one or two hops away from each other.  
B. Sensitivity to Core Number 

All the above experiments are conducted on a 16-core chip. 
We test the sensitivity of the proposals to core number in 
experiments. 

1) Structure-level parallelization: We evaluate the system 
performance and energy consumption of Parallel#3 in TABLE 
III on chips with 4, 8 ,32 cores respectively. The corresponding 
networks are listed in TABLE V. As Fig. 8 shows, the system 
performance speedup and energy efficiency for computation 
increase with the core number because of the declining 
computing complexity on each core. The system performance 
improvements and energy efficiency for communication remain 
steady. The reason is that the overall volume of moving data 
keeps stable, but both the average core-to-core distance and the 
bi-sectional bandwidth of the on-chip network increase at the 
same time. The latter two factors bring the NoC performance to 
different directions but finally make a balance point as core 
number increases. However, relative to computation perfor-
mance, the communication cost becomes more pronounced and 
the proposed parallelization techniques become more useful. 

2) Communication-aware sparsified parallelization: We 
use LeNet to test the communication-aware sparsified 
parallelization on 8 cores and 32 cores respectively. The models 
as well as the corresponding system performance speedups and 
communication energy reductions are listed in TABLE VI. It 
shows that the system performance speedups and energy 
reductions increase as the core number scales up. This is partly 
because that as the core number increased, the size of every 
kernel group assigned to each core becomes smaller and can be 
easily pruned out at a lower risk of accuracy loss. Another 
reason for the relative speedup is that the NoC bandwidth issue 
becomes relatively more severe as the diameter and node 
number of the NoC increase, which leaves a larger space of 
performance improvement for our method to exploit. 

TABLE V.  PERFORMANCE OF STRUCTURE-LEVEL PARALLELIZATION     FOR 
PARALLEL#3 ON VARIOUS NUMBER OF CORES  

Core number n Accu. Speedup  
4 4 0.694 2.7× 
8 8 0.718 4.6× 

16 16 0.742 6.0× 
32 32 0.722 6.9× 

TABLE VI.   PERFORMANCE AND ENERGY REDUCTION OF  COMMUNICATION-
AWARE SPARSIFIED PARALLELIZATION OF LENET  FOR 8 AND 32 CORES 

LeNet Type Accu. NoC traffic 
rate 

System 
speedup 

Energy Re-
duction 

8core-1 Baseline 99.1% 100% 1× 0% 
8core-2 SS 98.9% 80% 1.20× 10% 
8core-3 SS_Mask 98.9% 68% 1.22× 32% 
32core-1 Baseline 99.1% 100% 1× 0% 
32core-2 SS 98.7% 32% 1.49× 34% 
32core-3 SS_Mask 98.6% 18% 1.58× 56% 

   
Figure 8: System performance speedup (left) and communication energy 
consumption  (right) of various cores for structure-level parallelization. 

VI. CONCLUSION 
In this work, we evaluate several unorthodox parallelization 

schemes for single-pass neural network inference on-chip multi-
core architectures. Among them, the communication-aware 
sparsified parallelization technique exploits the elasticity and 
noise-tolerance features of deep learning algorithms to enable the 
neural network to learn a configuration that is very suitable to be 
parallelized on CMP architectures. The experimental results 
show that this method improves the system performance by 1.6×-
1.1× and achieves 4×-1.6× better on-chip communication energy 
efficiency for different neural networks. 
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