
Learn-to-Scale: Parallelizing Deep Learning
Inference on Chip Multiprocessor Architecture

Kaiwei Zou†‡, Ying Wang†‡, Huawei Li†‡, Xiaowei Li†‡
†SKLCA, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

‡University of Chinese Academy of Sciences, Beijing 100049, China
Email: {zoukaiwei, wangying2009, lihuawei, lxw}@ict.ac.cn

Abstract—Accelerating deep neural networks on resource-con-
strained embedded devices is becoming increasingly important for
real-time applications. However, in contrast to the intensive re-
search works on specialized neural network inference architectures,
there is a lack of study on the acceleration and parallelization of
deep learning inference on embedded chip-multiprocessor archi-
tectures, which are favored by many real-time applications for su-
perb energy-efficiency and scalability. In this work, we investigate
the strategies of parallelizing single-pass deep neural network in-
ference on embedded on-chip multi-core accelerators. These meth-
ods exploit the elasticity and noise-tolerance features of deep learn-
ing algorithms to circumvent the bottleneck of on-chip inter-core
data moving and reduce the communication overhead aggravated
as the core number scales up. The experimental results show that
the communication-aware sparsified parallelization method im-
proves the system performance by 1.6×-1.1× and achieves 4×-1.6×
better interconnects energy efficiency for different neural networks.

Keywords—parallelization, multi-core, inference, neural network,
embedded devices

I. INTRODUCTION
Enabling real-time deep neural network inference is becoming

an increasingly important requirement on embedded devices due
to the popularity of edge visual recognition, robotics control and
speech recognition. However, the large quantity of numerical
operations and parameters induced by CNN inference poses a
significant challenge to the resource-constrained devices [6]. As
an alternative to conventional general-purpose CPU and GPU
cores, customized neural network accelerators (NNA) like [2, 4]
are gaining popularity for their efficiency. While the trend of
general-purpose processor design has been shifting from single-
core to on-chip multi-core architectures in the past decade, some
of the recent neural accelerators are also scaling up to chip-mul-
tiprocessors (CMP) architectures to deal with the massive data-
level parallelism in deep neural network inference [1, 3, 5, 8].
Accompanied by core-level gating, multi-core neural accelera-
tors are also showing better elasticity and energy efficiency [4].

When more and more CMP-like neural accelerators begin
connecting multiple separate PE arrays or clusters through on-
chip networks for higher processing throughput [1, 5, 8], the
discussion on how to parallelize single-pass neural network
inference on such architectures is scarce. Most of the prior works
on deep neural network parallelization confine themselves to the
node-level or rack-level machine and generally concern more
about the model training instead of network inference [6].
Recently, there are also many proposals studying the parallelism
of deep learning inference in both specialized architectures like
TPU [8] or conventional general-purpose processors [11].
However, they are more concerned with the datacenter applica-
tions and pursue high-throughput service by providing the ability

of running many threads of network inference concurrently on
the single chip to service many incoming queries or input data.
DaDianNao [5] that connects all the tiles using a fat tree
Network-on-Chip (NoC) is also oriented at data-level parallelism
in server machines. These designs focus on the throughput boost
by running multiple network models or multiple inputs
concurrently. They are not geared towards the embedded or
mobile systems that highlight the response speed of single-pass
network invocation to satisfy the Quality-of-Service (QoS)
constraint of a single task.

While running multiple network models or processing
multiple inputs on different cores independently does not involve
intensive inter-core communications [1], parallelizing single-
pass network inference on CMP architectures has to handle the
soaring overhead of inter-core communications. It is due to the
data dependence and dense neuron connections if a single-pass
network inference is partitioned and parallelized on different
cores of CMP architec-ture. For example, the data
communication may account for more than 30% inference
latency in DaDianNao and grows up rapidly with the increase of
system scale when mapping one single network on it [5].

To accelerate a single inference task on multi-core neural
accelerators and reduce the communication overhead that could
be prohibitively expensive, as illustrated in Fig. 1, we investigate
and propose several inference parallelization techniques: (1)
Traditional parallelization. For the target network, each core is
in charge of a layer partition and routinely broadcasts its output
neurons values to all the other cores to synchronize data for the
process of the next layer, as indicated by dashed arrows in Fig.1
(a). This method induces intensive inter-core traffics and poten-
ially causes performance penalty. (2) Structure-level paralleliza-
ion. By exploiting the algorithmic resilience and redundancy in
deep networks, we deliberately and slightly modify the original
network without influencing the functionality of the model so
that the cores do not broadcast the output neurons values in
specific layers and no inter-core communications are induced
consequently as Fig. 1(b) shows. (3) Communication-aware
sparsiied parallelization. Our key observation is that the zero-
value neural weights/neurons, which are deemed as sparsity in
neural networks, do not affect the inference results and need not
be transmitted across the cores in computation. Instead of forcing
the network model to break up the intra-layer connections by
design as in Fig.1 (b), this method leverages the sparsification
technique to let the networks “learn” to converge on a both
accurate and communication-overhead reduced structure by
themselves in the training phase without modifying the network
configurations as illustrated in Fig.1 (c). These techniques show
some useful clues on how to speed-up deep neural network
inference on embedded CMP architectures composed of either
neural accelerators or even general-purpose cores like [7, 10].

This paper is supported by National Natural Science Foundation of China
under grant No. (61432017, 61532017, 61504153, 61876173, 61874124). The
corresponding authors are Ying Wang and Huawei Li.

1166978-3-9819263-2-3/DATE19/ c©2019 EDAA

network

By design result

No inter-core
data moving

(b)

network
result

Intensive inter-core
data moving

(a)

network

By learning result

Minor inter-core
data moving

(c)

coreLayer1 Layer2 map

Layer partitionsinter-core communication Core
Fig. 1. (a). Traditional parallelization. (b). Structure-level parallelization. (c).
Communication-aware sparsified parallelization mapped on four cores.

Specifically, this paper makes the following contributions:
� We study and propose several communication-aware

approaches to parallelize the single-pass network inference on
multi-core architectures.

� We propose the communication-aware network training
method to reduce the inter-core data moving on multi-core
neural accelerator. The proposed training method not only
reduces the on-chip traffics, but also aims to reduce the
communication activities between two distant cores,
significantly contributing to communication cost reduction.

� We evaluate the deep neural network parallelization schemes
on simulated CMP architectures integrated with specialized
NNA cores, and show conspicuous performance and energy-
efficiency speedup. In addition, we investigate their scalability
on CMP architectures.

II. RELATED WORK
A. Deep Learning on Multi-core Architectures

A lot of prior works are conducted in these years to accelerate
Deep NNs on GPGPUs, high-end CPUs [9] and FPGAs[15].
There are also closely related researches utilizing the many-core
architecture of CPUs to accelerate deep learning [11]. However,
these works are conducted at the arithmetic-level, and only
concern about how to accelerate the matrix multiplication
operations on multi-processor architecture, but do not investigate
the inference parallelization problem from the aspects of network
model design as in this work.

There are also plenty of researches that parallelize the training
phase of large-scale neural networks on distributed systems by
exploiting the capability of multiple GPGPUs and CPUs [6].
Compared to distributed training on rack-scale machines,
powerful single-chip solutions like TPU and other designs [4] are
more related to our work. However, unlike our work targeted on
embedded scenarios, they seek to pursue input-level parallelism
by concurrently inferring many independent networks to process
the incoming input data or requests on high-throughput chips.

B. Deep Learning Parallelization
The studies on neural network parallelization implementations

can be categorized into two types [17] : (1) Model parallelism.
Different workers train different parts of the model, which needs
frequent communication across workers to synchronize data. (2)
Data parallelism. Different workers train the same model on
different data batches. These methods are widely applied to large
distributed systems or GPUs for neural network training. For
example, work [13, 14] focuses on data parallelism and work [6]
concentrates on model parallelism while both techniques are
adopted by work [17]. However, unlike the above model
parallelization method that generally partitions the model by

layers (inter-layer) and processes them in pipelined manner, our
techniques partition one layer into several concurrent and
independent parts, then map them to different cores, which is
more viable on embedded multi-core architectures because
pipelining layers with distinct hyper-parameters cause severe
load-imbalance issue on cores. One important point worth
mentioning is that the inter-core parallelization policies proposed
in this work are orthogonal to the intra-core neural network
parallelism extracted by the many PEs in single-core
architectures as in [2, 4].

III. BACKGROUND AND MOTIVATION
A. Chip Multi-core Neural Accelerator Architecture

We assume the tiled architecture with Network-on-Chip (NoC)
is adopted to implement the multi-core neural accelerator. This
CMP-like architecture comprises a number of replicated tiles
connected via the NoC. A tile typically incorporates a processing
core which could be general-purpose CPU or specialized
accelerator core, local buffers for weight and data, and network
interfaces ported to a router. Fig. 2 depicts a CMP architecture
that consists of 16 neural network accelerator cores [2] connected
with a Mesh NoC. The NoC is responsible for transferring on-
chip data between cores and off-chip data between memory
controller and cores as well. Based on this CMP-like architecture,
we split and map the single-pass of CNN inference to the
distributed on-chip cores to exploit the computation parallelism.
B. Motivational Study

Fig. 3 shows an example of partitioning and mapping a layer
of convolutional neural network to two cores. The first
convolutional layer (Conv1) contains four filters (also known as
kernels) to abstract the high-level features from the input maps.
The kernels can be organized in tensors, where
equals the number of input feature maps. The four kernels are
mapped to two cores to exploit the parallelism and the kernels
shown in the same color are mapped to one core.

One kernel computes with the input data will generate an
output feature map. After the computation of the first layer, the
generated four output feature maps are in two different cores.
Thus, the following data synchronization induces the
communication overhead between cores. We estimate this
traditional parallelization approach using several representative
neural networks on 16-core CMP-like architecture. The data
volume needed to be exchanged in NoC for different layers are
shown in TABLE I. As the table shows, the data size is increasing
as the size of the neural network model and the input image
become larger. When larger and deeper networks like VGG19
and Resnet-incept are deployed on such architectures, the
partitioning-induced traffics will be rocketing. In such cases, the
data packets are injected in burst during layer transition and are
prone to block each other due to the limited bandwidth of the on-
chip network, and eventually cause communication congestion
in the NoC communication, potentially degrading the system
performance. When the processors become stronger, the relative

NBin NBout

Fig. 2. Chip multi-core neural accelerator architecture.

Design, Automation And Test in Europe (DATE 2019) 1167

Image Conv1 Conv2Communication
Core2

Core1
Kernels Input feature mapsOutput feature maps Kernels

Fig. 3. Traditional parallelization of CNN inference on two cores. The dashed
arrows mean data communication between cores.
TABLE I. DATA VOLUME TO TRANSMIT IN NOC AFTER LAYER PARTITIONING

AND PARALLELIZATION
Net-

works
Datasets Data moving size a (Byte)

Conv2 Conv3 Conv4 Conv5 Ip1 Ip2/3
MLP MNIST - - - - 28K 17K
LeNet MNIST 225K - - - 57K 29K

Convnet Cifar-10 450K 113K - - 57K -
AlexNet ImageNet 2M 2.4M 1.8M 1.8M 450K 57K
VGG19 ImageNet 42M 22M 11M 5.4M 1.4M 57K

a. Both Conv2_1 and Conv2_2 of VGG19 are showing with Conv2.

performance penalty caused by these burst traffics tends to be
more significant. According to our analysis, it costs about 23%
time for AlexNet to communicate between cores during a single-
pass inference on one embedded chip integrated with NNAs [2].

In conclusion, in order to accelerate the CNNs inference on
latency-focused and energy-efficient mobile systems, paralleliz-
ing neural network layers on multiple cores is an effective solu-
tion to amortize the large-quantity operations, but the effective-
ness is highly correlated to the inter-core communication penalty
entailed by task partitioning and synchronization. In considera-
tion of both computation and communication overhead, we
evaluate several approaches that exploit the parallelism of neural
network inferences in different manners, and discuss their impli-
cation on on-chip communication and system performance.

IV. CMP ORIENTED CNN INFERENCE PARALLELIZATION
In this section, we discuss three parallelization methods as

briefly illustrated in Fig. 1, which are investigated and evaluated
for their performance and scalability on CMP architectures.
A. Traditional Parallelization

Fig. 3 illustrates the traditional parallelization process on two
cores. Suppose there are four convolution kernels divided into
two groups for Conv1 layer and each group with two kernels is
mapped to one core. All the cores have the same input image.
When the input image is convolved with the according kernels,
each core then outputs two feature maps. After that, the
computation of the next layer is invoked, and the related core
needs the data of the rest feature maps on the other core to start
the computation of current layer. Thus, every core needs to
broadcast the output feature maps of the previous layer to the
other core through the NoC and receive the response data sent by
the other core as well to synchronize the data, which lead to
communication overhead in NoC. This method will produce the
same output result as the non-parallelized network in single-core
implementation. However, as the computing power and the core
number scale up, the performance of NoC is likely to be the
bottleneck of the whole system because of the intensive inter-
core traffics.

This type of parallelism technique loyally maps the network to
multi-core architectures and thus is adopted by many works on
neural network acceleration [17] and state-of-the-art mathematic
library like MKL [12] for speed-up in multi-core CPUs or
GPGPUs. Therefore, the traditional parallelization technique is

also regarded as the baseline to be optimized in this work.
B. Structure-level Parallelization

One effective method to resolve the communication problem
is to seek the structure-level parallelization as shown in Fig. 4.
Each core generates two output feature maps as the traditional
parallelization does. However, the cores do not broadcast the
feature maps to other cores for certain convolutional layers. In
other words, the output neurons of the next layer are connected
only to those neurons on the same core generated by the previous
layer, to avoid the communication between cores. If we
intentionally transform the neural networks into this partly-
connected structure, there will be no necessity to transfer the
activation data to certain cores. In Fig. 4, the kernels in Conv2
layer take input only from those Conv1 feature maps that reside
on the same core. This design intuition is borrowed from the
classic structure of AlexNet [9] that partitions some of the middle
convolutional layers (the second convolutional layer for instance)
into two non-interactive groups to reduce the parameters updates
in training on GPUs, which is also called “grouping”. Grouping
is originally proposed to reduce the memory space demand in
training. However, we observe that this structure modification
can also be extended to reduce inter-core data moving in
inference with little impact on model functionality if we partition
the dense convolutional layer into independent sub-groups.
However, this grouping technique is not randomly applied to all
layers for accuracy sake. In general, we choose to “split” the
convolutional layers with high-dimension kernels because these
layers induce higher energy and penalty to transmit the
intermediate computing results according to TABLE I.

For large-scale neural networks, structure-level parallelization
will significantly reduce the communication and the computation
complexity as well. This is because that the input data of the next
layer is incomplete and the kernel size is reduced
correspondingly, as a consequence, the operation amount is
decreased significantly. However, this method may cause
accuracy loss sometimes. A compensational solution is to replace
the model with a stronger but more complex one to recompense
the loss. The details are discussed in Section .
C. Communication-aware Sparsified Parallelization

The structure-level parallelization makes it convenient to
parallelize CNNs at a lower cost, and it needs experience to find
the best grouping strategy about which and how many layers are
split in a net. If not properly configured, it may cause accuracy
loss due to inadequate feature learning and extraction. Therefore,
instead of splitting the network directly, we also propose to
utilize the inherent resilient training characteristic of neural
networks and let themselves “learn” the network architecture
and parameters that are most suitable to be parallelized on
CMPs. We observe that neural network sparsification techniques
can be used to learn this type of CMP-friendly neural networks
with reduced communication between cores.

1) Overview: Pruning the over-parameterized neural net-
works is an efficient approach to reduce network complexity and

Core2

Core1

Kernels Input feature maps Conv Resluts

Image Conv1 Conv2No Communication

Output feature maps

Fig. 4. Structure-level parallelization on two cores.

1168 Design, Automation And Test in Europe (DATE 2019)

also the chances of over-fitting by removing redundant
connections and nullifying the according neural parameters.
Therefore, this work utilizes the neural network sparsification
technique to obtain the desired models without influencing their
functionality. For details, as Fig. 5 shows, the convolutional
kernel size () is consistent with the number of the input feature
maps and each feature map is convolved by the corresponding
part of the kernel. As a result, when the corresponding
parameters in that kernel are purposely sparsified in training to
be all zero (white parts), the result of the according output
feature map will eventually be zero whatever the data values of
the input feature map are (shown in gray). Thus, it is
unnecessary to transfer the activations that will be eventually
multiplied by zeros from core to core. For example, to obtain
the input data for Conv2 layer computation, the cores need to
communicate with each other to obtain the output results from
Conv1 layer according to traditional manner. However, if the
weight kernels of Conv2 layer are so sparsified that the to-be-
transmitted input feature maps are destined to generate zero-
value outputs after convolution operation, then there would be
unnecessary for the other core to send the previous layer results.

Based on this observation, we employ a structured
sparsification method to train the networks. Compared to early
non-structured sparse networks, which are pruned indepen-
dently and without a specific constraint and the trained models
are possessing randomly distributed zero-value weights,
structured sparsity approaches purposely distribute the non-zero
weights at pre-assigned locations, so that the zero-value neural
weights or activations could be more hardware-friendly for
acceleration [16]. This work uses structured sparsification
technique, specifically group Lasso, to obtain a communication-
reduced network model with regularized weights distribution
(e.g., the kernels of Conv2 layer in Fig. 5) for embedded multi-
core accelerators.

In addition, since the communication overhead between two
arbitrary cores depends on their Hamming Distance from each
other in NoC with Mesh topology, the system performance will
be influenced by the distribution of non-zero parameters in a
kernel because they determine which node in this NoC a certain
feature map will be sent to. Thus, we further propose
communication-aware sparsified parallelization technique that
takes the Hamming Distances between cores into consideration
to train the CNN models that have the best zero-weight
distribution for CMP-like architecture performance.

2) Group Lasso Regularization: Specifically, we use group
Lasso regularization to learn structured sparsification for CNNs
models [16]. The corresponding optimization target in training
can be formulated as:

1

() () () ()
l

l
D g g

l
L W L W R W R W� �

�

� � � � �� (1)

here, is the collection of all weights in the DNN and
represents the loss on data as specified by the prediction

task. is the generic regularization term applied to every
weight that are non-structured, such as 2l -norm. ()gR � is the struc-
tured sparsity regularization term on each layer and the group
Lasso regularization method makes it possible that any specified
group of weights in the whole network are more likely to be zero
than weights in other locations. Then the weights distribution is

Core2

Core1

Image Conv1 Conv2Communication

Kernels Input feature maps Conv ReslutsOutput feature maps

Fig. 5. Communication-aware sparsified parallelization on two cores, kernels and
feature maps in different color indicate they are mapped to different cores while
kernel parts in white are automatically zeroed in training.

changed and re-structured at group-level. The regularization of
group Lasso on a group of weights can be represented as:

 g

1
() || ||

G

g g
g

R W w
�

�� (2)

where
g|| ||� is the group Lasso, gw is a group of weights in w and

G is the total number of groups. We formulate
g|| ||� as:

| |

2

1
|| || ()

gw
g g

g i
i

w w
�

� � (3)

where | |gw is the number of weights in gw .
3) Detailed Methodology: We firstly partition the weight

matrix into several groups of the same number as the square of
the core number. Then, we use the distances between cores as a
factor to influence the learning process by assigning different
sparsity strength1 to the weights according to their involved
communication cost. Therefore, we obtain a model with few
data moving activities between two distant cores in NoC, which
is measured with data volume and core distance (decided by
routing algorithm).

Suppose the chip has 16 cores as shown in Fig. 2, and the
distance between two adjacent cores is 1. The distances of the
first four cores are as Fig. 6 (a) shows, given that dimensional-
ordered routing is adopted. We use this 16×16 distance matrix as
the factor mask to sparsify the weight groups during training, so
the groups of parameters will be sparsified with the priority as
specified in the factor matrix. Consequently, the parameters that
induce higher communication overhead will be the first to be
pruned. For example, the weights on the diagonal groups will not
cause any communication between any two cores because the
corresponding data are on their own cores. Therefore, we assign
lower sparsity strength to these groups to keep their values while
pruning those groups that cause high communication overhead
because of long distance.

Finally, we obtain a structured and optimized communication-
aware network model, which is more energy-efficient than the
baseline in terms of on-chip parallelization cost. The theory
behind this technique is that in network training there are various
choices of weight values that all make the model generate an
accurate prediction, which is also called redundancy in network.
Fig. 6 (b) shows an example of the final grouped weights matrix
obtained in experiments.

00

10

0

01

0

01

00

1

10

0

0

0

1

1

0

0

1

0

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

1

1

0

0

1

1

0

0

1

0

0

0

0

1

0

0

0

1

0

0

1

1

0

0

1

0

0

0

0 0

0 032

01

2

10

1

10

23

0

12

1

C1 C2 C3 C4

C1

C2

C3

C4

(a) (b)

Core 1

Core 2

Core 3

Core 4

...

...

...

...

Core4Core2Core1 Core3

Fig. 6. (a). Distance for 4 cores. (b). Final weights matrix in group-level.

1 The strength to sparsify the weights, the higher, the weights are more
likely to be pruned down.

Design, Automation And Test in Europe (DATE 2019) 1169

Each line is mapped to a core which has two convolutional
kernels sized as 2×2×32. The two kernels in one core are further
divided into 16 groups (Fig. 6 (b) only shows the first four
groups). The number 1 represents that the value is not zero. The
shaded area means the group sparsification is unnecessary and
the communication cost caused by this block of weights is
marginal because the two cores are adjacent to each other (only
one hop from core3 to core2), so that the training procedure will
freely parameterize groups like this to preserve accuracy. The
figure shows that all the groups of weights that induce long-
distance communication are pruned away as an ideal case.

V. EXPERIMENTAL EVALUATION
The experimental platform is a simulated embedded CMP with

16 cores connected with a mesh NoC as shown in TABLE II.
Two variants of ConvNet are used to evaluate the effectiveness
of the structure-level parallelization by varying the kernel
numbers of the convolutional layers on ImageNet10 (images
containing ten object classes of ILSVRC 2012) as shown in
TABLE III. In addition, we choose several representative neural
network models, including MLP and LeNet on MNIST, ConvNet
on Cifar-10, and AlexNet on ImageNet as the benchmarking
networks for communication-aware sparsified parallelization.
MLP has three fully-connected layers with the neuron number of
512/304/10 respectively. The inference performances of
networks that are parallelized with the traditional manner are
used as the baselines for comparison. The neural cores are
simulated with an in-house simulator that could faithfully
simulate the design of Diannao [2]. BookSim2 and DSENT are
used to simulate the NoC communication process. We also test
the sensitivity of the proposals to core number in experiments to
investigate their scalability on CMP-like architectures.
A. Performance and Energy Evaluation

1) Structure-level parallelization: As TABLE III shows,
Parallel#1 and Parallel#2 are two different implementations of
the same ConvNet variant, and they are parallelized using
different grouping methods. To evaluate this technique, we
divide the convolutional kernels in Conv2 and Conv3 layers of
these two neural networks into n groups so that each group could
be mapped to one core for inference. When n equals 1 as in
Parallel#1, it indicates that the network is parallelized in a
traditional way, which is used as the baseline.
 In Fig. 7, the metric of performance speedup gauges both the

speedup of computation and the NoC transmission in CNN
inference caused by network grouping. The normalized commu-

TABLE II. SYSTEM CONFIGURATIONS
Component Parameters

Specialized acceler-
ator core [2]

Each core has 16×16 PEs, one 128KB weight
buffer per core, two 32KB data buffers per core,
16-bit fixed-point integer operation

Network-on-chip
512-bit flit, 20-flit packet, 2D mesh topology, 3
stages, 2 physical channels, dimensional-or-
dered routing, 3 VCs

Main memory 1 channel, 1 rank, LPDDR3, 1GB, 4-bank

TABLE III. PERFORMANCE OF STRUCTURE-LEVEL PARALLELIZATION
ConvNet Conv kernel number a Group num. (n) Accu. Speedup

Parallel#1 64 – 128 – 256 1 0.726 1
Parallel#2 64 – 128 – 256 16 0.698 4.9×
Parallel#3 64 – 160 – 320 16 0.742 4.6×

a. In the order of conv1-conv2-conv3.

Fig. 7. System performance speedup (left) and communication energy reduction
(right) for structure-level parallelization.
nication performance speedup measures the ratio between the
computation-blocking communication cycles of the baseline
and that of the proposed structure-level parallelization. Fig. 7
shows that the structure-level parallelization accelerates both
computation and communication for the reduction of the com-
puting complexity and communication (Conv2 and Conv3 lay-
ers do not need data transmission according to Fig. 4). However,
this method eventually results in 2.8% accuracy loss. By adding
the kernel number, we obtain a more accurate model, which is
Parallel#3. Although Parallel#3 entails more operations due to
the increased convolutional filters, the experimental results
show that the system performance speedup is still higher than
the baseline result (4.6×) with 1.6% increased accuracy. The
overall energy consumption reductions are 91% and 88% for
Parallel#2 and Parallel#3 respectively.

2) Communication-aware sparsified parallelization: We
train four different neural networks for performance and energy
evaluation. It is noted that because this method is deployed in
training phase and the trained CMP-friendly neural network
model is already prepared when enabling inference, therefore,
no extra overhead is induced. The experimental results shown in
TABLE IV demonstrate that our proposed method is very
effective for the parallelization of both fully-connected layers
(MLP) and large-scale convolutional layers (CaffeNet, Caffe-
provided version of AlexNet with minor changes). The scheme
named SS are also structured-sparsified with group Lasso and
the neural connections in the same layer of SS method share the
same sparsity strength factor without considering the distance
between cores in training phase. The baselines are the same
network implementations without structured sparsification.
Compared to SS, SS_Mask is fully aware of the inter-core
communication cost in NoC by using the sparsity mask matrices
that reflect the locations of cores in Mesh. These mask matrices
are used to impose different levels of sparsity strength factor on
different groups of weights according to the potential
communication overhead decided by data moving distance.
TABLE IV. PERFORMANCE AND ENERGY REDUCTION OF COMMUNICATION-

AWARE SPARSIFIED PARALLELIZATION

Networks Type Accu. NoC traffic
rate

System
speedup

Energy Re-
duction

MLP
Baseline 98.36% 100% 1× 0%

SS 98.38% 30% 1.40× 59%
SS_Mask 98.36% 11% 1.59× 81%

LeNet
Baseline 99.17% 100% 1× 0%

SS 98.98% 82% 1.20× 15%
SS_Mask 98.60% 23% 1.51× 89%

ConvNet
Baseline 78.75% 100% 1× 0%

SS 80.15% 46% 1.19× 25%
SS_Mask 79.61% 35% 1.32× 55%

CaffeNet
Baseline 55.19% 100% 1× 0%

SS 55.02% 98% 1.02× 17%
SS_Mask 54.21% 57% 1.10× 38%

0

2

4

6

8

10

12

Computation Communication

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Sp

ee
du

p

Parallel#1(baseline) Parallel#2 Parallel#3

0

0.2

0.4

0.6

0.8

1

1.2

Computation Communication

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Parallel#1(baseline) Parallel#2 Parallel#3

1170 Design, Automation And Test in Europe (DATE 2019)

TABLE IV shows that our proposed parallelization method
significantly reduces the size of NoC traffics. For example, we
reduce the size of transmitted packets to only 11% on average for
MLP without any accuracy loss. This method significantly
speeds up the system performance and reduces the NoC energy
consumption due to the large amount of NoC traffics reduction.
The SS_Mask scheme performs better than SS because the NoC
traffics in SS_Mask are constrained to be between only close
cores one or two hops away from each other.
B. Sensitivity to Core Number

All the above experiments are conducted on a 16-core chip.
We test the sensitivity of the proposals to core number in
experiments.

1) Structure-level parallelization: We evaluate the system
performance and energy consumption of Parallel#3 in TABLE
III on chips with 4, 8 ,32 cores respectively. The corresponding
networks are listed in TABLE V. As Fig. 8 shows, the system
performance speedup and energy efficiency for computation
increase with the core number because of the declining
computing complexity on each core. The system performance
improvements and energy efficiency for communication remain
steady. The reason is that the overall volume of moving data
keeps stable, but both the average core-to-core distance and the
bi-sectional bandwidth of the on-chip network increase at the
same time. The latter two factors bring the NoC performance to
different directions but finally make a balance point as core
number increases. However, relative to computation perfor-
mance, the communication cost becomes more pronounced and
the proposed parallelization techniques become more useful.

2) Communication-aware sparsified parallelization: We
use LeNet to test the communication-aware sparsified
parallelization on 8 cores and 32 cores respectively. The models
as well as the corresponding system performance speedups and
communication energy reductions are listed in TABLE VI. It
shows that the system performance speedups and energy
reductions increase as the core number scales up. This is partly
because that as the core number increased, the size of every
kernel group assigned to each core becomes smaller and can be
easily pruned out at a lower risk of accuracy loss. Another
reason for the relative speedup is that the NoC bandwidth issue
becomes relatively more severe as the diameter and node
number of the NoC increase, which leaves a larger space of
performance improvement for our method to exploit.

TABLE V. PERFORMANCE OF STRUCTURE-LEVEL PARALLELIZATION FOR
PARALLEL#3 ON VARIOUS NUMBER OF CORES

Core number n Accu. Speedup
4 4 0.694 2.7×
8 8 0.718 4.6×

16 16 0.742 6.0×
32 32 0.722 6.9×

TABLE VI. PERFORMANCE AND ENERGY REDUCTION OF COMMUNICATION-
AWARE SPARSIFIED PARALLELIZATION OF LENET FOR 8 AND 32 CORES

LeNet Type Accu. NoC traffic
rate

System
speedup

Energy Re-
duction

8core-1 Baseline 99.1% 100% 1× 0%
8core-2 SS 98.9% 80% 1.20× 10%
8core-3 SS_Mask 98.9% 68% 1.22× 32%
32core-1 Baseline 99.1% 100% 1× 0%
32core-2 SS 98.7% 32% 1.49× 34%
32core-3 SS_Mask 98.6% 18% 1.58× 56%

Figure 8: System performance speedup (left) and communication energy
consumption (right) of various cores for structure-level parallelization.

VI. CONCLUSION
In this work, we evaluate several unorthodox parallelization

schemes for single-pass neural network inference on-chip multi-
core architectures. Among them, the communication-aware
sparsified parallelization technique exploits the elasticity and
noise-tolerance features of deep learning algorithms to enable the
neural network to learn a configuration that is very suitable to be
parallelized on CMP architectures. The experimental results
show that this method improves the system performance by 1.6×-
1.1× and achieves 4×-1.6× better on-chip communication energy
efficiency for different neural networks.

REFERENCES
[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A.

Moshovos, "Cnvlutin: Ineffectual-neuron-free deep neural network
computing," in ACM SIGARCH Computer Architecture News, 2016, vol.
44, no. 3, pp. 1-13: IEEE Press.

[2] T. Chen, et al., "Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning," in ACM Sigplan Notices, 2014, pp. 269-
284: ACM.

[3] Y.-H. Chen, J. Emer, and V. Sze, "Eyeriss v2: A Flexible and High-
Performance Accelerator for Emerging Deep Neural Networks," arXiv
preprint arXiv:1807.07928, 2018.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, "Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks," IEEE Journal of Solid-State Circuits, pp. 127-138, 2017.

[5] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu,
and N. Sun, "Dadiannao: A machine-learning supercomputer," in
Proceedings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, 2014, pp. 609-622: IEEE Computer Society.

[6] A. Coates, et al., "Deep learning with COTS HPC systems," in
International Conference on Machine Learning, 2013, pp. 1337-1345.

[7] L. Gwennap, "Adapteva: More flops, less watts," Microprocessor Report,
vol. 6, no. 13, pp. 11-02, 2011.

[8] N. P. Jouppi, et al., "In-datacenter performance analysis of a tensor
processing unit," arXiv:1704.04760, 2017.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," in Advances in neural
information processing systems, 2012, pp. 1097-1105.

[10] Y. Lee, et al., "A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W RISC-
V processor with vector accelerators," in European Solid State Circuits
Conference (ESSCIRC), ESSCIRC 2014-40th, 2014, pp. 199-202: IEEE.

[11] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, "Efficient sparse matrix-
vector multiplication on x86-based many-core processors," in Proceedings
of the 27th international ACM conference on International conference on
supercomputing, 2013, pp. 273-282: ACM.

[12] MKL, pp. Math Kernel Library. https://software.intel.com/en-us/mkl.
[13] F. Seide, et al., "1-bit stochastic gradient descent and its application to

data-parallel distributed training of speech dnns," in Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[14] L. Song, Y. Wang, Y. Han, X. Zhao, B. Liu, and X. Li, "C-brain: a deep
learning accelerator that tames the diversity of CNNs through adaptive
data-level parallelization," in Design Automation Conference (DAC),
2016 53nd ACM/EDAC/IEEE, 2016, pp. 1-6: IEEE.

[15] Y. Wang, et al., "DeepBurning: automatic generation of FPGA-based
learning accelerators for the neural network family," in Proceedings of the
53rd Annual Design Automation Conference, 2016, p. 110: ACM.

[16] W. Wen, et al. "Learning structured sparsity in deep neural networks," in
Advances in Neural Information Processing Systems, 2016, pp. 2074-2082.

[17] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, "Performance modeling and
scalability optimization of distributed deep learning systems," in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2015, pp. 1355-1364: ACM.

0

2

4

6

8

10

Computation Communication

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Sp

ee
du

p

4 cores 8 cores 16 cores 32 cores

0

0.1

0.2

0.3

0.4

Computation Communication

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

4 cores 8 cores 16 cores 32 cores

Design, Automation And Test in Europe (DATE 2019) 1171

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

