
RiskiM: Toward Complete Kernel Protection
with Hardware Support

Dongil Hwang, Myonghoon Yang, Seongil Jeon, Younghan Lee, Donghyun Kwon* and Yunheung Paek
ECE and ISRC, Seoul National University

{dihwang, mhyang, sijeon, yhlee, dhkwon}@sor.snu.ac.kr, ypaek@snu.ac.kr

Abstract—The OS kernel is typically the assumed trusted
computing base in a system. Consequently, when they try to
protect the kernel, developers often build their solutions in a
separate secure execution environment externally located and
protected by special hardware. Due to limited visibility into
the host system, the external solutions basically all entail the
semantic gap problem which can be easily exploited by an adver-
sary to circumvent them. Thus, for complete kernel protection
against such adversarial exploits, previous solutions resorted to
aggressive techniques that usually come with various adverse
side effects, such as high performance overhead, kernel code
modifications and/or excessively complicated hardware designs.
In this paper, we introduce RiskiM, our new hardware-based
monitoring platform to ensure kernel integrity from outside
the host system. To overcome the semantic gap problem, we
have devised a hardware interface architecture, called PEMI, by
which RiskiM is supplied with all internal states of the host
system essential for fulfilling its monitoring task to protect the
kernel even in the presence of attacks exploiting the semantic
gap between the host and RiskiM. To empirically validate the
security strength and performance of our monitoring platform in
existing systems, we have fully implemented RiskiM in a RISC-
V system. Our experiments show that RiskiM succeeds in the
host kernel protection by detecting even the advanced attacks
which could circumvent previous solutions, yet suffering from
virtually no aforementioned side effects.

I. INTRODUCTION

Operating system (OS) kernels running on modern proces-
sors, such as x86/x64, ARM and RISC-V, are usually consid-
ered the trusted computing base (TCB) in a system. However,
due to their monolithic design that all of the kernel code is
supposed to run in a single address space, an attacker can
compromise the entire kernel through a single kernel exploit.
The ability to manipulate the kernel means that the attacker can
affect almost every part inside it, such as file access permission
or data transmission through the network. Worryingly, the
number of reported kernel vulnerabilities is steadily increasing
in recent years [1], rendering kernel protection an important
problem in practice.

Developers have sought to protect the kernel against kernel-
level attacks and rootkits [2] by devising mechanisms to
monitor its integrity in a secure execution environment (SEE)
isolated from the monitored kernel. To provide a SEE, many
studies have proposed software-based techniques that man-
date either the instrumentation of kernel code [3], [4] or
the introduction of a higher privileged layer [5], [6] (i.e.,
hypervisor). The common disadvantage of these techniques is
the considerable performance overhead incurred by frequent,
expensive context switches between the kernel and SEE. Fur-
thermore, being implemented in software, the SEE itself may
also be susceptible to software vulnerabilities. Inserting further
padding in a software layer for security may temporarily

* Corresponding author.

patch or mitigate vulnerabilities, but this does not provide a
fundamental solution.

Hardware-based techniques [7]–[10] have been addressed in
the hope of overcoming the innate limitations that software-
based ones have as mentioned above. In particular, many
attempts incorporate building security-dedicated hardware,
which is physically isolated from the host processor and
attached to the outside of the host. For example, by leveraging
such physical isolation, several commodity devices [11], [12]
provide hardware-based security services such as cryptography
in the SEE. However, implementing a monitor for kernel
integrity protection requires that the external hardware must
not only provide the foundation for a SEE, but be also able to
monitor the various system events during kernel execution.
First, the integrity monitor should be aware of the kernel
memory events since the kernel uses the memory to hold its
status information and sensitive data structures, such as page
tables and process credentials. Also, the monitor should obtain
information about the control and status registers (CSRs),
which are essential for understanding the current system’s con-
figuration as they set up important resources like the system’s
MMU and cache. An external hardware monitor should be
able to verify this information, or attackers might bypass the
monitor by exploiting its ignorance of the host internal details,
which is known as the semantic gap problem [13].

Unfortunately, in their efforts to fill the semantic gap
between them and the host, external hardware monitors for
kernel protection [7], [8], [10] all had to endure serious ad-
verse side effects, such as high performance overhead, kernel
code modifications and/or excessively complicated hardware
designs. Even worse, despite such efforts, they still suffered
from the semantic gap problem to some degree. One such
example is Kargos [8], which strived to protect the kernel
by leveraging as many hardware features of the ARM host
processor as possible. To minimize the semantic gap, Kargos
obtains the control flow information directly from the ARM’s
Program Trace Interface (PTI) [14]. To retrieve the data flow
information, it snoops the interconnection between processor
and memory. In spite of these efforts, Kargos manages to
observe only the write values upon certain memory events.
Sadly, because of its inability to pinpoint the exact location in
the kernel code that writes each value, Kargos is not able either
to ensure complete kernel protection by verifying the integrity
of all critical kernel data structures, or to detect sophisticated
kernel attacks like data-only attacks. Also, to extract the CSR
update information, their kernel code underwent modifications,
and the design of Kargos became more complicated. To make
matters worse, such modifications to the kernel imposed extra
performance overhead on the host processor.

From the work of Kargos, we have learned that their monitor

734978-3-9819263-2-3/DATE19/ c©2019 EDAA

Fig. 1. The architecture overview of our approach

can neither completely nor efficiently enough protect the host
kernel due mainly to ARM’s limited support for Kargos to
extract the host execution information. Based on this, we
have concluded that the most effective way to solve both
the problems of semantic gaps and side effects would be
proper support from the underlying hardware. In this paper, we
present RiskiM, a new hardware-based external monitoring
platform that, backed by strong hardware support, ensures ker-
nel integrity more completely and efficiently than any previous
work. Specifically, in comparison with others, RiskiM per-
forms its task with a relatively compact hardware architecture
and no code instrumentation, thus achieving lower hardware
cost and higher performance. We ascribe this achievement
primarily to our new interface architecture, called the program
execution monitor interface (PEMI). Being defined by our
analysis on previous work, PEMI is a description of the
minimal hardware support necessary to provide RiskiM with
all internal host states for kernel integrity verification.

To evaluate the effectiveness and practicality of our monitor-
ing platform, we have fully implemented it for an existing host
kernel running on the RISC-V processor. RiskiM is attached
externally to the host processor via PEMI which is realized
as a new security extension to RISC-V. When building PEMI
into RISC-V, we have modified the RISC-V architecture. But,
to make our design more acceptable by RISC-V systems in
the present and future generations, we have endeavored to
minimize the modifications by inserting just a few lines to the
original core description code for RISC-V, hence maintaining
the same RISC-V ISA and hardware abstraction layers for
the existing software (including the kernel) running on top
of RISC-V. Our empirical results exhibit that while achieving
almost zero performance and power consumption overheads,
RiskiM can capture several advanced attacks that other
external monitors fail to detect.

II. THREAT MODEL

In this paper, our threat model and assumptions are not
much different from existing works for kernel protection. We
assume that the kernel and our hardware modules are safely
loaded at boot time by leveraging secure boot mechanisms
such as AEGIS [15] or UEFI [16]. We also assume that an
attacker can arbitrarily modify the kernel code region or data
region by exploiting vulnerabilities in the kernel. However,
any physical attacks, such as denial-of-service (DOS) attacks
and side-channel attacks are out-of-scope for this paper.

III. DESIGN AND IMPLEMENTATION

In this section, we describe in detail the design and imple-
mentation for PEMI and RiskiM.

A. Design Principles

The design principles of our approach are as follows:

Fig. 2. Microarchitecture of PEMI

• P1. Compatible with existing architecture and software:
The design of our approach should be compatible with
existing architecture and software running on it. Otherwise,
it will require a tremendous amount of efforts in porting it
to a new architecture. As a consequence, a wide adoption
of our approach can be hindered by such a process.

• P2. Comprehensive integrity verification mechanism: As
described in Section II, the attackers that we assumed can
attempt to thwart the integrity of the kernel in various
ways. Therefore, for a more complete integrity verification
mechanism, RiskiM has to perform comprehensive checks
on various kernel events to detect all of these attacks.

• P3. Non-bypassable monitoring mechanism: PEMI ex-
tracts information from the processor and RiskiM ver-
ifies kernel integrity based on it. In other words, if the
extracted information can be forged, an attacker can bypass
RiskiM and successfully perpetrate the attack. Therefore,
our approach should provide a non-bypassable monitoring
mechanism of the kernel behavior.

• P4. Low hardware and performance overhead: To make
our approach feasible, we minimize the hardware and per-
formance overhead of our approach.

B. Architecture Overview

Figure 1 illustrates the overall design of our approach. PEMI
extracts internal processor states to generate the necessary
dataset and delivers it to RiskiM, and receives the interrupt
signal from RiskiM to halt the processor. The details of PEMI
are discussed in Section III-C. RiskiM is located outside
the CPU to provide a SEE to the security solution. RiskiM
verifies the received dataset based on the whitelist register
set, which is set by the security solution and kernel analysis
at boot time. The security solution provides the range of the
monitored data regions, the range of the valid code regions and
the valid values. The kernel analysis provides the range of the
kernel immutable region, and the CSR invariants. If an attack
is detected during the verification process, RiskiM sends an
interrupt signal to the interface. The details for RiskiM will
be presented in Section III-D.

C. Program Execution Monitor Interface

As a security extension to RISC-V core, PEMI extracts
internal processor states, which are indispensable to RiskiM
for comprehensively verifying kernel integrity. In particular,
PEMI extracts the execution information for the memory
write instruction and CSR update instruction. As described

Design, Automation And Test in Europe (DATE 2019) 735

in Section I, since the memory and CSR contain the current
kernel status such as sensitive kernel data structures and the
system configuration, it is essential to verify the changes in
this information to ensure kernel integrity. PEMI represents
the extracted information as a 3-tuple dataset and sends it to
RiskiM. Two datasets are as follows:

• Memory write dataset =

{Instruction address, Data address, Data value}
• CSR update dataset =

{CSR number, CSR update type, CSR data value}
Each component for the memory write dataset and CSR

update dataset is extracted from the corresponding pipeline
stage as highlighted in red and blue dotted lines in Figure 2,
respectively. CSR number indicates the kind of CSR being
updated by the instruction (i.e., sstatus, sptbr, etc.). CSR
update type (i.e., write, set, clear) shows how the instruction
updates using the CSR data value. Once after every dataset
is generated, PEMI transmits it with 2-bit selector that
indicates which type of dataset has been generated: selector
= 0, 1, 2 for invalid, memory write instruction, and CSR
update instruction datasets, respectively. Since memory write
and CSR update datasets may be created simultaneously, PEMI
includes a buffer which can store a dataset.

When RiskiM detects an attack, PEMI receives an inter-
rupt signal from RiskiM and delivers it to the processor to
stop the execution, as highlighted in purple with the dotted
line in Figure 2. Specifically, the interrupt signal is directly
delivered to the processor by using PEMI to promptly halt
the processor after a kernel attack is found. (Otherwise, if
the interrupt signal is transmitted through the system bus, we
cannot halt the processor immediately because of some delay
inherent in the bus transaction [17].)

By being more tightly coupled to the host processor than
PTI (e.g., ARM ETM [14] and Intel PT [18]), PEMI can
provide internal states of the processor that conventional
PTI does not. Concretely, PEMI synchronously extracts the
instruction address, data address, and data value of the memory
write instruction and extracts the CSR data value. The support
of PEMI increases the monitor’s visibility of the processor,
alleviating the semantic gap problem (P2). Nevertheless, our
approach does not lose compatibility with RISC-V architec-
tures, which is possible since we have endeavored to extract
the states without modifying any existing components of the
processor, as shown in Figure 2 (P1). Besides, our approach is
not compelled to instrument or modify the kernel code (P1),
unlike existing external monitor techniques [8] which suffered
from such problems.

D. RISC-V Kernel Integrity Monitor

To verify kernel integrity in a SEE, our approach intro-
duces a hardware-based external monitoring platform, called
RiskiM. This subsection discusses the kernel integrity ver-
ification mechanism of RiskiM and the operation of each
submodule in RiskiM.

1) Kernel Integrity Verification Mechanism: The kernel
integrity verification mechanism of RiskiM consists of 5
steps as follows. RiskiM can receive two dataset types from
PEMI: memory write and CSR update. Memory write datasets
are passed to step 1 to check the data address, whereas
since CSR update datasets have no data address, they proceed
straight to step 2 for CSR data value verification.

1. Check the data address is within the kernel immutable
region. The kernel immutable region is a memory region
where the kernel does not change during normal execution,
such as kernel code and system call table. Therefore, if the
data address points to somewhere in the kernel immutable
region, we classify it as an attack (e.g., code manipulation
attack). Especially, this protection rule for kernel code region is
essential in preventing attacks from bypassing our monitoring
mechanism (P3). If an attacker could modify the kernel
code region, they could bypass the proposed approach and
perform malicious activities. If the data address does not point
somewhere in the kernel code region, the dataset is passed to
step 3.
2. Check the CSR data value is valid. Among CSRs that

the kernel can access, we verify the value of sstatus register
which indicates the system status of the kernel (supervisor)
mode. In particular, the MPRV bit in sstatus provides the
ability to change the privilege level for a memory load/store,
which allows an attacker to gain an unauthorized memory
access. Also, it is important to ensure the integrity of sptbr
which defines the physical base address of the root page table.
The verification method for sptbr is described in Section V.
Consequently, if the CSR data value is not valid, RiskiM
recognizes it as an attack and propagates the attack signal;
otherwise the verification process terminates normally.
3. Check the data address is within the monitored data
regions. If the data address is not within the monitored
data regions, it is not subject to verification and verification
terminates; otherwise, proceed to step 4 for further integrity
verification.
4. Check the instruction address is within valid code
regions. If the instruction address is not within valid code
regions, it is considered to be an attack, i.e., the monitored
region is being manipulated by an unauthorized code. Other-
wise, proceeds to step 5.
5. Check the data value is valid. If the data value is

one of the valid values, RiskiM recognizes this memory
write operation as benign and propagates the non-attack signal.
Otherwise, RiskiM recognizes the host system to be under
attack because the attacker modified the data value in the
monitored data regions maliciously.

By verifying the instruction address (step 4) and data value
(step 5), our kernel integrity verification technique becomes
more complete than the existing external hardware-based mon-
itors’ one (P2). More details on how the proposed approach
can detect various attacks against the kernel are given in
Section III-E.

2) RiskiM Hardware Components: As shown in Figure 3,
RiskiM is composed of seven submodules: the set configu-
ration controller (SCC), the whitelist register set (WRS), the
data address checker (DAC), the data region selector (DRS),
the instruction address checker (IAC), the value checker (VC),
the CSR checker (CC) and the RiskiM controller. In this
section, we describe the role of each submodule in detail.

In RiskiM, SCC provides a pathway connecting to the host
system bus. At boot time, SCC initializes the WRS, which
contains information defining the kernel immutable region,
monitored data regions, valid code regions, valid data values,
and CSR invariants. The range for each region is expressed as
the base and bound addresses, and the value information is just
stored as itself. After completing WRS setup, SCC invalidates

736 Design, Automation And Test in Europe (DATE 2019)

Fig. 3. Microarchitecture of RiskiM

the slave interface by blocking connection to the host system
bus. Thus, any attacks to compromise RiskiM through the
system bus are prevented in the kernel execution (P3). While
the kernel operates, the RiskiM controller receives the dataset
from PEMI. According to the dataset type, the RiskiM con-
troller follows the integrity verification mechanism in Section
III-D1, passing relevant data to each module and receiving the
appropriate return signal(s). Depending on these return signals,
the RiskiM controller passes the data to the subsequent
module or sends an attack signal to PEMI.

E. Security Analysis

This section discusses how the proposed approach ensures
kernel integrity against two kinds of kernel attacks; kernel
immutable region attacks and kernel mutable region attacks.
Attacks on the kernel immutable region. Since the kernel

immutable region is not modified while the kernel is running
normally, any modification of this region during the kernel
execution can be judged to be an attack, e.g. code manipulation
attack, system call table hooking, etc. RiskiM detects attacks
on the kernel immutable region by checking that the data
address in the memory write dataset is included in the kernel
immutable region as described in step 1 of Section III-D1.
Attacks on the kernel mutable region. On the other hand,

since the kernel mutable region can be modified normally
while the kernel is running, an attack cannot be identified
simply from an attempted memory write event for the region,
as in the kernel immutable region case. Therefore, existing
external hardware-based solutions define valid memory values,
i.e., a whitelist, that objects in this region can have for normal
kernel execution, and check the modified memory value is
valid whenever there is a memory write event to the region.
If the value is not included, this implies an attack. For
example, virtual file system hooking attacks can be effectively
defended using this detection method [7]. RiskiM also uses
this detection method (see Section III-D1, step 5).

However, some attacks cannot be detected by verifying the
memory data value. For example, It is difficult to protect
kernel data structures that are difficult to define the whitelist
or are modified to one of the valid values by the attacker.
To mitigate these attacks, we propose a detection method that
verifies the memory write instruction address is included in

the valid codes. Existing external hardware-based monitors
do not have this checking method. From the data integrity
definition, i.e., data should not be altered by unauthorized
parties, monitored data region manipulation by unauthorized
code is also an attack even when the value is benign [4], [19].
We expect that this verification will detect a significant number
of kernel attacks, since many kernel data attacks tamper with
critical kernel data through vulnerable kernel code, e.g. a
buggy device driver. The effectiveness of this detection method
will be described with a concrete example in Section IV-A.

IV. EVALUATION

To evaluate our approach, we have implemented the SoC
prototype including the hardware components as described
in Section III. The prototype used the Xilinx ZC706 board
[20] and RISC-V Rocket core version 1.7 [21] parameterized
by FPGA configuration DefaultFPGAConfig as the host
processor. Linux 4.1.17 is used for our RISC-V kernel.

A. Security Case Study

To demonstrate the proposed approach’s feasibility, we
built a prototype security solution incorporating the proposed
PEMI and RiskiM. The security solution performs integrity
verification for page tables that map the kernel address space.
We chose the page table as the example data structure to be
protected since the page table is the foundation for many
kernel protection approaches [6], [8], [22]. The security
solution verifies page table integrity using the following steps.

• Check the page table was updated to a valid value. We
could verify the value with various invariants [23], but for
this case study, we confirmed that W⊕X policy is enforced
for each page table entry.

• Check the page table was updated by a valid code. To
achieve this, we need to find out where the valid code is
located in the kernel address space. Fortunately, the Linux
kernel updates the page table with only a few APIs after
booting the kernel normally, i.e., set pte, set pmd, and
set pud, hence we can easily obtain the ranges of the valid
code regions for the security solution1.

We devised two attacks to check the security solution could
detect them. First, we modified the page table entry to a
malicious value using valid codes. Specifically, we tampered
with a page table entry to allow a corresponding memory
page to have read+write+execute (RWX) permission. RiskiM
successfully detected this attack by confirming that the value
is not legitimate in the W⊕X policy. Second, we modified the
page table using non-valid kernel code. Even if the modified
value is benign, this attack can be viewed as a data-only attack
where an attacker modifies sensitive data through a kernel
vulnerability [24]. For example, exploiting this kernel vulnera-
bility could allow an attacker to make the payload appear as a
normal kernel code by modifying the payload page permission
to read+execute (RX). Since RX permission is legitimate in the
W⊕X policy, verifying the value is insufficient to detect such
an attack. However, RiskiM detected the attack by checking
if the instruction address was included in the valid code regions
defined by the security solution.

1In Linux kernel, these APIs are defined as inline functions. Therefore,
it is necessary to analyze the kernel code and set inlined code as the valid
code regions. However, for the sake of convenience, we make these APIs as
non-inline functions and set them to the valid code regions.

Design, Automation And Test in Europe (DATE 2019) 737

Fig. 4. Performance overhead for kernel operations

TABLE I
PERFORMANCE OVERHEAD FOR APPLICATION BENCHMARKS

Benchmark spec. dhry. whet. hack. iozone tar
Overhead 0.49% 0.58% 0.04% 0.00% 0.51% 0.44%

B. Hardware Area and Power Analysis

We synthesized the proposed overall SoC design onto the
prototype board based on the parameters described above.
There are five elements for each of the kernel code regions, the
monitored data regions, the valid code regions, the valid values
and the CSR invariants. First, we quantified the required hard-
ware component resources in terms of look-up-table (LUT),
and the result was 2,322 LUTs. We also estimated the gate
counts of our hardware components using Synopsys Design
Compiler [25] with a commercial 45 nm process library.
Consequently, the total gate count of the proposed modules
is 33,664, which is 1.30% compared to the baseline Rocket
system (2,607,004). To measure the static power consumption
overhead of our approach, we used Vivado Power Analysis
tools with default setting. The measured power overhead
introduced by our approach is about 9mW, which represents
0.53% of the power consumption in the baseline system. These
results showed that we have implemented RiskiM and PEMI
efficiently in terms of the hardware and power consumption
(P4).

C. Performance Evaluation

To evaluate the runtime overhead of our approach, we
consider three configurations: baseline, SW-only, and our
approach. Baseline represents the baseline hardware and the
original kernel. SW-only is the case where the hardware is
still not changed but the kernel is instrumented to realize the
security solution, described in Section IV-A, using the virtual
address space isolation technique [3]. Lastly in our approach,
the same security solution is implemented with RiskiM.

To measure the performance overhead that our approach
imposes on the kernel, we ran the LMbench benchmark suite
[26], as shown in Figure 4. On average, our approach and
the SW-only case incur 0.73% and 8.55% of the performance
overhead, respectively. The SW-only case shows performance
degradation for several kernel operations, including stat, fork,
exec, and page fault, because the instrumented kernel code
is executed whenever there is a change to the page table.
Note that, the more kernel data structures are protected in the
SW-only case, the more performance overhead is inevitable
because it requires additional kernel instrumentation. Mean-
while, our approach exhibits almost the same performance
as the baseline (P4) since kernel integrity verification is
performed out in the external hardware with no kernel code
instrumentation. In addition to the kernel operations, we also

ran several application benchmarks (i.e., SPEC CPU2000,
dhrystone, whetstone, hackbench, iozone, and tar) to evaluate
the performance impact of our approach on user-level appli-
cations. As shown in Table I, our approach imposes virtually
zero performance degradation.

V. DISCUSSION

Address Translation Redirection Attack Mitigation. Exter-
nal hardware-based monitors have been known to be vulnera-
ble to advanced exploits like the address translation redirection
attack (ATRA) [13]. But in the latest work [23], ATRA was
detected by ensuring the integrity of the address mapping
which was possible with the additional information necessary
to trace the page table base register (PTBR). Since we also
track the value of sptbr using PEMI, we believe that
RiskiM can also defend the kernel against ATRA in the same
way as done in their work.
Code Reuse Attack Mitigation. The current implementation
of RiskiM enforces that the instruction address of the mem-
ory write instruction, which modifies a value to monitored
kernel region, should always belong to a valid code region.
Since it forces an attacker to tamper with the monitored
region only by executing valid code, RiskiM can effectively
reduce the attack surface of the protected kernel memory.
However, if an attacker perpetrates a code reuse attack (CRA)
to execute the valid code from a malicious control flow, it is not
detected in the current RiskiM implementation. Nonetheless,
we believe that CRA could be mitigated if we expand the
PEMI’s functionality to collect not only the current instruction
address but also the address of the previously executed instruc-
tions (i.e., control flow information) [27]. Besides, since the
proposed approach does not modify the kernel code, a stronger
defense mechanism against CRA can be formed by adopting
other instrumentation-based kernel control flow integrity (CFI)
solutions [28], [29].

VI. RELATED WORK

Much effort has been given to developing hardware tech-
niques for efficient and secure kernel integrity monitoring. The
techniques can be classified according to whether the hardware
is built inside or outside the host processor architecture.
Internal Hardware-based. Internal hardware, i.e., exten-

sively modified core microarchitecture and ISA, efficiently
provides a SEE for various security solutions, such as taint
tracking and memory safety [30]–[32]. However, since these
solutions require specific processor design with tightly inte-
grated hardware, they can only be deployed with difficulty
across the variety of commodity devices. Moreover, these
modified processors cannot merely run the state-of-the-art OS
or applications because they can only run programs compiled
by a special compiler using modified ISA. On the other hand,
our approach is highly compatible with the standard software
and architectures in that it does not change any of the ISA or
core microarchitecture but instead adds few lines to construct
the interface architecture (i.e., PEMI) that is used to extract
the internal processor states.
External Hardware-based. External hardware [7]–[10],

[33] is free from such a problem because the solution requires
virtually no change to the existing processor architecture as the
hardware is literally located outside the processor. They try
to monitor kernel behaviors by means of snooping/dumping

738 Design, Automation And Test in Europe (DATE 2019)

the main memory or utilizing the processor interface. How-
ever, extracting internal runtime information from outside
the processor can be a double-edged sword. Surely, these
solutions can be easily integrated into devices employing
commodity processors, e.g., ARM, by using modern system-
on-chip (SoC) design methodology. However, as discussed
earlier, monitoring hardware is susceptible to semantic gap
problem, and hence being bypassed by advanced exploits [13]
or forced to employ expensive techniques [7], [8], [10], such as
software modifications and/or complicated monitor hardware
designs. Furthermore, since existing hardware monitors verify
the integrity of kernel data only with monitored memory
values, they could be deceived by a trick that modifies the
monitored data maliciously with valid ones [4], [24]. Our
approach is basically another external hardware technique but
designed to address the problems of existing ones.

VII. CONCLUSION

This paper proposes RiskiM, a hardware-based monitoring
platform to protect the kernel from outside the host system.
To aid extractions of relevant kernel events from the host, we
define a minimum requirement for the interface architecture
(PEMI) between the processor and RiskiM. The information
obtained through PEMI helps RiskiM to perform comprehen-
sive kernel integrity verification without severe side effects,
such as complex design and high overhead and kernel instru-
mentations, which are all detrimental to previous hardware-
based work. Our experiments with RiskiM realized for an
existing RISC-V system evince the effectiveness of our ap-
proach by showing that RiskiM aided by PEMI successfully
ensures kernel integrity with little performance degradation.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (NRF-2017R1A2A1A17069478) and Institute for
Information & communications Technology Promotion (IITP)
grant funded by the Korea government (MSIT) (No. 2017-
0-00213, Development of Cyber Self Mutation Technologies
for Proactive Cyber Defence and No.2016-0-00078, Cloud
based Security Intelligence Technology Development for the
Customized Security Service Provisioning).

REFERENCES

[1] CVE, “Linux kernel : Vulnerability statistics,” https://www.cvedetails.
com/product/47/Linux-Kernel.html?vendor, 2018.

[2] A. Shevchenko, “Rootkit evolution,” 2014-12-10.
[3] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing

kernel security invariants with data flow integrity.” in NDSS, 2016.
[4] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning, “Privwatcher: Non-

bypassable monitoring and protection of process credentials from mem-
ory corruption attacks,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security. ACM, 2017,
pp. 167–178.

[5] X. Wang, Y. Qi, Z. Wang, Y. Chen, and Y. Zhou, “Design and
implementation of secpod, a framework for virtualization-based security
systems,” IEEE Transactions on Dependable and Secure Computing,
2017.

[6] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, implementation and verification of an extensible and modular
hypervisor framework,” in Security and Privacy (SP), 2013 IEEE
Symposium on. IEEE, 2013, pp. 430–444.

[7] H. Lee, H. Moon, I. Heo, D. Jang, J. Jang, K. Kim, Y. Paek, and
B. Kang, “Ki-mon arm: a hardware-assisted event-triggered monitoring
platform for mutable kernel object,” IEEE Transactions on Dependable
and Secure Computing, no. 1, pp. 1–1, 2017.

[8] H. Moon, J. Lee, D. Hwang, S. Jung, J. Seo, and Y. Paek, “Architectural
supports to protect os kernels from code-injection attacks,” in Proceed-
ings of the Hardware and Architectural Support for Security and Privacy
2016. ACM, 2016, p. 5.

[9] L. Koromilas, G. Vasiliadis, E. Athanasopoulos, and S. Ioannidis,
“Grim: leveraging gpus for kernel integrity monitoring,” in International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2016, pp. 3–23.

[10] D. Kwon, K. Oh, J. Park, S. Yang, Y. Cho, B. B. Kang, and Y. Paek,
“Hypernel: a hardware-assisted framework for kernel protection without
nested paging,” in Proceedings of the 55th Annual Design Automation
Conference. ACM, 2018, p. 34.

[11] AMD, “Secure technology,” https://www.amd.com/en/technologies/
security, 2018.

[12] Apple, “ios security guide,” https://www.apple.com/business/site/docs/
iOS Security Guide.pdf, 2018.

[13] D. Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang, “Atra:
Address translation redirection attack against hardware-based external
monitors,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 167–178.

[14] M. Williams, “Armv8 debug and trace architectures,” in System, Soft-
ware, SoC and Silicon Debug Conference (S4D), 2012. IEEE, 2012,
pp. 1–6.

[15] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “Aegis:
architecture for tamper-evident and tamper-resistant processing,” in ACM
International Conference on Supercomputing 25th Anniversary Volume.
ACM, 2014, pp. 357–368.

[16] E. Unified, “Unified extensible firmware interface specification,” Ver-
sion, vol. 2, pp. 1827–1882, 2014.

[17] “Axi interrupt controller (intc) v4.1 - logicore ip product guide,” Xilinx,
Tech. Rep., 2018.

[18] P. Guide, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” Volume 3B: System programming Guide, Part, vol. 3, 2018.

[19] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with wit,” in Security and Privacy, 2008. SP 2008.
IEEE Symposium on. IEEE, 2008, pp. 263–277.

[20] Xilinx, “zynq-7000 all programmable soc zc706 evaluation kit,” 2013.
[21] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic,

“The risc-v instruction set manual volume 2: Privileged architecture
version 1.7,” University of California at Berkeley Berkeley United States,
Tech. Rep., 2015.

[22] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou, “Secpod: a framework
for virtualization-based security systems.” in USENIX Annual Technical
Conference, 2015, pp. 347–360.

[23] H. Lee, M. Kim, Y. Paek, and B. B. Kang, “A dynamic per-context ver-
ification of kernel address integrity from external monitors,” Computers
& Security, 2018.

[24] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand: Practical
mitigation of data-only attacks against page tables.” in NDSS, 2017.

[25] Synopsys Inc., “Synopsis design compiler user guide,”
https://www.synopsys.com/support/training/rtl-synthesis/
design-compiler-rtl-synthesis.html, 2016, accessed: 2018-04-17.

[26] B. Smith, R. Grehan, T. Yager, and D. Niemi, “Byte-unixbench: A unix
benchmark suite,” Technical report, 2011.

[27] Y. Lee, J. Lee, I. Heo, D. Hwang, and Y. Paek, “Integration of rop/jop
monitoring ips in an arm-based soc,” in Proceedings of the 2016
Conference on Design, Automation & Test in Europe. EDA Consortium,
2016, pp. 331–336.

[28] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and V. P.
Kemerlis, “krˆ x: Comprehensive kernel protection against just-in-time
code reuse,” in Proceedings of the Twelfth European Conference on
Computer Systems. ACM, 2017, pp. 420–436.

[29] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in Security and Privacy (EuroS&P), 2016
IEEE European Symposium on. IEEE, 2016, pp. 179–194.

[30] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “Hdfi: hardware-assisted data-flow isolation,” in Security and
Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 1–17.

[31] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The cheri
capability model: Revisiting risc in an age of risk,” in ACM SIGARCH
Computer Architecture News, vol. 42, no. 3. IEEE Press, 2014, pp.
457–468.

[32] A. Menon, S. Murugan, C. Rebeiro, N. Gala, and K. Veezhinathan,
“Shakti-t: A risc-v processor with light weight security extensions,” in
Proceedings of the Hardware and Architectural Support for Security and
Privacy. ACM, 2017, p. 2.

[33] L. Delshadtehrani, S. Eldridge, S. Canakci, M. Egele, and A. Joshi,
“Nile: A programmable monitoring coprocessor,” IEEE Computer Ar-
chitecture Letters, vol. 17, no. 1, pp. 92–95, 2018.

Design, Automation And Test in Europe (DATE 2019) 739

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

