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Abstract— The growing popularity of Convolutional Neural 
Networks (CNNs) has led to the search for efficient computational 
platforms to enable these algorithms. Resistive random-access 
memory (ReRAM)-based architectures offer a promising 
alternative to commonly used GPU-based platforms for CNN 
training. However, backpropagation in CNNs is susceptible to the 
limited precision of ReRAMs. As a result, training CNNs on 
ReRAMs affects the final accuracy of learned model. In this work, 
we propose REGENT, a heterogeneous architecture that combines 
ReRAM arrays with GPU cores, and exploits the benefits provided 
by 3D integration along with a high-throughput yet energy 
efficient Network-on-Chip (NoC) for training CNNs. We also 
propose a bin-packing based framework that maps CNN layers 
and then optimize the placement of computing elements to meet 
the targeted design objectives. Experimental evaluations indicate 
that REGENT improves full-system EDP by 55.7% on average 
compared to conventional GPU-only platforms for training CNNs.    

I. INTRODUCTION  

Deep learning technology is employed today in many real-
world applications. Convolutional Neural Networks (CNNs) are 
one of the most popular techniques within the suite of deep 
learning tools, and they are often utilized for computer vision 
and image/text processing tasks. Therefore, the design of 
efficient hardware architectures to support CNN training is very 
important and is the focus of this work.  

 Emerging manycore processing platforms consisting of 
CPUs, GPUs, and accelerators are the most preferred choice of 
hardware for training CNNs [1][2]. CNN training involves many 
vector and matrix computations [1], which can be performed in 
parallel on GPUs, resulting in significant reduction in runtime 
compared to traditional CPU-based implementations.  However, 
general-purpose GPU cores are not customized for running only 
CNN based applications and are often bottlenecked by higher 
area, insufficient memory access bandwidth, and higher power 
consumption [3]. Domain-specific customization is necessary to 
ensure efficient CNN training with large datasets. 

Metal-oxide resistive random-access memory (ReRAM) is 
another popular choice for implementing high-performance 
architectures for training CNNs [4]. ReRAM crossbars can 
perform efficient matrix-vector multiplication, which forms the 
core computational element of CNN training [5]. ReRAMs are 
more energy and area efficient compared to their GPU 
counterparts [3][4]. However, ReRAM-only architectures for 
training CNNs have one major limitation: ReRAMs have low 
precision, which affects the accuracy of learned models. 
Specifically, backpropagation algorithm to train CNNs is 
sensitive to precision of weights and data [4][6]. Hence, despite 
its advantages, training CNNs on ReRAMs negatively affects 
accuracy [6] and addressing this shortcoming is necessary.   

Moreover, CNN training involves frequent memory access 
to fetch inputs and weights along with data exchange between 

neurons in adjacent layers [2][7]. Without adequate Network-
on-Chip (NoC) enabled architectural support, this can lead to 
significant performance bottlenecks due to likely network 
congestion [2][7]. Therefore, an appropriate computational 
platform for training CNNs must have a) efficient processing 
units to accelerate the large number of matrix multiplication-
and-accumulation (MAC) operations in each layer; b) high-
precision data representation to maintain the accuracy of 
backpropagation; and c) effective NoC architecture as the 
communication backbone to reduce the data-transfer and 
memory access overheads. In this paper, we propose REGENT: 
A heterogeneous ReRAM/GPU-based Processing-in-Memory 
(PIM) architecture enabled by 3D integration and an efficient 
NoC architecture as the communication backbone to reduce the 
overhead due to frequent data movement for efficient training of 
CNNs. The main contributions of this work include: 

� We demonstrate the efficacy of a heterogeneous-
ReRAM/GPU architecture enabled by an efficient NoC 
and 3D integration for training diverse CNNs.  

� We undertake an in-depth study of the traffic patterns 
generated by different CNNs (and layers) when 
executed on GPU-based platforms to design an energy-
efficient and high-performance NoC architecture. 

� We introduce a bin-packing based algorithm that maps 
CNN layers to available computational units and then 
optimize their placements to accelerate training.  

II. RELATED WORK 

As the focus of this paper is heterogeneous ReRAM/GPU 
architectures for accelerating CNN training, we mainly focus on 
related work covering these two broad themes: 

A. ReRAM based architectures for CNNs 
ReRAMs can be employed as memory as well as to perform 

in-situ MAC operations [5] making it an ideal candidate for PIM. 
ReRAM-based PIM architectures have been proposed for 
accelerating both inference [8][9] as well as training of CNNs 
[4]. ReRAM-based PIM designs offer limited data precision [4].  
Multi-Layer Perceptron (MLP) and CNN inference can be 
executed with reasonable accuracy using reduced data precision 
[4][9]. However, CNN training involves execution of the 
backpropagation algorithm, which is sensitive to data precision 
[6]. Therefore, ReRAM-only architectures for training CNNs 
suffer from undesirable accuracy loss [4][6]. Moreover, 
accuracy preserving techniques (e.g., stochastic rounding) for 
low precision CNN training require normalization [10], which 
cannot be implemented on ReRAMs [8].  

B.  GPU-based architectures for CNNs  
Due to high data-parallelism in CNNs, use of GPU-based 

platforms have become widespread [1][2]. GPU-based 
architectures show some interesting characteristics: a) there is 

This work was supported, in part by the US National Science Foundation 

(NSF) grants CNS-1564014, CCF 1514269, CSR-1717885 and USA Army 

Research Office grant W911NF-17-1-0485. 

522978-3-9819263-2-3/DATE19/ c©2019 EDAA



low inter-GPU communication [2][11], and b) GPUs mostly 
communicate with the few shared Last-Level Caches (LLCs), 
causing a many-to-few traffic pattern [2][11]. This creates 
network congestion closer to LLCs [2]. Considering these   
observations, application-specific NoC design for CNNs has 
been explored [2]. However, the NoC design framework 
presented in [2] does not leverage the similarities in traffic 
generated by various CNN layers.  

Prior work on PIM-based ReRAM architectures mostly 
target CNN inference. However, training CNNs is more 
complicated and resource-intensive as it involves repeated 
weight updates and data dependencies. In this work, we advance 
the state-of-the-art by proposing a ReRAM/GPU-based PIM 
architecture: REGENT, that incorporates a) the speed and 
energy-efficiency of ReRAM based MAC engines; b) high-
precision data computing on GPUs; c) efficient memory access 
via vertical links (as compute and memory layers are stacked 
vertically); (d) an efficient NoC architecture connecting the 
compute elements for training CNNs.    

III. THE REGENT ARCHITECTURE 

In this section, we first discuss relevant properties of CNN 
training that are crucial in designing an efficient manycore 
architecture. Next, we provide an in-depth study of 
communication patterns between computing elements when 
different CNNs are executed on GPUs to design an efficient 
NoC. Finally, we describe a bin-packing-based task allocation 
algorithm to map CNN layers, and optimize the placement of 
processing units for high performance.   

A. Training CNNs 
A CNN consists of different types of layers, e.g., convolution 

(Conv), fully-connected (FC), etc. Training CNNs involve two 
major phases: feed forward (FF) and backpropagation (BP). In 
FF, the input passes through the layers to make a prediction. 
During BP, the prediction error relative to the ground truth is 
computed and back-propagated to update the weights. The BP 
phase is sensitive to precision and affects the accuracy of the 
learned model [6]. Motivated by these observations, we propose 
REGENT, a high-performance and energy-efficient 
heterogeneous ReRAM-GPU architecture specifically targeted 
for CNN training (shown in Fig. 1). REGENT consists of two-
layers, with the lower layer (logic layer) consisting of GPUs and 
LLCs. The logic layer is connected to the upper ReRAM layer 
(memory layer with additional compute capability) via vertical 
links implemented using through-silicon vias (TSVs). In this 
architecture, the ReRAM layer acts as the Processing-in-
Memory (PIM) module. The 3D interconnects enable energy 

efficient and high-bandwidth memory access required by the 
GPUs [2][12]. REGENT implements the pipelined-CNN 
described in [4] to reduce the buffering requirements and 
execution stalls due to frequent re-programming of ReRAM 
crossbars needed in conventional CNN implementations [4][13]. 
To prevent loss in accuracy of the learned model, the FF phase 
is executed completely on the ReRAMs, whereas the precision-
sensitive BP is executed on GPUs. The PIM tier in REGENT 
(Fig. 1), is composed of two types of ReRAM arrays: morphable 
subarrays and memory subarrays [9]. The morphable subarrays 
can be configured for both storage (conventional memory) and 
computation (in-situ MAC), as necessary. The memory 
subarrays are only used for storage purposes (input, output, 
intermediate results). The bottom layer consists of LLCs and 
conventional GPUs connected via NoC.  

Communication in CNN training is limited between the 
neurons connected in adjacent layers and the corresponding 
memory accesses to fetch data. It has been demonstrated that 
under such traffic, a large fraction of links in conventional NoCs 
e.g. mesh, remain under-utilized [2][7]. Instead, a hierarchical 
two-level NoC is more latency and energy-efficient [7]. To 
implement the hierarchical NoC, REGENT is divided into 
multiple cubes (logically) as shown in Fig. 1. Each cube is 
identical to the other in terms of computing and storage 
resources. Due to high data parallelism in CNNs, the compute 
units in each cube should be connected using an NoC that is 
optimized for throughput (first level). Communication between 
individual cubes is handled by the second level NoC (Fig. 1(b)). 
In what follows, we further elaborate some of the key design 
aspects associated with the REGENT architecture. 

B. Traffic patterns for training CNNs  
  In this section, we study the behavior of different CNNs 

(and individual CNN layers) when they are executed on GPU 
platforms to design a suitable NoC architecture. Fig. 2 shows the 
traffic patterns for different CNN layers, belonging to four 
distinct CNNs: LeNet [14], CDBNet (for CIFAR-10) [15], 
AlexNet [16], and MattNet [17] when executed on a GPU-based 
system, for every source-destination pair. For the sake of brevity, 
we consider the traffic pattern of Conv2 (LeNet), Conv1 
(CDBNet), Conv1 (MattNet), and FC2 (AlexNet). The numbers 
in Fig. 2 indicate the percentage of traffic contributed by the 
GPU-LLC (and vice-versa) communication. From Fig. 2, we 
note some interesting observations: (a) GPUs communicate 
heavily and (nearly) uniformly with few LLCs creating many-
to-few traffic (nearly 85% of total traffic on average); and (b) 
communication between same types of cores (e.g., GPU-GPU) 
is almost negligible. These trends are observed for other layers 

 
(a)               (b) 

Fig 1: Overview of (a) REGENT architecture (b) two-level Hierarchical NoC (HNoC). This figure is for 

illustration only; The tile placements and NoC design have not been optimized here)  
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Fig. 2: Heat map of traffic patterns for (a) Conv2 
(LeNet), (b) Conv1 (CDBNet), (c) Conv1 (MattNet), 

(d) FC2 (AlexNet) 
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and CNNs as well. From Fig. 2, it is clear that inter-layer and 
inter-CNN variations are insignificant compared to the visibly 
dominant many-to-few LLC traffic (red/crimson patches in Fig. 
2). Therefore, we can design a generic NoC architecture by 
primarily considering the many-to-few traffic rather than 
depending on any specific layer of CNN or specific CNN, 
without significant loss in performance.               

C. NoC design framework 
In order to efficiently handle the frequent data-transfers and 

memory accesses involved in CNN training, a high throughput 
NoC is necessary to deliver the large volumes of data. Here, the 
NoC throughput is improved by load-balancing the network to 
allow more messages to utilize the network resources better [2]. 
This reduces the amount of contention for heavily utilized links. 
As a result, links are more readily available and network is less 
congested, leading to improved throughput. Moreover, an NoC 
should remain within a given energy budget without sacrificing 
performance. Therefore, performance-energy joint optimization 
formulation is necessary for efficient training of CNNs. The total 
network energy (E) is the sum of router and link energy 
determined based on individual link/router utilization as follows.  

 

where  is the number of cores, and  denote the total number 
of routers and links respectively,  represents the physical 
length of link ,  and  denote the average link energy per 
unit length and router logic energy per port respectively and  
denotes the number of ports at router . Both  and  are 

binary variables that indicate whether a link/router  is used to 
communicate between core  and core  respectively. The 
parameter  denotes the frequency of communication between 

cores i and j. Overall, our aim is to design an NoC that increases 
throughput and reduces energy consumption for the REGENT 
architecture. Therefore, NoC design can be formulated as a 
multi-objective optimization (MOO) problem as follows:   

 (2) 

Here,  is the set of pareto optimal NoC designs for 
REGENT, MOO stands for the multi-objective optimization 
solver, and OBJ is the set of all objectives to evaluate a candidate 
design .  For a fair comparison, each candidate solutions 

 has the same number of links as in an equivalent mesh 
NoC. It should be noted that other objectives can also be 
included in (2) as per design requirements. We optimize the 
network by perturbing the placement of cores (GPUs and LLCs), 
and links to explore the trade-offs between throughput and 
energy. Here, we employ the archived multi-objective simulated 
annealing (AMOSA [19]) as the MOO solver to determine the 
optimal NoC architecture  Without loss of generality, other 
MOO solvers can also be used for optimization.  

D. Mapping CNN layers to cubes 
In this section, we present a bin packing-based framework to 

allocate CNN layers to computing units (cubes with GPUs and 
ReRAMs) for efficient training. Unlike inference, where weights 
are only written once at the start and never changed, training is 
more challenging as it involves repeated weight updates and 
complex data dependencies [4]. Furthermore, to preserve 
accuracy, the layers in forward pass are executed on ReRAMs, 
whereas the precision sensitive layers in backpropagation are 

executed on GPUs (Section III.A). The same set of network 
weights and data, local to each layer, is used in both passes of 
the iterative training procedure (forward and backward). 
Therefore, the mapping must also preserve spatial locality for 
layers between forward and backward passes. For example, if 
forward convolution 1 (Conv1) of a CNN is mapped to ReRAMs 
on cube1 (Fig. 1(a)), then weights and data for Conv1 are stored 
in cube1. Therefore, mapping Conv1 during backpropagation on 
the GPUs of cube1 enables faster and high-bandwidth memory 
access via the vertical links. Mapping to any other cube, e.g., 
cube3, requires the use of inter-cube links for memory access. In 
that case, we would fail to fully exploit the benefits of 3D 
integration as the memory access latency is bottlenecked by the 
planar links connecting cube1 to cube3. This happens as data 
from cube1 requires extra cycles to reach cube3 due to longer 
path lengths as opposed to local intra-cube communication. 
Therefore, there exists a strong dependency between mapping of 
CNN layers to cubes in the two passes.  

We develop a bin-packing based solution aiming to not only 
reduce the network traffic but also address the dependencies 
between the two passes during the iterative training procedure. 
Bin packing is a widely studied problem with applications to the 
logistics and other domains, where items are placed in bins based 
on their size to meet given objective(s). The size is used to 
characterize the item. Our proposed formulation allocates CNN 
layers (items) to the computing cubes (bins). The goal is to 
utilize the computing cubes (bins) efficiently to minimize the 
overall execution time. The overall runtime of a pipelined-CNN 
implementation is bottlenecked by the slower layers. To address 
this, we follow similar approach as in [4], which proposes to 
allocate more resources to increase the parallelism of these 
layers. The amount of resources allocated (size) to each layer is 
used to characterize the layer (item) in the proposed formulation.  

Compared to the classical problem setting, the use of bin-
packing to allocate CNN layers has some key differences that 
need to be considered: (a) resources allocated for a CNN layer 
can be greater than the maximum amount of computing 
resources in one cube (size of item > size of bin). Traditional bin-
packing problems assume that items are smaller than bins; (b) a 
single CNN layer (item) can be fragmented and placed on 
multiple cubes (bins) as MAC operations within a layer are often 
independent of each other [7]; (c) mapping of CNN layers 
(Placing items) during the backward pass is influenced by the 
mapping in the forward pass. The idea of fragmenting items 
across multiple bins has been studied as a variant of the classical 
bin packing problem [20]. However, contrary to the problem 
setting of [20], our case has an additional constraint between the 
placements associated with the two passes of the CNN. 
Specifically, allocating CNN layers (items) to cubes (bins) in the 
backward pass presents a variant of bin packing that includes 
item-fragmentation with an additional placement constraint. 

Considering the above differences, we develop the overall 
mapping methodology. In mapping of forward pass, it is 
important to map layers (items) to cubes (bins) with minimal 
fragmentation of layers to reduce the amount of multicast 
communication inherent in CNNs [7]. For this purpose, we adopt 
the First-Forward Decreasing (FFD) algorithm to map layers to 
the cubes with minimal fragmentation [20]. FFD is a greedy 
algorithm to place items in bins in the decreasing order of size. 
Note that any other bin-packing algorithm can also be 
seamlessly integrated in to our formulation. The FFD 
implementation for forward pass first attempts to map a layer 
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(item) to cubes (bins) with sufficient available computational 
resources (ReRAMs) without having to fragment the layers. If 
no such cube (bin) exists, then the algorithm fragments the layer 
(item) and reattempts to allocate the fragments to the cubes 
(bins). The mapping is repeated until all layers (items) have been 
allocated in decreasing order of ReRAM requirements (size).  

However, as noted earlier, to reduce traffic in the network, 
and fully utilize the benefits of 3D integration, the mapping in 
backward pass (Algorithm 1) is dependent on the solution of 
forward pass. Ideally, we would like to have minimum 
discrepancy between the mappings for forward and backward 
passes. We adopt a priority-based mapping to capture this 
dependency using the FFD algorithm. Here priority is defined as 
the preference of mapping a layer onto a cube. For a layer l 
mapped to a total of Nl cubes in the forward pass, the priority of 

mapping during backward computation to a cube k (1  k  p, 
where p is the available number of cubes) is defined as: 

            (3) 

For each layer, the best cube is chosen based on the priority 
(and availability) (Line 4). MAP(x) (Line 5) maps the layer to 
the best cube. The main objective here is to map each layer to its 
preferred cubes while minimizing conflict with other layers. For 
mapping layer l on a cube k, we define conflict as:  

       (4) 

A conflict occurs if two or more layers have non-zero priority 
for a given cube. In other words, if multiple layers are mapped 
(completely or partially) on a certain cube during forward pass, 
then each of these layers prefer to be mapped to the same cube 
in backward pass as well, leading to a conflict. The 
FIND_BEST_CUBE (priority, layeri) (Line 4) attempts to pick 
the best cube for mapping layeri based on priority that has 
minimum conflict from other layers. After mapping to best cube, 
the priorities are dynamically updated (Line 7) based on the new 
availability of computing resources. This not only preserves 
spatial locality among layers in both passes but also ensures that 

smaller layers get the opportunity to be mapped to their preferred 
cubes (as much as possible). This eventually leads to reduction 
in network traffic, enables low latency and high-bandwidth 
access to 3D stacked memory via the vertical links. The 
performance is further improved by placing the mapped cubes 
and available links based on their amount of communication as 
discussed in Section III.B  

IV. EXPERIMENTAL RESULTS 

 In this section, we present the detailed performance 
evaluation considering diverse well-known CNNs.   

A. Experimental Setup 
Table 1 summarizes the relevant system parameters for the 

GPU and the ReRAM-based PIM used in this work. We employ 
Gem5-GPU [18], a full system simulator to obtain network and 
processor level information. We modified the Garnet network 
within Gem5-GPU to implement the different NoC topologies. 
We follow the MESI two-level protocol for cache coherence. 
Each GPU core has its own private L1 cache. The LLCs are 
shared among all the cores. The ReRAM-based PIM accelerator 
configuration is similar to [3].  We consider ReRAM cells with 
4-bit accuracy and therefore four arrays are combined to realize 
16bit fixed-precision computing. Overall, the system has 16 
cubes (Fig. 1(a)) that are identical to each other (14 GPUs + 2 
LLC tiles in logic layer and equal number of ReRAM crossbars 
in ReRAM layer). The number of ReRAMs in each cube is 
obtained based on the area estimates of the crossbar along with 
the peripheral circuitry reported in [8]. All ReRAM crossbars in 
same cube are connected to a shared bus while inter-cube 
ReRAM communication happen via the NoC. For experimental 
evaluation, we choose four well-known CNNs: LeNet [14], 
CDBNet for CIFAR-10 [15], AlexNet [16], and MattNet [17].  

B. Performance Evaluation 
 Based on the discussion presented in Section III.B, we first 

show that an NoC optimized for any layer (capturing the many-
to-few traffic in general) can show similar performance for other 
CNN layers (and the CNN overall) as well. For our experiments, 
we choose a 16-tile system (14-GPU, 2-LLC), representing a 
single REGENT cube, connected via the optimized NoC 
following the framework in Section III.C. We consider Energy-
Delay Product (EDP) as the relevant performance metric since it 
captures the joint effect of both latency and energy.  

NoC design for many-to-few traffic: Fig. 3 shows the results 
when different layers (from same/different CNNs) are run on the 
NoC optimized for just one layer. Fig. 3(a) shows the case where 
the NoC was optimized for one layer and then employed to 
execute other layers belonging to same CNN (intra-CNN). 

Algorithm 1: Bin-packing based mapping (Backward pass) 
Input: num_GPU[.]: No. of GPUs required for each layer  

Output: Layer mapping to cubes (GPUs) 

Variable: priority (priority of mapping layers)  
Initialize: priority � preferences following (3) 
Algorithm: 
1 SORT (num_GPU[.]) in descending order 

2 For every GPU required in num_GPU[.]: 

3  while all GPU required not allocated: 

4   FIND_BEST_CUBE (priority, current layer) 

5   MAP (GPU required) on best cube 

6   Update GPU required 

7   Update priority  

8 return mapping 

TABLE 1: System Parameters 

Component Parameters 
Logic Layer 
(GPU, LLC) 

GPU: 700MHz, 64kB L1/core, Maxwell architecture, 
LLC: 512KB each 

ReRAM (PIM) Latency: read 29.31ns, write 50.88ns 

Energy/bit: read 1.08pJ, write 3.91pJ 

   
Fig. 3: Normalized EDP when an NoC optimized for one CNN layer is used to execute other layers from (a) same CNN (b) other CNNs (A: AlexNet, 

M: MattNet, C: CDBNet, L: LeNet) 
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Similarly, Fig. 3(b) highlights the case where the NoC is 
optimized for a layer but is used to execute layers belonging to 
other CNNs (inter-CNN). Both Fig. 3(a) and Fig. 3(b) indicate 
that NoCs optimized for a given layer1 show minimal 
performance loss compared to another layer2-specific 
architecture (where ) when executing layer2. 
For example, in Fig. 3(a), executing Conv2 (AlexNet) on the 
NoC which was optimized specifically for Conv1 (AlexNet) 
incurs only 8% EDP loss when compared to a Conv2-specific 
architecture. For the sake of brevity, we show only a handful of 
cases. However, a similar trend was observed for all the layers 
and CNNs considered in our study. On average, we observe only 
6% performance degradation when different layers from various 
CNNs were executed on the NoC optimized considering just one 
of the layers. These observations indicate that it is possible to 
design an NoC optimized using one (or a subset) of layers/CNNs 
to capture the many-to-few traffic primarily, which can be used 
to train larger CNNs without prior knowledge about them.  

Layer Mapping to REGENT cubes: The next crucial issue is the 
mapping of individual CNN layers to the cubes in REGENT 
(connected via the NoC) as it affects the overall achievable 
performance [7]. Here, layers are allocated and mapped to 
compute units (GPU, ReRAM) based on the amount of resources 
allocated to each layer to optimize the overall runtime. Also, the 
spatial locality in mapping forward and backward passes to the 
cubes is crucial in achieving high-performance and energy-
efficiency as layers in both passes share weights and data [4] 
(Section III.D). Next, we show the effect of mapping the CNN 
layers to cubes using the bin-packing-based algorithm. Fig. 4 
shows the results of mapping both passes to cubes (forward on 
ReRAMs and backward on GPUs) for two of the considered 
CNNs: AlexNet (Fig. 4(a)) and LeNet (Fig. 4(b)). For smaller 
CNNs, e.g., LeNet and CDBNet, we consider a reduced system 
size of 4 cubes (Fig. 4(b)). From Fig. 4, we note that in most 
cases, the backward pass is mapped on the same cube as its 
forward counterpart (best case) thereby preserving spatial 
locality. This allows high-throughput memory access via 
vertical links as data/weights can be fetched directly from the 
same cube without relying on the longer inter-cube links.  

Interestingly, we also note that Full Connect (FC) layers 
require more cubes in the forward pass (ReRAMs) than the 
backward pass (GPUs) for larger CNNs. This happens as FC 
layers typically have a larger number of weights compared to 
convolution layers and all the weights need to be mapped 
individually on ReRAMs. This is necessary to avoid re-
programming ReRAM crossbars during execution as it is time-
consuming and can give rise to significant performance 
bottleneck [13]. However, GPUs do not have such a limitation 
and are therefore allocated based on the amount of parallelism 

required to balance all stages of the pipelined-CNN architecture 
adopted here [4]. It should be noted here that Fig. 4 only shows 
the mapping. The placement of the cubes integrated via NoC is 
further optimized following the MOO formulation of (2).  

C. NoC and Full System Results 
 Based on the above layer mapping, we determine the traffic 

within each cube (intra-cube) and between them (inter-cube) to 
design the NoC (Section III.A, Fig. 1(b)) considering both 
forward and backward passes. REGENT employs a two-level 
Hierarchical NoC (HNoC), as shown in Fig. 1(b), the first level 
is optimized for the intra-cube many-to-few communication and 
the second level is optimized based on the inter-cube traffic. The 
first level NoC is same in all the cubes as we have already shown 
that an NoC optimized for one CNN layer (capturing many-to-
few traffic in general) can perform at par with a layer-specific 
NoC (Fig. 3). The overall NoC is optimized following the 
methodology outlined in Section III.C, which brings the highly 
communicating tiles closer to each other (e.g., GPU-LLC). To 
achieve high throughput, link placement is optimized to increase 
path diversity between the highly communicating pairs. This 
allows traffic to be redistributed among multiple links, thus 
preventing congestion in a handful of links, as observed in 
conventional mesh NoCs [2]. Next, we compare the 
performance of HNoC with a similar state-of-the-art hierarchical 
NoC referred as NeuNoC [7], a heterogeneous two-level ring-
mesh NoC that has been demonstrated to outperform a 
conventional single-level mesh NoC [7]. We also consider 
another NoC architecture, Hmesh, that follows a two-level 
mesh-mesh architecture for performance evaluation. The 
placement of tiles in both NeuNoC and Hmesh is optimized 
similar to HNoC following (2) (link placement remains 
unchanged; NeuNoC: ring-mesh [7], Hmesh: mesh-mesh).  

Fig. 5 (a) and Fig. 5 (b) show the EDP and load distribution 
among the links respectively for the NoC architectures under 
consideration. To capture the performance difference due to the 
NoC only, we adopt the exact same layer mapping (Section 
III.D, Fig. 4) for all the three cases. It is clear that HNoC not only 
improves EDP significantly when compared to the remaining 
NoC architectures, but also distributes traffic more evenly 
among the links, thereby leading to higher throughput. On 
average, HNoC improves EDP when compared to the NeuNoC 
(ring-mesh) and Hmesh (mesh-mesh) by 56% and 18%, 
respectively. The improvement in Hmesh and HNoC over 
NeuNoC can be attributed to three major factors: (a) NeuNoC has 
fewer links compared to both HNoC and Hmesh; (b) NeuNoC 
does not have path diversity and forces data to follow a fixed 
path leading to congestion, and (c) Average hop count between 
cores in NeuNoC is higher than both HNoC and Hmesh. As a 
result, under many-to-few traffic pattern, the average load on 

     
 

     
(a)        (b) 

Fig. 4: Mapping layers in both passes during training on to cubes (forward on ReRAMs, backward on GPUs) for (a) AlexNet (b) LeNet. (Here, 

colors only indicate mapping of layers; they do not represent the exact amount of resources allocated in the cube) 
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links in NeuNoC is 4X and 2.5X higher when compared to 
HNoC and Hmesh respectively. The performance of Hmesh 
suffers due to the multi-hop nature of mesh and its inability to 
handle many-to-few traffic [2]. The average link load in Hmesh 
is 1.6X higher when compared to HNoC (Fig. 5(b)). This 
indicates that HNoC has fewer heavily congested links as traffic 
is distributed more uniformly. Hence, links are more readily 
available in HNoC, resulting in less network congestion and 
higher network throughput. By jointly optimizing throughput 
and energy, HNoC shows the best performance for training 
CNNs when compared to other NoCs.      

Next, we compare the performance of REGENT with a 
conventional GPU-only platform in terms of full-system EDP 
(capturing both execution time and energy consumption) for 
training CNNs. Here, we consider HNoC in both cases to ensure 
similar NoC performance. The GPU-only platform has similar 
architecture as in Fig. 1(a): lower layer consisting of equal 
number of GPUs and LLCs in each cube, and ReRAMs in upper 
layer. However, ReRAMs are configured as memory-only in this 
case. The GPU and ReRAM parameters in both cases are same 
as described in Table 1. Fig. 6 shows the full-system EDP when 
different CNNs are executed on these two platforms. It is clear 
that the hybrid ReRAM/GPU architecture is more efficient and 
improves EDP by 55.7% on average compared to its GPU-only 
counterpart. The hybrid architecture performs better in terms of 
both execution time and energy. This is due to the fact that in 
GPU-only system, the layers (both forward and backward) are 
executed on GPUs, which are inherently slower and consumes 
more energy than ReRAMs [3][4]. Overall, the REGENT 
architecture together with HNoC, provides significant speed-up 
and energy savings for training CNNs when compared to 
conventional platforms. Here, we have omitted an accuracy 
comparison for the sake of brevity as similar experiments in 
prior work [6] (16-bit accuracy for forward and 32-bit accuracy 
for backward pass) have reported negligible accuracy loss when 
compared to a full 32-bit (GPU-only) implementation.  

V. CONCLUSION 

In this work, we introduced REGENT, a heterogeneous 
ReRAM/GPU-based architecture for training CNNs. REGENT 
incorporates the efficiency of ReRAMs with the high-precision 
computing of GPUs integrated using a high-throughput and 
energy-efficient NoC. We demonstrate that instead of 
optimizing the NoC for any specific CNN or a specific CNN 
layer, it is sufficient to consider the many-to-few traffic patterns 
inherent in any GPU-based architecture.  Each layer of the CNN 
is mapped to the computing units (cubes) following a bin-
packing formulation such that spatial locality of data between 
forward and backward passes is preserved. This reduces network 
traffic, leading to low-latency and energy-efficient 
communication. Experimental evaluation indicates that HNoC 
outperforms NeuNoC, a state-of-the-art NoC designed for neural 

networks, by 56% on an average while outperforming GPU-only 
platforms by 55.7% for training CNNs.  
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Fig 6: Full-System EDP comparison of 

REGENT and GPU-only architectures  
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Fig 5: Comparison of (a) NoC EDP, (b) Load distribution in considered NoCs 
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