
REGENT: A Heterogeneous ReRAM/GPU-based

Architecture Enabled by NoC for Training CNNs
Biresh Kumar Joardar*, Bing Li†, Janardhan Rao Doppa*, Hai Li†, Partha Pratim Pande*, Krishnendu Chakrabarty†

*School of EECS, Washington State University

 Pullman, WA 99164, U.S.A.

{biresh.joardar, jana.doppa, pande}@wsu.edu

†Department of ECE, Duke University

Durham, NC, USA.

{bing.li.ece, hai.li, krishnendu.chakrabarty}@duke.edu

Abstract— The growing popularity of Convolutional Neural
Networks (CNNs) has led to the search for efficient computational
platforms to enable these algorithms. Resistive random-access
memory (ReRAM)-based architectures offer a promising
alternative to commonly used GPU-based platforms for CNN
training. However, backpropagation in CNNs is susceptible to the
limited precision of ReRAMs. As a result, training CNNs on
ReRAMs affects the final accuracy of learned model. In this work,
we propose REGENT, a heterogeneous architecture that combines
ReRAM arrays with GPU cores, and exploits the benefits provided
by 3D integration along with a high-throughput yet energy
efficient Network-on-Chip (NoC) for training CNNs. We also
propose a bin-packing based framework that maps CNN layers
and then optimize the placement of computing elements to meet
the targeted design objectives. Experimental evaluations indicate
that REGENT improves full-system EDP by 55.7% on average
compared to conventional GPU-only platforms for training CNNs.

I. INTRODUCTION

Deep learning technology is employed today in many real-
world applications. Convolutional Neural Networks (CNNs) are
one of the most popular techniques within the suite of deep
learning tools, and they are often utilized for computer vision
and image/text processing tasks. Therefore, the design of
efficient hardware architectures to support CNN training is very
important and is the focus of this work.

 Emerging manycore processing platforms consisting of
CPUs, GPUs, and accelerators are the most preferred choice of
hardware for training CNNs [1][2]. CNN training involves many
vector and matrix computations [1], which can be performed in
parallel on GPUs, resulting in significant reduction in runtime
compared to traditional CPU-based implementations. However,
general-purpose GPU cores are not customized for running only
CNN based applications and are often bottlenecked by higher
area, insufficient memory access bandwidth, and higher power
consumption [3]. Domain-specific customization is necessary to
ensure efficient CNN training with large datasets.

Metal-oxide resistive random-access memory (ReRAM) is
another popular choice for implementing high-performance
architectures for training CNNs [4]. ReRAM crossbars can
perform efficient matrix-vector multiplication, which forms the
core computational element of CNN training [5]. ReRAMs are
more energy and area efficient compared to their GPU
counterparts [3][4]. However, ReRAM-only architectures for
training CNNs have one major limitation: ReRAMs have low
precision, which affects the accuracy of learned models.
Specifically, backpropagation algorithm to train CNNs is
sensitive to precision of weights and data [4][6]. Hence, despite
its advantages, training CNNs on ReRAMs negatively affects
accuracy [6] and addressing this shortcoming is necessary.

Moreover, CNN training involves frequent memory access
to fetch inputs and weights along with data exchange between

neurons in adjacent layers [2][7]. Without adequate Network-
on-Chip (NoC) enabled architectural support, this can lead to
significant performance bottlenecks due to likely network
congestion [2][7]. Therefore, an appropriate computational
platform for training CNNs must have a) efficient processing
units to accelerate the large number of matrix multiplication-
and-accumulation (MAC) operations in each layer; b) high-
precision data representation to maintain the accuracy of
backpropagation; and c) effective NoC architecture as the
communication backbone to reduce the data-transfer and
memory access overheads. In this paper, we propose REGENT:
A heterogeneous ReRAM/GPU-based Processing-in-Memory
(PIM) architecture enabled by 3D integration and an efficient
NoC architecture as the communication backbone to reduce the
overhead due to frequent data movement for efficient training of
CNNs. The main contributions of this work include:

� We demonstrate the efficacy of a heterogeneous-
ReRAM/GPU architecture enabled by an efficient NoC
and 3D integration for training diverse CNNs.

� We undertake an in-depth study of the traffic patterns
generated by different CNNs (and layers) when
executed on GPU-based platforms to design an energy-
efficient and high-performance NoC architecture.

� We introduce a bin-packing based algorithm that maps
CNN layers to available computational units and then
optimize their placements to accelerate training.

II. RELATED WORK

As the focus of this paper is heterogeneous ReRAM/GPU
architectures for accelerating CNN training, we mainly focus on
related work covering these two broad themes:

A. ReRAM based architectures for CNNs
ReRAMs can be employed as memory as well as to perform

in-situ MAC operations [5] making it an ideal candidate for PIM.
ReRAM-based PIM architectures have been proposed for
accelerating both inference [8][9] as well as training of CNNs
[4]. ReRAM-based PIM designs offer limited data precision [4].
Multi-Layer Perceptron (MLP) and CNN inference can be
executed with reasonable accuracy using reduced data precision
[4][9]. However, CNN training involves execution of the
backpropagation algorithm, which is sensitive to data precision
[6]. Therefore, ReRAM-only architectures for training CNNs
suffer from undesirable accuracy loss [4][6]. Moreover,
accuracy preserving techniques (e.g., stochastic rounding) for
low precision CNN training require normalization [10], which
cannot be implemented on ReRAMs [8].

B. GPU-based architectures for CNNs
Due to high data-parallelism in CNNs, use of GPU-based

platforms have become widespread [1][2]. GPU-based
architectures show some interesting characteristics: a) there is

This work was supported, in part by the US National Science Foundation

(NSF) grants CNS-1564014, CCF 1514269, CSR-1717885 and USA Army

Research Office grant W911NF-17-1-0485.

522978-3-9819263-2-3/DATE19/ c©2019 EDAA

low inter-GPU communication [2][11], and b) GPUs mostly
communicate with the few shared Last-Level Caches (LLCs),
causing a many-to-few traffic pattern [2][11]. This creates
network congestion closer to LLCs [2]. Considering these
observations, application-specific NoC design for CNNs has
been explored [2]. However, the NoC design framework
presented in [2] does not leverage the similarities in traffic
generated by various CNN layers.

Prior work on PIM-based ReRAM architectures mostly
target CNN inference. However, training CNNs is more
complicated and resource-intensive as it involves repeated
weight updates and data dependencies. In this work, we advance
the state-of-the-art by proposing a ReRAM/GPU-based PIM
architecture: REGENT, that incorporates a) the speed and
energy-efficiency of ReRAM based MAC engines; b) high-
precision data computing on GPUs; c) efficient memory access
via vertical links (as compute and memory layers are stacked
vertically); (d) an efficient NoC architecture connecting the
compute elements for training CNNs.

III. THE REGENT ARCHITECTURE

In this section, we first discuss relevant properties of CNN
training that are crucial in designing an efficient manycore
architecture. Next, we provide an in-depth study of
communication patterns between computing elements when
different CNNs are executed on GPUs to design an efficient
NoC. Finally, we describe a bin-packing-based task allocation
algorithm to map CNN layers, and optimize the placement of
processing units for high performance.

A. Training CNNs
A CNN consists of different types of layers, e.g., convolution

(Conv), fully-connected (FC), etc. Training CNNs involve two
major phases: feed forward (FF) and backpropagation (BP). In
FF, the input passes through the layers to make a prediction.
During BP, the prediction error relative to the ground truth is
computed and back-propagated to update the weights. The BP
phase is sensitive to precision and affects the accuracy of the
learned model [6]. Motivated by these observations, we propose
REGENT, a high-performance and energy-efficient
heterogeneous ReRAM-GPU architecture specifically targeted
for CNN training (shown in Fig. 1). REGENT consists of two-
layers, with the lower layer (logic layer) consisting of GPUs and
LLCs. The logic layer is connected to the upper ReRAM layer
(memory layer with additional compute capability) via vertical
links implemented using through-silicon vias (TSVs). In this
architecture, the ReRAM layer acts as the Processing-in-
Memory (PIM) module. The 3D interconnects enable energy

efficient and high-bandwidth memory access required by the
GPUs [2][12]. REGENT implements the pipelined-CNN
described in [4] to reduce the buffering requirements and
execution stalls due to frequent re-programming of ReRAM
crossbars needed in conventional CNN implementations [4][13].
To prevent loss in accuracy of the learned model, the FF phase
is executed completely on the ReRAMs, whereas the precision-
sensitive BP is executed on GPUs. The PIM tier in REGENT
(Fig. 1), is composed of two types of ReRAM arrays: morphable
subarrays and memory subarrays [9]. The morphable subarrays
can be configured for both storage (conventional memory) and
computation (in-situ MAC), as necessary. The memory
subarrays are only used for storage purposes (input, output,
intermediate results). The bottom layer consists of LLCs and
conventional GPUs connected via NoC.

Communication in CNN training is limited between the
neurons connected in adjacent layers and the corresponding
memory accesses to fetch data. It has been demonstrated that
under such traffic, a large fraction of links in conventional NoCs
e.g. mesh, remain under-utilized [2][7]. Instead, a hierarchical
two-level NoC is more latency and energy-efficient [7]. To
implement the hierarchical NoC, REGENT is divided into
multiple cubes (logically) as shown in Fig. 1. Each cube is
identical to the other in terms of computing and storage
resources. Due to high data parallelism in CNNs, the compute
units in each cube should be connected using an NoC that is
optimized for throughput (first level). Communication between
individual cubes is handled by the second level NoC (Fig. 1(b)).
In what follows, we further elaborate some of the key design
aspects associated with the REGENT architecture.

B. Traffic patterns for training CNNs
 In this section, we study the behavior of different CNNs

(and individual CNN layers) when they are executed on GPU
platforms to design a suitable NoC architecture. Fig. 2 shows the
traffic patterns for different CNN layers, belonging to four
distinct CNNs: LeNet [14], CDBNet (for CIFAR-10) [15],
AlexNet [16], and MattNet [17] when executed on a GPU-based
system, for every source-destination pair. For the sake of brevity,
we consider the traffic pattern of Conv2 (LeNet), Conv1
(CDBNet), Conv1 (MattNet), and FC2 (AlexNet). The numbers
in Fig. 2 indicate the percentage of traffic contributed by the
GPU-LLC (and vice-versa) communication. From Fig. 2, we
note some interesting observations: (a) GPUs communicate
heavily and (nearly) uniformly with few LLCs creating many-
to-few traffic (nearly 85% of total traffic on average); and (b)
communication between same types of cores (e.g., GPU-GPU)
is almost negligible. These trends are observed for other layers

(a) (b)

Fig 1: Overview of (a) REGENT architecture (b) two-level Hierarchical NoC (HNoC). This figure is for

illustration only; The tile placements and NoC design have not been optimized here)

Cube Cube

Long-range shortcutsReRAM
Xbar

ReRAM
Xbar

ReRAM
Xbar

ReRAM
Xbar

…

…La
ye

r 2
La

ye
r 1

Planar wire
TSV

L LLC tile
G GPU tile

L

G

G

G

G

G

G

G

G

G

G

G

L

G G G

Router

Fig. 2: Heat map of traffic patterns for (a) Conv2
(LeNet), (b) Conv1 (CDBNet), (c) Conv1 (MattNet),

(d) FC2 (AlexNet)

GP
U

LL
C GPULLC

GP
U

LL
C GPULLC

Low HighAmount of Communication

So
ur
ce

Destination

(a) (b)

(c) (d)

GP
U

LL
C GPULLC

GP
U

LL
C GPULLC

Destination

So
ur
ce

45%

32
%

52%

22
%

48%

49
%

57%

34
%

So
ur
ce

So
ur
ce

Design, Automation And Test in Europe (DATE 2019) 523

and CNNs as well. From Fig. 2, it is clear that inter-layer and
inter-CNN variations are insignificant compared to the visibly
dominant many-to-few LLC traffic (red/crimson patches in Fig.
2). Therefore, we can design a generic NoC architecture by
primarily considering the many-to-few traffic rather than
depending on any specific layer of CNN or specific CNN,
without significant loss in performance.

C. NoC design framework
In order to efficiently handle the frequent data-transfers and

memory accesses involved in CNN training, a high throughput
NoC is necessary to deliver the large volumes of data. Here, the
NoC throughput is improved by load-balancing the network to
allow more messages to utilize the network resources better [2].
This reduces the amount of contention for heavily utilized links.
As a result, links are more readily available and network is less
congested, leading to improved throughput. Moreover, an NoC
should remain within a given energy budget without sacrificing
performance. Therefore, performance-energy joint optimization
formulation is necessary for efficient training of CNNs. The total
network energy (E) is the sum of router and link energy
determined based on individual link/router utilization as follows.

where is the number of cores, and denote the total number
of routers and links respectively, represents the physical
length of link , and denote the average link energy per
unit length and router logic energy per port respectively and
denotes the number of ports at router . Both and are

binary variables that indicate whether a link/router is used to
communicate between core and core respectively. The
parameter denotes the frequency of communication between

cores i and j. Overall, our aim is to design an NoC that increases
throughput and reduces energy consumption for the REGENT
architecture. Therefore, NoC design can be formulated as a
multi-objective optimization (MOO) problem as follows:

 (2)

Here, is the set of pareto optimal NoC designs for
REGENT, MOO stands for the multi-objective optimization
solver, and OBJ is the set of all objectives to evaluate a candidate
design . For a fair comparison, each candidate solutions

 has the same number of links as in an equivalent mesh
NoC. It should be noted that other objectives can also be
included in (2) as per design requirements. We optimize the
network by perturbing the placement of cores (GPUs and LLCs),
and links to explore the trade-offs between throughput and
energy. Here, we employ the archived multi-objective simulated
annealing (AMOSA [19]) as the MOO solver to determine the
optimal NoC architecture Without loss of generality, other
MOO solvers can also be used for optimization.

D. Mapping CNN layers to cubes
In this section, we present a bin packing-based framework to

allocate CNN layers to computing units (cubes with GPUs and
ReRAMs) for efficient training. Unlike inference, where weights
are only written once at the start and never changed, training is
more challenging as it involves repeated weight updates and
complex data dependencies [4]. Furthermore, to preserve
accuracy, the layers in forward pass are executed on ReRAMs,
whereas the precision sensitive layers in backpropagation are

executed on GPUs (Section III.A). The same set of network
weights and data, local to each layer, is used in both passes of
the iterative training procedure (forward and backward).
Therefore, the mapping must also preserve spatial locality for
layers between forward and backward passes. For example, if
forward convolution 1 (Conv1) of a CNN is mapped to ReRAMs
on cube1 (Fig. 1(a)), then weights and data for Conv1 are stored
in cube1. Therefore, mapping Conv1 during backpropagation on
the GPUs of cube1 enables faster and high-bandwidth memory
access via the vertical links. Mapping to any other cube, e.g.,
cube3, requires the use of inter-cube links for memory access. In
that case, we would fail to fully exploit the benefits of 3D
integration as the memory access latency is bottlenecked by the
planar links connecting cube1 to cube3. This happens as data
from cube1 requires extra cycles to reach cube3 due to longer
path lengths as opposed to local intra-cube communication.
Therefore, there exists a strong dependency between mapping of
CNN layers to cubes in the two passes.

We develop a bin-packing based solution aiming to not only
reduce the network traffic but also address the dependencies
between the two passes during the iterative training procedure.
Bin packing is a widely studied problem with applications to the
logistics and other domains, where items are placed in bins based
on their size to meet given objective(s). The size is used to
characterize the item. Our proposed formulation allocates CNN
layers (items) to the computing cubes (bins). The goal is to
utilize the computing cubes (bins) efficiently to minimize the
overall execution time. The overall runtime of a pipelined-CNN
implementation is bottlenecked by the slower layers. To address
this, we follow similar approach as in [4], which proposes to
allocate more resources to increase the parallelism of these
layers. The amount of resources allocated (size) to each layer is
used to characterize the layer (item) in the proposed formulation.

Compared to the classical problem setting, the use of bin-
packing to allocate CNN layers has some key differences that
need to be considered: (a) resources allocated for a CNN layer
can be greater than the maximum amount of computing
resources in one cube (size of item > size of bin). Traditional bin-
packing problems assume that items are smaller than bins; (b) a
single CNN layer (item) can be fragmented and placed on
multiple cubes (bins) as MAC operations within a layer are often
independent of each other [7]; (c) mapping of CNN layers
(Placing items) during the backward pass is influenced by the
mapping in the forward pass. The idea of fragmenting items
across multiple bins has been studied as a variant of the classical
bin packing problem [20]. However, contrary to the problem
setting of [20], our case has an additional constraint between the
placements associated with the two passes of the CNN.
Specifically, allocating CNN layers (items) to cubes (bins) in the
backward pass presents a variant of bin packing that includes
item-fragmentation with an additional placement constraint.

Considering the above differences, we develop the overall
mapping methodology. In mapping of forward pass, it is
important to map layers (items) to cubes (bins) with minimal
fragmentation of layers to reduce the amount of multicast
communication inherent in CNNs [7]. For this purpose, we adopt
the First-Forward Decreasing (FFD) algorithm to map layers to
the cubes with minimal fragmentation [20]. FFD is a greedy
algorithm to place items in bins in the decreasing order of size.
Note that any other bin-packing algorithm can also be
seamlessly integrated in to our formulation. The FFD
implementation for forward pass first attempts to map a layer

524 Design, Automation And Test in Europe (DATE 2019)

(item) to cubes (bins) with sufficient available computational
resources (ReRAMs) without having to fragment the layers. If
no such cube (bin) exists, then the algorithm fragments the layer
(item) and reattempts to allocate the fragments to the cubes
(bins). The mapping is repeated until all layers (items) have been
allocated in decreasing order of ReRAM requirements (size).

However, as noted earlier, to reduce traffic in the network,
and fully utilize the benefits of 3D integration, the mapping in
backward pass (Algorithm 1) is dependent on the solution of
forward pass. Ideally, we would like to have minimum
discrepancy between the mappings for forward and backward
passes. We adopt a priority-based mapping to capture this
dependency using the FFD algorithm. Here priority is defined as
the preference of mapping a layer onto a cube. For a layer l
mapped to a total of Nl cubes in the forward pass, the priority of

mapping during backward computation to a cube k (1 k p,
where p is the available number of cubes) is defined as:

 (3)

For each layer, the best cube is chosen based on the priority
(and availability) (Line 4). MAP(x) (Line 5) maps the layer to
the best cube. The main objective here is to map each layer to its
preferred cubes while minimizing conflict with other layers. For
mapping layer l on a cube k, we define conflict as:

 (4)

A conflict occurs if two or more layers have non-zero priority
for a given cube. In other words, if multiple layers are mapped
(completely or partially) on a certain cube during forward pass,
then each of these layers prefer to be mapped to the same cube
in backward pass as well, leading to a conflict. The
FIND_BEST_CUBE (priority, layeri) (Line 4) attempts to pick
the best cube for mapping layeri based on priority that has
minimum conflict from other layers. After mapping to best cube,
the priorities are dynamically updated (Line 7) based on the new
availability of computing resources. This not only preserves
spatial locality among layers in both passes but also ensures that

smaller layers get the opportunity to be mapped to their preferred
cubes (as much as possible). This eventually leads to reduction
in network traffic, enables low latency and high-bandwidth
access to 3D stacked memory via the vertical links. The
performance is further improved by placing the mapped cubes
and available links based on their amount of communication as
discussed in Section III.B

IV. EXPERIMENTAL RESULTS

 In this section, we present the detailed performance
evaluation considering diverse well-known CNNs.

A. Experimental Setup
Table 1 summarizes the relevant system parameters for the

GPU and the ReRAM-based PIM used in this work. We employ
Gem5-GPU [18], a full system simulator to obtain network and
processor level information. We modified the Garnet network
within Gem5-GPU to implement the different NoC topologies.
We follow the MESI two-level protocol for cache coherence.
Each GPU core has its own private L1 cache. The LLCs are
shared among all the cores. The ReRAM-based PIM accelerator
configuration is similar to [3]. We consider ReRAM cells with
4-bit accuracy and therefore four arrays are combined to realize
16bit fixed-precision computing. Overall, the system has 16
cubes (Fig. 1(a)) that are identical to each other (14 GPUs + 2
LLC tiles in logic layer and equal number of ReRAM crossbars
in ReRAM layer). The number of ReRAMs in each cube is
obtained based on the area estimates of the crossbar along with
the peripheral circuitry reported in [8]. All ReRAM crossbars in
same cube are connected to a shared bus while inter-cube
ReRAM communication happen via the NoC. For experimental
evaluation, we choose four well-known CNNs: LeNet [14],
CDBNet for CIFAR-10 [15], AlexNet [16], and MattNet [17].

B. Performance Evaluation
 Based on the discussion presented in Section III.B, we first

show that an NoC optimized for any layer (capturing the many-
to-few traffic in general) can show similar performance for other
CNN layers (and the CNN overall) as well. For our experiments,
we choose a 16-tile system (14-GPU, 2-LLC), representing a
single REGENT cube, connected via the optimized NoC
following the framework in Section III.C. We consider Energy-
Delay Product (EDP) as the relevant performance metric since it
captures the joint effect of both latency and energy.

NoC design for many-to-few traffic: Fig. 3 shows the results
when different layers (from same/different CNNs) are run on the
NoC optimized for just one layer. Fig. 3(a) shows the case where
the NoC was optimized for one layer and then employed to
execute other layers belonging to same CNN (intra-CNN).

Algorithm 1: Bin-packing based mapping (Backward pass)
Input: num_GPU[.]: No. of GPUs required for each layer

Output: Layer mapping to cubes (GPUs)

Variable: priority (priority of mapping layers)
Initialize: priority � preferences following (3)
Algorithm:
1 SORT (num_GPU[.]) in descending order

2 For every GPU required in num_GPU[.]:

3 while all GPU required not allocated:

4 FIND_BEST_CUBE (priority, current layer)

5 MAP (GPU required) on best cube

6 Update GPU required

7 Update priority

8 return mapping

TABLE 1: System Parameters

Component Parameters
Logic Layer
(GPU, LLC)

GPU: 700MHz, 64kB L1/core, Maxwell architecture,
LLC: 512KB each

ReRAM (PIM) Latency: read 29.31ns, write 50.88ns

Energy/bit: read 1.08pJ, write 3.91pJ

Fig. 3: Normalized EDP when an NoC optimized for one CNN layer is used to execute other layers from (a) same CNN (b) other CNNs (A: AlexNet,

M: MattNet, C: CDBNet, L: LeNet)

0.0
0.3
0.6
0.9
1.2

Conv1(A) Conv4(M) Conv2(C) Conv1(L)

N
or

m
al

iz
ed

ED

P

Layer used for optimization

Co
nv

2
(A

)
Co

nv
3

(A
)

Co
nv

5
(A

)

Co
nv

1(
M

)
Co

nv
3(

M
)

Co
nv

5(
M

)

Co
nv

1
(C

)
Co

nv
3

(C
)

FC
1

(C
)

Co
nv

2
(L

)
Co

nv
3

(L
)

FC
2

(L
)

(a)
0.0
0.3
0.6
0.9
1.2

Conv1 (A) Conv4(M) Conv2(C) Conv1(L)

N
or

m
al

iz
ed

ED

P

Layer used for optimization

Co
nv

1
(C

)
Co

nv
2

(C
)

Co
nv

3
(M

)
Co

nv
4

(M
)

Co
nv

2
(L

)

Co
nv

1
(A

)
Co

nv
2

(A
)

Co
nv

1
(C

)
Co

nv
1

(L
)

Co
nv

2
(L

)

Co
nv

1
(A

)
Co

nv
2

(A
)

Co
nv

2
(L

)
Co

nv
1

(M
)

Co
nv

5
(M

)

Co
nv

2
(A

)
Co

nv
3

(A
)

Co
nv

3
(C

)
Co

nv
4

(M
)

Co
nv

5
(M

)

(b)

Design, Automation And Test in Europe (DATE 2019) 525

Similarly, Fig. 3(b) highlights the case where the NoC is
optimized for a layer but is used to execute layers belonging to
other CNNs (inter-CNN). Both Fig. 3(a) and Fig. 3(b) indicate
that NoCs optimized for a given layer1 show minimal
performance loss compared to another layer2-specific
architecture (where) when executing layer2.
For example, in Fig. 3(a), executing Conv2 (AlexNet) on the
NoC which was optimized specifically for Conv1 (AlexNet)
incurs only 8% EDP loss when compared to a Conv2-specific
architecture. For the sake of brevity, we show only a handful of
cases. However, a similar trend was observed for all the layers
and CNNs considered in our study. On average, we observe only
6% performance degradation when different layers from various
CNNs were executed on the NoC optimized considering just one
of the layers. These observations indicate that it is possible to
design an NoC optimized using one (or a subset) of layers/CNNs
to capture the many-to-few traffic primarily, which can be used
to train larger CNNs without prior knowledge about them.

Layer Mapping to REGENT cubes: The next crucial issue is the
mapping of individual CNN layers to the cubes in REGENT
(connected via the NoC) as it affects the overall achievable
performance [7]. Here, layers are allocated and mapped to
compute units (GPU, ReRAM) based on the amount of resources
allocated to each layer to optimize the overall runtime. Also, the
spatial locality in mapping forward and backward passes to the
cubes is crucial in achieving high-performance and energy-
efficiency as layers in both passes share weights and data [4]
(Section III.D). Next, we show the effect of mapping the CNN
layers to cubes using the bin-packing-based algorithm. Fig. 4
shows the results of mapping both passes to cubes (forward on
ReRAMs and backward on GPUs) for two of the considered
CNNs: AlexNet (Fig. 4(a)) and LeNet (Fig. 4(b)). For smaller
CNNs, e.g., LeNet and CDBNet, we consider a reduced system
size of 4 cubes (Fig. 4(b)). From Fig. 4, we note that in most
cases, the backward pass is mapped on the same cube as its
forward counterpart (best case) thereby preserving spatial
locality. This allows high-throughput memory access via
vertical links as data/weights can be fetched directly from the
same cube without relying on the longer inter-cube links.

Interestingly, we also note that Full Connect (FC) layers
require more cubes in the forward pass (ReRAMs) than the
backward pass (GPUs) for larger CNNs. This happens as FC
layers typically have a larger number of weights compared to
convolution layers and all the weights need to be mapped
individually on ReRAMs. This is necessary to avoid re-
programming ReRAM crossbars during execution as it is time-
consuming and can give rise to significant performance
bottleneck [13]. However, GPUs do not have such a limitation
and are therefore allocated based on the amount of parallelism

required to balance all stages of the pipelined-CNN architecture
adopted here [4]. It should be noted here that Fig. 4 only shows
the mapping. The placement of the cubes integrated via NoC is
further optimized following the MOO formulation of (2).

C. NoC and Full System Results
 Based on the above layer mapping, we determine the traffic

within each cube (intra-cube) and between them (inter-cube) to
design the NoC (Section III.A, Fig. 1(b)) considering both
forward and backward passes. REGENT employs a two-level
Hierarchical NoC (HNoC), as shown in Fig. 1(b), the first level
is optimized for the intra-cube many-to-few communication and
the second level is optimized based on the inter-cube traffic. The
first level NoC is same in all the cubes as we have already shown
that an NoC optimized for one CNN layer (capturing many-to-
few traffic in general) can perform at par with a layer-specific
NoC (Fig. 3). The overall NoC is optimized following the
methodology outlined in Section III.C, which brings the highly
communicating tiles closer to each other (e.g., GPU-LLC). To
achieve high throughput, link placement is optimized to increase
path diversity between the highly communicating pairs. This
allows traffic to be redistributed among multiple links, thus
preventing congestion in a handful of links, as observed in
conventional mesh NoCs [2]. Next, we compare the
performance of HNoC with a similar state-of-the-art hierarchical
NoC referred as NeuNoC [7], a heterogeneous two-level ring-
mesh NoC that has been demonstrated to outperform a
conventional single-level mesh NoC [7]. We also consider
another NoC architecture, Hmesh, that follows a two-level
mesh-mesh architecture for performance evaluation. The
placement of tiles in both NeuNoC and Hmesh is optimized
similar to HNoC following (2) (link placement remains
unchanged; NeuNoC: ring-mesh [7], Hmesh: mesh-mesh).

Fig. 5 (a) and Fig. 5 (b) show the EDP and load distribution
among the links respectively for the NoC architectures under
consideration. To capture the performance difference due to the
NoC only, we adopt the exact same layer mapping (Section
III.D, Fig. 4) for all the three cases. It is clear that HNoC not only
improves EDP significantly when compared to the remaining
NoC architectures, but also distributes traffic more evenly
among the links, thereby leading to higher throughput. On
average, HNoC improves EDP when compared to the NeuNoC
(ring-mesh) and Hmesh (mesh-mesh) by 56% and 18%,
respectively. The improvement in Hmesh and HNoC over
NeuNoC can be attributed to three major factors: (a) NeuNoC has
fewer links compared to both HNoC and Hmesh; (b) NeuNoC
does not have path diversity and forces data to follow a fixed
path leading to congestion, and (c) Average hop count between
cores in NeuNoC is higher than both HNoC and Hmesh. As a
result, under many-to-few traffic pattern, the average load on

(a) (b)

Fig. 4: Mapping layers in both passes during training on to cubes (forward on ReRAMs, backward on GPUs) for (a) AlexNet (b) LeNet. (Here,

colors only indicate mapping of layers; they do not represent the exact amount of resources allocated in the cube)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CubesForward

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 FC3

1 2 3 4
CubesForward

Conv1 Conv2 Conv3 FC1 FC2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
CubesBackward

Conv1 Conv2 Conv3 Conv4 Conv5 FC1 FC2 FC3

1 2 3 4
CubesBackward

Conv1 Conv2 Conv3 FC1 FC2

526 Design, Automation And Test in Europe (DATE 2019)

links in NeuNoC is 4X and 2.5X higher when compared to
HNoC and Hmesh respectively. The performance of Hmesh
suffers due to the multi-hop nature of mesh and its inability to
handle many-to-few traffic [2]. The average link load in Hmesh
is 1.6X higher when compared to HNoC (Fig. 5(b)). This
indicates that HNoC has fewer heavily congested links as traffic
is distributed more uniformly. Hence, links are more readily
available in HNoC, resulting in less network congestion and
higher network throughput. By jointly optimizing throughput
and energy, HNoC shows the best performance for training
CNNs when compared to other NoCs.

Next, we compare the performance of REGENT with a
conventional GPU-only platform in terms of full-system EDP
(capturing both execution time and energy consumption) for
training CNNs. Here, we consider HNoC in both cases to ensure
similar NoC performance. The GPU-only platform has similar
architecture as in Fig. 1(a): lower layer consisting of equal
number of GPUs and LLCs in each cube, and ReRAMs in upper
layer. However, ReRAMs are configured as memory-only in this
case. The GPU and ReRAM parameters in both cases are same
as described in Table 1. Fig. 6 shows the full-system EDP when
different CNNs are executed on these two platforms. It is clear
that the hybrid ReRAM/GPU architecture is more efficient and
improves EDP by 55.7% on average compared to its GPU-only
counterpart. The hybrid architecture performs better in terms of
both execution time and energy. This is due to the fact that in
GPU-only system, the layers (both forward and backward) are
executed on GPUs, which are inherently slower and consumes
more energy than ReRAMs [3][4]. Overall, the REGENT
architecture together with HNoC, provides significant speed-up
and energy savings for training CNNs when compared to
conventional platforms. Here, we have omitted an accuracy
comparison for the sake of brevity as similar experiments in
prior work [6] (16-bit accuracy for forward and 32-bit accuracy
for backward pass) have reported negligible accuracy loss when
compared to a full 32-bit (GPU-only) implementation.

V. CONCLUSION

In this work, we introduced REGENT, a heterogeneous
ReRAM/GPU-based architecture for training CNNs. REGENT
incorporates the efficiency of ReRAMs with the high-precision
computing of GPUs integrated using a high-throughput and
energy-efficient NoC. We demonstrate that instead of
optimizing the NoC for any specific CNN or a specific CNN
layer, it is sufficient to consider the many-to-few traffic patterns
inherent in any GPU-based architecture. Each layer of the CNN
is mapped to the computing units (cubes) following a bin-
packing formulation such that spatial locality of data between
forward and backward passes is preserved. This reduces network
traffic, leading to low-latency and energy-efficient
communication. Experimental evaluation indicates that HNoC
outperforms NeuNoC, a state-of-the-art NoC designed for neural

networks, by 56% on an average while outperforming GPU-only
platforms by 55.7% for training CNNs.

REFERENCES

[1] Z. Lu, S. Rallapalli, K. Chan, T. L. Porta. “Modeling the Resource
Requirements of Convolutional Neural Networks on Mobile Devices,” in
Proc. of ACM Multimedia Conf., Mountain View, CA, 2017, 1663-1671.

[2] W. Choi et. al., "On-Chip Communication Network for Efficient Training
of Deep Convolutional Networks on Heterogeneous Manycore Systems,"
in IEEE TC, vol. 67, no. 5, 2018, pp. 672-686

[3] G. W. Burr et al., "Large-scale neural networks implemented with non-
volatile memory as the synaptic weight element: Comparative
performance analysis (accuracy, speed, and power)," in IEEE IEDM,
Washington, DC, 2015, pp. 4.4.1-4.4.4.

[4] L. Song, X. Qian, H. Li and Y. Chen, "PipeLayer: A Pipelined ReRAM-
Based Accelerator for Deep Learning," in IEEE HPCA, Austin, TX, 2017,
pp. 541-552.

[5] M. Hu et. al., "Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector multiplication,"
in DAC, Austin, TX, 2016, pp. 1-6.

[6] Y. Chen et. al., "DaDianNao: A Machine-Learning Supercomputer," in
MICRO, Cambridge, 2014, pp. 609-622.

[7] X. Liu et. al., “Neu-NoC: a high-efficient interconnection network for
accelerated neuromorphic systems,” in ASPDAC, IEEE Press,
Piscataway, NJ, 2018, 141-146

[8] A. Shafiee et. al., “ISAAC: a convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in SIGARCH Comput.
Archit. News 44, 2016, 14-26.

[9] P. Chi et al., "PRIME: A Novel Processing-in-Memory Architecture for
Neural Network Computation in ReRAM-Based Main Memory," in
ISCA, Seoul, 2016, pp. 27-39.

[10] T. Na, J. H. Ko, J. Kung and S. Mukhopadhyay, "On-chip training of
recurrent neural networks with limited numerical precision," in IJCNN,
Anchorage, AK, 2017, pp. 3716-3723

[11] A. Bakhoda, J. Kim and T. M. Aamodt, "Throughput-Effective On-Chip
Networks for Manycore Accelerators," in MICRO, Atlanta, GA, 2010, pp.
421-432

[12] A. A. Maashri et. al., "3D GPU architecture using cache stacking:
Performance, cost, power and thermal analysis," in IEEE ICCD, Lake
Tahoe, CA, 2009, pp. 254-259.

[13] Y. Long, T. Na and S. Mukhopadhyay, "ReRAM-Based Processing-in-
Memory Architecture for Recurrent Neural Network Acceleration," in
IEEE TVLSI, 2018

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” in Proc. of the IEEE, 1998

[15] Convnet: Deep Convolutional Network: http://libccv.org/ (CIFAR-10)

[16] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in NIPS, 2012, pp. 1106–1114.

[17] M. D. Zeiler, R. Fergus, “Visualizing and understanding convolutional
networks,” in Proc. ECCV, 2014, CoRR, abs/1311.2901

[18] J. Power et.al., "gem5-gpu: A Heterogeneous CPU-GPU Simulator," in
IEEE Computer Architecture Letters, vol. 14, no. 1, pp. 34-36, 2015

[19] S. Bandyopadhyay, S. Saha, U. Maulik, K. Deb, "A Simulated Annealing-
Based Multiobjective Optimization Algorithm: AMOSA," in IEEE Trans.
on Evolutionary Computation, vol. 12, no. 3, pp. 269-283, 2008.

[20] N. Menakerman, R. Rom, “Bin packing with item fragmentation,” in Proc.
of 7th Intl. Workshop on Algorithms and Data Structures, Lecture Notes
in Computer Science, vol. 2125, 2001, pp. 313–324.

Fig 6: Full-System EDP comparison of

REGENT and GPU-only architectures

0
0.3
0.6
0.9
1.2

AlexNet MattNet CDBNet LeNet

N
or

m
al

iz
ed

ED

P

GPU REGENT

Fig 5: Comparison of (a) NoC EDP, (b) Load distribution in considered NoCs

0
0.3
0.6
0.9
1.2

AlexNet MattNet CDBNet LeNet

N
or

m
al

iz
ed

ED

P

NeuNoC Hmesh HNoC

(a)
0%

10%

20%

30%

Pe
rc

en
ta

ge
 o

f
lin

ks

Load on links

HNoC Hmesh NeuNoC

μhnoc μmesh μneu

μmesh = 1.6μhnoc
σmesh = 2.5σhnocσhnoc μneu = 4μhnoc
σneu = 4σhnoc

(b)

Design, Automation And Test in Europe (DATE 2019) 527

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

