
fbPDR: In-depth combination of forward and
backward analysis in Property Directed Reachability

Tobias Seufert
University of Freiburg, Germany
Email: seufert@informatik.uni-freiburg.de

Christoph Scholl
University of Freiburg, Germany
Email: scholl@informatik.uni-freiburg.de

Abstract—We describe a thoroughly interweaved forward and
backward version of PDR/IC3 called fbPDR. Motivated by the
complementary strengths of PDR and Reverse PDR and by
related work showing the benefits of collaboration between the
two, fbPDR lifts the combination to a new level. We lay the
theoretical foundations for sharing information represented by
learned lemmas between PDR and Reverse PDR and demonstrate
the effectiveness of our approach on benchmarks from the
Hardware Model Checking Competition.

I. INTRODUCTION

Nowadays PDR (or IC3) [1], [2] is considered as one of
the most powerful methods in hardware verification. Unlike
others it does not unroll a transition relation. It incrementally
strengthens a proof until a safe invariant or a counterexample
is found. PDR in its usual definition has a ‘fixed direction’:
It considers overapproximations of state sets reachable from
the initial states in k or less steps. The work in this paper is
motivated by observations already made in [3], [4] showing
that a combination of (forward) PDR and (backward) Reverse
PDR is worthwile. Reverse PDR computes overapproxima-
tions of state sets which can reach unsafe states in k or less
steps. In [4] Reverse PDR has been examined thoroughly and
communication between PDR and Reverse PDR via proof
obligations has been enabled. We now utilize these insights
to lift the combination of PDR and Reverse PDR to a next
level. Our algorithm really intertwines PDR and Reverse PDR
reasoning by strengthening one trace using blocked cubes
learnt from the other. Thus both variants profit from all the
information gathered by its counterpart and we observe a
significant speedup in both finding counterexamples as well
as safe inductive invariants.

In general, our objective is to share as much information
between PDR and Reverse PDR as possible. The contributions
of our paper can be summarized as follows: (1) We show
how to learn new lemmas (the negation of blocked cubes)
for PDR (resp. Reverse PDR) based on lemmas learned for
Reverse PDR (resp. PDR) and show how to make use of those
lemmas to strengthen existing PDR / Reverse PDR traces.
(2) For extracting blocked cubes from state sets represented
in CNF we present and compare several orthogonal methods.
(3) We expand traces by additional (initially empty) frames
whenever we learn from the other PDR direction that we
can exclude counterexamples of shorter lengths. Moreover,
we immediately discharge pending proof obligations based on
information on the minimal counterexample length provided
by the other direction. (4) We provide proofs for our statements
and analyze thoroughly how PDR / Reverse PDR with all their
implementation details (like delta-encoded traces, e.g.) can
be enhanced with information exchange to result in a sound
overall implementation. (5) We show that our new insights on
information exchange can be combined with the work from

[4] in an effective manner. (6) In our experiments, we provide
an intensive evaluation and analysis of different variants of our
approach compared to related work and state-of-the-art PDR
implementations.

Related work: [5] modifies the core functionality of
PDR, e.g., by more aggressively pushing so-called may-proof-
obligations forward. Moreover, [5] extends the initial states
by additional reachable states that are proved to be reachable
from the initial states during the attempt to discharge may-
proof-obligations. Extending initial states is done in [4] as
well, but in this case the initial states are extended due
to information transferred from Reverse PDR to PDR. In
addition, the Reverse PDR component extends the unsafe
states due to information learnt from PDR. Whereas a basic
version of Reverse PDR has already been proposed in [2],
[6], an intensive analysis as well as optimizations of Reverse
PDR have been presented in [4]. The approach of combining
PDR and Reverse PDR has been motivated by bidirectional
approaches for BDD based model checking [7], [8] and
also SAT based model checking using interpolation [9]. In
multi-threaded portfolio configurations used by [10], [11] ex-
changing reachability information via learned lemmas between
different forward PDR variants has successfully been applied.
Also the approach from [12] reuses reachability information
(represented by learned lemmas) by initializing PDR with
invariants which have been found earlier while proving a
different property on multi-property designs.

To the best of our knowledge, a combined bidirectional PDR
approach sharing information represented by learnt lemmas
has not been presented and analyzed before.

Structure of the paper: In Sect. II we give some pre-
liminaries needed for this paper. In Sect. III we present our
intertwined approach and prove its soundness. An experimen-
tal evaluation is given in Sect. IV and Sect. V summarizes the
results with directions for future research.

II. PRELIMINARIES

A. Basic Notions

We discuss the verification of sequential boolean cir-
cuits. A sequential boolean circuit represents an FSM

M := (B|�s|,B|�i|,B|�o|, δ, λ, init) where the transition function

δ :B|�s|×B|�i|→B|�s ′| and the output function λ :B|�s|×B|�i|→
B|�o| are defined by a combinational circuit with inputs �s and
�i and outputs �s ′ and �o. Here the variables �s ′ are called
next state variables (|�s| = |�s ′|). The predicate init :B|�s| →B
defines the possible initial states of the FSM. As usual, the
transition function can also be represented by a predicate

T :B|�s| ×B|�i| ×B|�s ′| → B for the corresponding transition
relation.

456978-3-9819263-2-3/DATE19/ c©2019 EDAA

For simplicity, we only consider invariant properties P over
state variables in this paper. We call the complement of the
states represented by P the ‘unsafe states’, represented by a
predicate unsafe = ¬P . Thus, our verification goal is to prove
(or disprove) that unsafe states cannot be reached from initial
states by following transitions of the FSM.

In the following, we abbreviate cubes over current (next)
state variables by letters s (s′). By minterms we denote cubes
containing literals for all state variables.

B. PDR and Reverse PDR

The method we will further use and adapt is called property
directed reachability (PDR) [2] or IC3 [1]. PDR produces
stepwise reachability information in time-frames without un-
rolling the transition relation. Each time-frame k corresponds
to a predicate Rk represented as a set of clauses, leading to
predicates R0, . . . , RN in main loop N of PDR.1 Rk always
overapproximates the set of states which can be reached from
init in up to k steps. This invariant holds, since in the first main
loop R0 is initialized by init (and always remains unchanged),
Rk with k ≥ 1 are initialized by 1 (representing the set of
all possible states), and all main loops only exclude states s
from Rk, if there is provably no transition from Rk−1 (which
overapproximates – by induction assumption – the set of states
which can be reached from init in up to k − 1 steps) to s.

Let us consider main loop N when PDR has constructed
time frames R0, . . . , RN . PDR starts main loop N by ex-
tracting satisfying cubes from RN ∧ unsafe by calling a SAT
solver. It generalizes a satisfying assignment of RN ∧ unsafe
into a cube s, thus s represents unsafe states for which it
has not yet been proven that they can not be reached from
init in up to N steps. A new proof obligation (s, N , 0)
is inserted. A proof obligation is identified by its state set
(here s), by its frame (here N), and by its depth (here 0)
– the depth describes the number of steps required to reach
unsafe from an arbitrary state in s. It has to be proven that
it is not possible to reach the states in s from init in up to
N steps (otherwise an unsafe state would be reachable from
init). Discharging this proof obligation is done by asking for
SAT?[RN−1 ∧ T ∧ s′] (which corresponds to an pre-image
computation) where the cube s′ is identical to s, but uses
next state variables instead of current state variables.2 If this
SAT check is unsatisfiable, then the proof obligation has been
discharged and s is excluded from RN by adding ¬s to the
clauses in RN . If possible, s is generalized before. If the SAT
check is satisfiable, a predecessor minterm m is extracted from
the satisfying assignment, m is ‘generalized’ to a cube ŝ, and
the proof obligation (ŝ, N −1, 1) is produced which has to be
discharged later on. Before a new proof obligation is added,
PDR always checks whether its cube intersects init. If yes,
then PDR stops, since there is a path from init to unsafe,
i.e., a counterexample. All newly added proof obligations (s,
k, d) are also added as (s, k′, d) in all higher time frames
N ≥ k′ > k, since paths of length k′ + d from init to unsafe
should be excluded as well.

1For subsets C of the clause set Rk we write C � Rk , but in the following
we often identify predicates Rk with the state sets represented by them and
thus we often write s ⊆ Rk , if s is a cube representing a subset of states.

2Here we review only the basic idea of PDR and omit detailed improve-
ments like strengthening the query by conjunction with ¬s.

PDR keeps the invariant that for all k > 1 the clause set Rk

is even syntactically included in Rk−1 (and thus the state set
represented by Rk−1 is a subset of the state set represented
by Rk). The invariant holds in the beginning of the algorithm.
If SAT?[Rk−1 ∧ T ∧ s′] is unsatisfiable, the same SAT check
is also unsatisfiable for k replaced by i with 1 ≤ i ≤ k − 1
(since the state set Ri−1 is a subset of Rk−1). Therefore s
can be excluded (by adding ¬s to the clause set) from Ri

with 1 ≤ i ≤ k − 1 as well. The state set represented by R0

remains always equal to init. It is a subset of Rk (1 ≤ k ≤ N),
since no proof obligations (s, k, d) with s intersecting init are
generated and thus it never happens that an initial state is
excluded from Rk.

When all proof obligations are discharged and RN ∧unsafe
becomes unsatisfiable, it has been proven that there is no path
of length ≤ N from init to unsafe. Then a new time frame
RN+1 with RN+1 = 1 (represented by the empty clause set)
is added, and a new main loop is started. If there is a pair of
state sets Rk−1 and Rk, where Rk−1 and Rk are equivalent,
then Rk is an inductive invariant and the proof that there is
no trace from init to unsafe is complete.

As already observed in [2] and [6], there is a simple
way to arrive at an implementation of Reverse PDR just by
exchanging init with unsafe and interpreting the predicate for
T ‘the other way round’. In that way, Reverse PDR computes
overapproximations RR0, . . . , RRN with RRk overapproxi-
mating the set of states from which unsafe can be reached in
up to k steps. SAT solver calls of type SAT?[RN ∧unsafe] are
replaced by SAT?[RRN ∧ init] and SAT solver calls of type
SAT?[Rk−1 ∧ T ∧ s′] are replaced by SAT?[s ∧ T ∧ RR′

k−1]
(here the clauses from RR′

k−1 are formulated with next state
variables instead of current state variables, the cube s with
current state variables instead of next state variables), i.e., pre-
image computations are replaced by image computations.

III. COMBINING PDR AND REVERSE PDR

The results from [3], [4] indicate that it is worthwile to
combine the complementary strengths of PDR and Reverse
PDR into one algorithm and also to enable collaboration
between the two. In this paper we extend the collaboration
potential considerably.

Note that in the following our analysis considers only the
transfer of information from Reverse PDR to PDR. However,
all procedures also apply the other way around considering
the characteristics of PDR and Reverse PDR from Sec. II-B.

A. Learning new lemmas from Reverse PDR

Basically, PDR gathers information in terms of proof obliga-
tions and learnt clauses (lemmas). Proof obligations of Reverse
PDR are forward reachable states and can therefore just be
added to init in original PDR [4]. Here we look into learning
new clauses (lemmas) for PDR from lemmas in Reverse PDR
which is more subtle though: Consider a Reverse PDR trace
RR0, RR1, . . . , RRN . For a clause (lemma) c ∈ RRN−i with
c = s, s contains a proof obligation ŝ. [4] makes use of
the fact that ŝ underapproximates the states reachable from
init in i steps. c = s in turn overapproximates the set of
states reaching unsafe in ≤ N − i steps. However, it is not
clear how to make use of this information in PDR where we
work with underapproximations of states reaching unsafe (i.e.,
proof obligations) and overaproximations of states reachable

Design, Automation And Test in Europe (DATE 2019) 457

from init (i.e., lemmas). In contrast, by looking at sets RRN−i

as a whole, we can extract useful information:

Theorem 1. Given a Reverse PDR trace of length N and
a PDR trace of length N ′. Let s be an arbitrary cube s ⊆
RRN−(i+1) with 0 ≤ i ≤ N − 2. If we strengthen the PDR
trace by blocking s in all frames 1 ≤ k ≤ min(i, N ′), i.e. by
setting Rk = Rk∧s, then in the resulting PDR trace the state
sets Ri with 0 ≤ i ≤ N still overapproximate the sets of states
reachable from init in ≤ i steps. Moreover, the property of
syntactical inclusion of CNFs Ri+1 	 Ri for 1 ≤ i ≤ N − 1
and semantical inclusion Ri ⊆ Ri+1 for 0 ≤ i ≤ N − 1 is
preserved by the strengthening.

Proof. At the end of main loop N − 1 of Reverse PDR (after
discharging all proof obligations up to frame N−1) it is guar-
anteed that there is no path of length i (0 ≤ i ≤ N − 2) from
init to RRN−(i+1). Since RRj ⊆ RRj+1 for 0 ≤ i ≤ N −2,
it is also guaranteed that there is no path of length ≤ i
(0 ≤ i ≤ N − 2) from init to RRN−(i+1). This property
does not change during the next main loop, since the next
main loop may only block additional cubes from RRN−(i+1).
Thus, given a Reverse PDR trace RR0, RR1, . . . , RRN and
a cube s ⊆ RRN−(i+1) (0 ≤ i ≤ N − 2), we know
that s is an overapproximation of the states which can be
reached from init in ≤ i steps. Since a set Ri of PDR is an
overapproximation of states reachable from init in ≤ i steps
as well, Ri ∧ s overapproximates the states reachable from
init in ≤ i steps.

Since an overapproximation of states reachable in ≤ i steps
is apparently also an overapproximation of states reachable in
≤ k steps with k ≤ i, Rk ∧ s overapproximates the states
reachable from init in ≤ k steps.

Since for 1 ≤ k ≤ min(i, N ′) all Rk are intersected
with the same clause s and all Rk with k ≥ min(i, N ′)
remain unchanged, the syntactical inclusion Ri+1 	 Ri for
1 ≤ i ≤ N − 1 after strengthening is trivial, given that the
same property holds before strengthening. This immediately
implies semantical inclusion Ri ⊆ Ri+1 for 1 ≤ i ≤ N − 1.
R0 ⊆ R1 follows from the fact that R0 = init remains
unchanged, R1 is replaced by R1 ∧ s, and s contains init
as an overapproximation of states reachable from init in ≤ i
steps.

It is important to note that the strengthening of SAT solver
queries to SAT?[¬s∧Ri ∧ T ∧ s′] for some time frame i and
a proof obligation state s as introduced in [1] remains sound
also when we strengthen the PDR trace according to Thrm. 1.
The proof that adding ¬s to the query is sound [2] basically
relies on two facts: s does not intersect the initial states and
Ri ⊆ Ri+1 for 0 ≤ i ≤ N − 1. The first condition is checked
before the query (otherwise we have found a counterexample)
and the second condition is preserved as shown by Thrm. 1.

B. Cube extraction from PDR clause sets

To strengthen a PDR trace according to Thrm. 1 we have to
extract subcubes from RRN−(i+1) provided by Reverse PDR.
RRN−(i+1) is given as a CNF, thus extracting all subcubes
amounts to a CNF to DNF conversion, and extracting a re-
stricted number of good, i.e. short, subcubes means computing
only a part of the corresponding DNF. The naive way of CNF
to DNF conversion using the law of distributivity can lead to an

exponential growth. Another possibility is to negate the CNF,
use Plaisted-Greenbaum-Transformation [13] for translating
the DNF into CNF, and negate the result again. However,
this method may have disadvantages as well: The number
of computed cubes is linear in the size of the CNF, but we
may be interested in even more condensed information to
be transferred. Moreover, we have to introduce new auxiliary
variables which act as additional state space variables.

Here we present two methods we developed for under-
approximating a CNF C by picking subcubes. Consider a
CNF with n clauses ci, i ∈ {1, . . . , n}. Now all combinations
of literals when selecting one literal from each clause ci
represents one subcube of C. A subset of these cubes is an
under-approximation of C and we intend to find such a subset
with short (in terms of literals) informative subcubes which is
big enough to get a rather accurate under-approximation, but
is still computationally manageable in SAT solver calls during
PDR reasoning.

1) SAT-based approach: Here we obtain the subcubes by
using a SAT solver: A satisfying assignment A of a SAT solver
call for C yields exactly one cube. This cube usually can be
minimized. This is done by scanning the clauses in C and
greedily choosing the literals which cover most clauses. This
is done until all clauses are covered. The technique is similar
to the one presented in [14] and is sketched in Alg. 1. In

1 resultDNF := ∅; ;
2 ∀1 ≤ i ≤ n satSolver.addClause(ci);
3 A := satSolver.solve();
4 while cube.size() < climit && resultDNF.size() < nlimit && A �= ∅ do
5 uncovered := {c1, . . . , cn};
6 cube := ∅;
7 while uncovered �= ∅ do
8 mostFrequLit := ∅;
9 for clause in uncovered do

10 for literal in clause do
11 if A.contains(literal) then
12 literal.occurences.add(clause);
13 if literal.occurences.size() >

mostFrequLit.occurences.size() then
14 mostFrequLit := literal;

15 cube.add(mostFrequLit);
16 uncovered := uncovered \ mostFrequLit.occurences;

17 resultDNF.add(cube);
18 satSolver.addClause(¬ cube);
19 A := satSolver.solve();

Algorithm 1: findCube: SAT-based cube extraction.

line 14 of Alg. 1 we determine the literal from our satisfying
assignment A which occurs most frequently in C, i.e. which
covers most clauses. We add the most frequently occurring
literal to our current cube (see line 15) and repeat this for
the remaining uncovered clauses (see line 16) until the set
of uncovered clauses is empty. After we have completed one
cube we add its complement as a blocking clause (see line
18), find the next satisfying assignment and repeat the whole
procedure until climit or nlimit are reached or there do not
remain any new cubes to be extracted.

2) Randomized selection: The other variant uses a sim-
ulated annealing-like [15] approach3 which basically also
computes short cubes by greedily choosing the most frequently
occurring literals. However it does not use a SAT solver
and blocking clauses, but avoids always producing the same

3In fact we use an inverse approach here with ‘heating’ instead of annealing.

458 Design, Automation And Test in Europe (DATE 2019)

cube by utilizing a probability distribution. If there are N
occurences of literals in clauses, the probability to choose

literal l amounts to (occurences(l)N)t with a constant t (in
our implementation t is initialized by 2). During heating (in
contrast to annealing) steps, ‘chaos is increased’ by reducing t,
which means that more frequently occurring literals are chosen
with relatively smaller probability than before. This leads to
a diversification of the chosen cubes. Due to lack of space,
we omit more details here. In Sec. IV we provide a detailed
analysis of how the two methods perform in practice.

C. Discharging proof obligations

After main loop N , Reverse PDR arrives at a safe trace of
length N which implies that there are no counterexamples
of length less or equal to N . This alone can be precious
information when we consider a combination of PDR and
Reverse PDR.

Theorem 2. We consider a safe Reverse PDR trace of length
N and a PDR trace of length N ′. Then we can consider all
proof obligations (s, k, d) with k + d ≤ N in the PDR trace
to be discharged without affecting the result of PDR.

Proof. A proof obligation (s, k, d) says that s reaches unsafe
within d steps and that s is present in frame k. If we could
prove that s is reachable from init in frame k, i.e., there would
be a trace of length ≤ k from init to s, then there would be a
path of length ≤ k+d from init to unsafe. This contradicts the
fact that there are no counterexamples of length less or equal
to N ≥ k+d due to the safe Reverse PDR trace. Thus, we can
consider the proof obligation (s, k, d) to be discharged.

D. Delta-encoded trace and termination

There is one subtle, but important implementation detail of
usual PDR implementations which is affected by strengthening
a PDR trace according to Sect. III-A. If not taken into account
properly, this detail could lead to erroneous termination de-
tections when using so–called delta-encoded traces [2]. To be
able to explain this problem, we need to have a closer look at
termination checking in PDR. Termination checking is done
during a propagation phase which takes place immediately
before starting a new main loop N + 1 (and after adding a
new empty frame RN+1 = ∅). Starting with k = 2 and ending
with k = N + 1, for each clause ¬s in Rk−1 PDR checks by
SAT?[Rk−1 ∧ T ∧ s′] whether the cube s can also be blocked
in Rk, i.e., whether ¬s can also be added to Rk. After this,
by construction, for k > 1 Rk−1 is logically equivalent to Rk

iff they have become syntactically equal. If there is a pair of
state sets Rk−1 and Rk, where Rk−1 and Rk are equal, then
Rk is an inductive invariant and the proof that there is no trace
from init to unsafe is complete.

A delta-encoded trace [2] R0,ΔR1, . . . ,ΔRN stores each
learned clause (corresponding to the negation of a blocked
cube) only in the highest time frame in which it holds, i.e.,
we obtain the original trace from the delta encoded one by
R0,∪N

j=1ΔRj , . . . ,∪N
j=N−1ΔRj ,ΔRN . This reduces the ef-

fort of termination checking: Suppose that there is a time frame
ΔRk−1 with an empty cube set after the propagation phase,
then this exactly means that Rk = Rk−1. Now we consider
two types of clauses after the propagation phase: (1) For all
clauses s moved from ΔRk−1 to ΔRk during the propagation
phase we have unsatisfiability of SAT?[Rk−1∧T ∧s′]. (2) For

all clauses ŝ from ΔRi with i ≥ k we have unsatisfiability of
SAT?[Ri−1 ∧T ∧ ŝ′], since otherwise the cube ŝ would not be
blocked in frame i, and therefore we also have unsatisfiability
of SAT?[Rk−1 ∧ T ∧ ŝ′] due to Rk−1 ⊆ Ri−1 for i ≥ k.
Altogether, for all clauses s ∈ Rk after the propagation phase
we have unsatisfiability of SAT?[Rk−1 ∧ T ∧ s′]. This means
that the image of Rk−1 is included in Rk and because of
Rk−1 = Rk, init ⊆ Rk−1, and Rk−1 ∩ unsafe = ∅, Rk−1 is a
safe inductive invariant.

This approach may go wrong, if the delta-encoded trace
contains clauses added by information transfer from Reverse
PDR. The argument for clauses in Rk of type (1) is the same,
but if a clause ŝ from ΔRi with i ≥ k has been obtained by in-
formation transfer from Reverse PDR, then SAT?[Ri−1∧T∧ŝ′]
is not necessarily unsatisfiable. By Thrms. 1 and 2 we know
that inserting ŝ as a ‘proof obligation’ would discharge it after
a series of recursive steps, but this is not done in our approach,
since we want to learn from Reverve PDR without proving
learnt information once again. However, for this reason, it
is possible that the image of Rk−1 is not included in Rk,
although ΔRk−1 = ∅ after the propagation phase. Thus, we
cannot conclude termination in this situation. To be safe in the
termination check, we either have to check for all clauses s in
Rk−1, whether they can be propagated via SAT?[Rk−1∧T∧s]
or we have to check termination only in frames higher than
the highest frame which has been strengthened by Reverse
PDR information. In our implementation we choose the second
option.

E. Combined Algorithm

In Alg. 2 we present our algorithm combining the original
(or forward) PDR with the Reverse (or backward) PDR. Alg. 2
extends an algorithm from [4] by the collaboration methods
presented in this paper. Basically, it runs the original PDR for
some time limit tlimitfw, then Reverse PDR for some time
limit tlimitbw, afterwards it resumes the original PDR again
for time tlimitfw etc.. Whenever one of the two directions
finishes with the result ‘safe’ or ‘unsafe’ (lines 5 or 10 of
Alg. 2), the combined algorithm finishes with this result.

1 initPDR(init , unsafe); initRPDR(init , unsafe);
2 pofw := ∅; pobw := ∅;
3 while true do
4 (res, newPofw) := resumePDR(pobw , tlimitfw);
5 if res �= unknown then return res pofw := pofw∪ newPofw;

compress(pofw , slimitfw);
6 expandRPDR();
7 strengthenRPDR();
8 propagate();
9 (res, newPobw) := resumeRPDR(pofw , tlimitbw);

10 if res �= unknown then return res pobw := pobw∪ newPobw;
compress(pobw , slimitbw);

11 expandPDR();
12 strengthenPDR();
13 propagate();

Algorithm 2: fbPDR.

One part of the information exchange between the two
directions of PDR takes place on the basis of proof obligations
pofw and pobw which are added to unsafe and init , resp., as
a “target enlargement” [4], see lines 5, 9, 10, 4.

Our focus though will be on the lines 6, 7 and 11, 12. For
PDR traces of length N and Reverse PDR traces of length
N ′ expanding the traces in lines 6 and 11 opens new empty
time frames until the length max(N,N ′) has been reached.

Design, Automation And Test in Europe (DATE 2019) 459

Here we make use of the (exchanged) information that no
counterexample of length < max(N,N ′) exists. Moreover,
during expansion, proof obligations are discharged according
to Sect. III-C and added as blocked cubes. After expanding,
all frames including the new frames are strengthened by new
learnt lemmas according to Sects. III-A and III-B. After adding
new frames and strengthening, we call the standard PDR
cube propagation procedure propagate() (lines 8 and 13), but
without integrated termination checking, see Sect. III-D. Af-
terwards, Alg. 2 calls standard (time-limited) implementations
of PDR (line 4) resp. Reverse PDR (line 9) (including the
usual cube propagation and termination check).

IV. EXPERIMENTAL RESULTS

Our implementation of PDR/Reverse PDR (called fbPDR) is
derived from [2] and also uses features of Bradley’s original
algorithm and newer developments, for instance, the better
generalization scheme from [6]. Our Reverse PDR imple-
mentation uses the proof-obligation generalization scheme
presented in [4]. The transition relation is represented as
a Tseitin-transformed CNF [16], preprocessed with variable
elimination. We use one MINISAT v2.2.0 [17] instance per
time frame. All experiments have been run with the same
resource constraints (7 GB, 3600 s) and the complete bench-
mark set of HWMCC’15 (excluding the access restricted Intel
benchmarks) and ’17.4 We have used one core of an Intel Xeon
CPU E5-2650v2 with 2.6 GHz. As proposed in [6] we use the
functional versions of the reverse encoded beem benchmarks
in order to avoid any bias in favor of Reverse PDR. To obtain a
clear and fair evaluation of the combined approach resp. PDR
only, we refrain from using any other complete or incomplete
proof engine (like BMC, SMC, interpolation) or preprocessing.
As reference we used the latest IC3 implementation5 published
by Aaron Bradley, ABC’s PDR6 as well as the combined
PDR/Reverse PDR implementation from [4].

a) Configuration of fbPDR: The configuration of fbPDR
we have chosen for our experiments uses limits nlimit =
#CNFclauses/2 and climit = #latches/20 if #latches <
500 and climit = #latches/100 otherwise for Alg. 1.
#CNFclauses denotes the number of clauses which have to
be translated into DNF. Further we have imposed a timeout
for CNF to DNF conversion for each strengthened time frame
which amounts to 5s divided by the total amount of frames to
be strengthened. As suggested in [4] we use for Alg. 2 time
limits tlimitfw = tlimitbw = 30 s for continuous executions of
PDR / Reverse PDR and upper bounds for exchanged proof
obligations slimitbw = 500 and slimitfw = 500.

b) fbPDR vs. portfolio without collaboration: To evalu-
ate the effect of the intertwining of PDR and Reverse PDR
using the methods from Sect. III we compare our combined
approach with a portfolio-like approach, which also executes
PDR and Reverse PDR in an alternating manner but does
not share any information between the two at all. In Fig. 1
we present the results. The points above the diagonal are
those in favor of fbPDR. Apparently sharing information repre-
sented by learnt lemmas and exchanging proof obligations has
great effects on the efficiency of a combined PDR approach,

4http://fmv.jku.at/hwmcc15/ resp. http://fmv.jku.at/hwmcc17/
5https://github.com/arbrad/IC3ref, downloaded in Sep. 2016.
6https://bitbucket.org/alanmi/abc, downl. on 9/10/2017, standard config.

there is a significant amount of benchmarks which could
not be solved by the portfolio-like algorithm but by fbPDR.

 100

 1000

 100 1000

Co
m

b.
 P

D
R

w
ith

ou
t c

ol
l.

(s
im

pl
e

po
rt

fo
lio

)

fbPDR

runtime
diagonal

Fig. 1: fbPDR vs. no collab.

On the other hand
there are only very few
benchmarks on which the
portfolio-like approach is
the only one to solve it
with an execution time
very close to the timeout
of 3600 s.
When looking into
benchmark 6s407rb296,
e.g., (solved by the
original PDR part), we
observe, that fbPDR
terminates after 455.8s
with 913 learnt clauses and 16 main iterations (time frames).
The portfolio-like approach does not terminate within the
time limit reaching 21 main iterations in its original PDR
part (with 4996 learnt clauses) and only 9 main iterations in
its Reverse PDR part (with 9 learnt clauses). By omitting
enlarging init / unsafe as in [4] we observe that the result
of fbPDR has been obtained by a combination of techniques
from [4] and from this work. Without enlarging init / unsafe
the run times are higher, but the instance is still solved within
the time limit. Then, fbPDR terminates after 2516.7s with
3670 learnt clauses and 21 main iterations. The original PDR
part profits from Reverse PDR by strengthening nearly all of
its frames with small sets of 2 to 15 (in later stages) short
clauses of length 1 to 3.
Another interesting problem instance is beemskbn2f1. The
implementation using only the techniques introduced in this
work requires 1399.8s (with 1347 learnt clauses and 85 main
iterations). The combination with enlarging init / unsafe
pays off here as well, leading to a total execution time of
628.1s (with 2848 learnt clauses and 46 main iterations). At
the first sight, it seems peculiar that the latter requires more
learnt clauses but less main iterations, but this could be due
to the fact that enlarging init / unsafe may increase the size
(in terms of literals) of learnt clauses, since it prevents PDR
from generalizing blocked cubes into reachable states (see [4]
for details). Hence one requires more clauses to prove a time
frame to be safe, but these clauses are of better ‘quality’-
meaning that it is more likely that they are part of a safe
inductive invariant. However, the portfolio-like approach does
not terminate within the time limit (reaching 4397 / 19579
learnt clauses and 48 / 26 main iterations in its original PDR
/ Reverse PDR part).
Even though the effects are not as significant as for the
original PDR part, also the Reverse PDR part profits from
being strengthened by original PDR. When considering the
benchmark instance bobtuttt, the Reverse PDR part of fbPDR
solves it in 212.4s, with 837 learnt clauses and 11 main
iterations. The Reverse PDR part is expanded from frame 3 to
9 and strengthened by 20 to 40 (rather long) clauses of length
60 to 65. The portfolio-like algorithm requires 1061.33s, with
7 main iterations and 4669 learnt clauses.

c) Comparison of different variants of fbPDR: In Fig. 2
we compare different variants of extracting cubes for strength-
ening traces as presented in Sect. III-B: the SAT–based (par-
tial) CNF-to-DNF conversion used in fbPDR, a complete CNF-

460 Design, Automation And Test in Europe (DATE 2019)

 100

 1000

 100 1000

Si
m

ul
at

ed
 h

ea
tin

g

SAT-based approach

runtime
diagonal

(a) vs. ‘simulated heating’

 100

 1000

 100 1000

U
si

ng
 P

la
is

te
d-

G
re

en
ba

um
 T

ra
ns

fo
rm

at
io

n

SAT-based approach

runtime
diagonal

(b) vs. Plaisted-Greenb. Trans.

Fig. 2: Comparison of CNF to DNF conversions.

to-DNF conversion using Plaisted-Greenbaum transformation,
and a (partial) CNF-to-DNF conversion using randomized
literal selection. In Fig. 2a the overall run times using the
SAT-based subcube extraction technique appear to be slightly
better than the ones when using randomized literal selection
(for both variants we used identical constraints on numbers
and sizes of cubes as given in this section). On the other
hand, Fig. 2b clearly shows that the complete CNF-to-DNF
conversion using Plaisted-Greenbaum transformation leads to
much inferior results. The reason lies in more expensive SAT
solver calls after strengthening with large numbers of lemmas
resulting from a complete CNF-to-DNF conversion as well as
in the fact that the auxiliary variables newly introduced by
Plaisted-Greenbaum transformation are only locally known in
single time frames and thus impede cube propagation and CNF
simplifications with syntactic subsumption checks. Altogether
we can conclude that fbPDR performs best using a SAT-based
partial subcube extraction technique while imposing rather
tight bounds on length and amount of blocked cubes which are
shared between PDR and Reverse PDR. In the next experiment
we evaluated a variant of fbPDR which uses trace expansions
and discharging of proof obligation based on information
learned from PDR / Reverse PDR, but omits strengthening
of traces according to Sect. III-A. The results shown in Fig. 3
clearly underline the importance of strengthening PDR (resp.
Reverse PDR) traces with information learnt from Reverse
PDR (resp. PDR).

 100

 1000

 100 1000

N
o

St
re

ng
th

en
in

g

fbPDR

runtime
diagonal

Fig. 3: No Strengthening

d) fbPDR versus other im-
plementations: In Fig. 4 we
compare fbPDR against ABC’s
PDR, Aaron Bradley’s IC3 ref-
erence implementation (ic3ref),
and the implementation Comb.
PDR using combined PDR /
Reverse PDR provided by [4].
Moreover, we add a variant w/o
enl. init/unsafe only implement-
ing the collaboration techniques
discussed in this work, without
enlarging init / unsafe by shared proof-obligations [4].7

Apparently fbPDR greatly outperforms the implementation
from [4] as well as state-of-the-art implementations of pure
PDR. This is already true for a version which does not use
the ideas from [4] (see w/o enl. init/unsafe). The results for
fbPDR show in addition that the methods presented in this

7We provide result tables and binaries under https://www.dropbox.com/s/
ckbzq6kd10aebod/fbPDR.zip?dl=0.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 320 340 360 380 400 420

tim
e

in
 s

ec
on

ds

problem instances

Both coll. strategies (fbPDR)
w/o enl. init/unsafe
Comb. PDR [DATE 2018]
ic3ref
ABC PDR

Fig. 4: Comparison of Implementations

paper and sharing proof-obligations are compatible and lead
to even better results when used in combination.

V. CONCLUSIONS AND FUTURE WORK

We looked into the combination of PDR and Reverse PDR
and presented a sound method that profits from information
represented by lemmas of one PDR direction for the work of
the other direction. In doing so, we efficiently extract under-
approximating subcubes from clause sets of one PDR direction
for strengthening the other one. The method is successfully
combined with exchanging of proof obligations which has
been presented before. Altogether we achieved a very well
competing and strongly interweaved combination of a PDR
and a Reverse PDR engine, sharing all of their gathered
informations. For the future we would like to look into a
more adaptive way to distribute the run time between PDR and
Reverse PDR. Furthermore, we consider it to be a promising
field of research to examine even more advanced cooperation
schemes between original and Reverse PDR.

REFERENCES

[1] A. R. Bradley, “Sat-based model checking without unrolling,” in VMCAI,
2011, pp. 70–87.

[2] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implementation
of property directed reachability,” in FMCAD, 2011, pp. 125–134.

[3] T. Seufert and C. Scholl, “Sequential verification using Reverse PDR,”
in MBMV, 2017, pp. 79–89.

[4] ——, “Combining PDR and reverse PDR for hardware model checking,”
in DATE, 2018, pp. 49–54.

[5] A. Ivrii and A. Gurfinkel, “Pushing to the top,” in FMCAD, 2015, pp.
65–72.

[6] Z. Hassan, A. R. Bradley, and F. Somenzi, “Better generalization in
IC3,” in FMCAD, 2013, pp. 157–164.

[7] G. Cabodi, S. Nocco, and S. Quer, “Mixing forward and backward
traversals in guided-prioritized BDD-based verification,” in CAV, 2002,
pp. 471–484.

[8] C. Stangier and T. Sidle, “Invariant checking combining forward and
backward traversal,” in FMCAD, 2004, pp. 414–429.

[9] Y. Vizel, O. Grumberg, and S. Shoham, “Intertwined forward-backward
reachability analysis using interpolants,” in TACAS, 2013, pp. 308–323.

[10] S. Chaki and D. Karimi, “Model checking with multi-threaded ic3
portfolios,” in VMCAI, 2016, pp. 517–535.

[11] M. Marescotti, A. Gurfinkel, A. E. J. Hyvärinen, and N. Sharygina,
“Designing parallel pdr,” in FMCAD, 2017, pp. 156–163.

[12] E. Goldberg, M. Güdemann, D. Kroening, and R. Mukherjee, “Efficient
verification of multi-property designs (the benefit of wrong assump-
tions),” in DATE, 2018, pp. 43–48.

[13] D. A. Plaisted and S. Greenbaum, “A structure-preserving clause form
translation,” in Journal of Symbolic Computation, 1986, pp. 293–304.

[14] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in TACAS, 2004, pp. 31–45.

[15] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simmulated
annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[16] G. Tseitin, “On the complexity of derivations in propositional calculus,”
in Studies in Constructive Mathematics and Mathematical Logics, 1968.

[17] N. Eén and N. Sörensson, “An extensible SAT-solver,” in SAT, 2003,
pp. 502–518.

Design, Automation And Test in Europe (DATE 2019) 461

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

