
CUBA: Chained Unanimous Byzantine Agreement
for Decentralized Platoon Management

Emanuel Regnath
emanuel.regnath@tum.de

Technical University of Munich, Germany

Sebastian Steinhorst
sebastian.steinhorst@tum.de

Technical University of Munich, Germany

Abstract—Autonomous driving, vehicle platoons and smart traf-
fic management will dramatically improve our transportation sys-
tems. In contrast to centralized approaches, which do not scale
efficiently with the actual traffic load, a decentralized traffic man-
agement based on distributed consensus could provide a robust, fair
and well-scaling solution for infrastructures of variable density.

In this paper, we propose a distributed platoon management
scheme, where platoon operations such as join or merge are de-
cided by consensus over a Vehicular ad hoc network (VANET).

Since conventional consensus protocols are not suitable for
Cyber-Physical Systems (CPS) such as platoons, we introduce
CUBA, a new validated and verifiable consensus protocol especially
tailored to platoons, which considers their special communication
topology.

We demonstrate that CUBA only introduces a small communica-
tion overhead compared to the centralized, Leader-based approach
and significantly outperforms related distributed approaches.

Index Terms—V2V, VANET, Internet of Vehicles, Consensus

I. Introduction
Platoons are energy efficient, communication efficient and

increase the road throughput by allowing the vehicles to drive
with a reduced inter-vehicle distance [1].

Most conventional platoons declare a leader that is respon-
sible for managing the platoon behavior and communication.
However, participating vehicles need to trust the leader, which
offers many attack vectors on the security, safety, and perfor-
mance of the platoon itself as well as third parties that might
query information about the platoon from the leader.

We therefore aim for a consensus-based platoon manage-
ment where decisions must be approved by all vehicles as
shown in Figure 1. This distributed management would in-
crease the robustness of the platoon by reducing the chance
that failures are not detected. Since all vehicles are involved,
each vehicle will observe and approve the messages of other
vehicles. While this increased communication overhead is of-
ten seen as a drawback compared to a centralizedmanagement,
we argue that the number of vehicles in one platoon is small
enough to keep the overhead low.

The consensus can also be used to create a tamper proof
specification of the platoon that can be communicated to third
parties, such as an Intersection Manager (IM). The IM would
verify that the platoon specification is correct by consensus
and could then safely assign a slot for the entire platoon at
once.This would not only improve the intersection throughput
but also reduce the communication overhead and scheduling
complexity for the IM.

With the support of the Technische Universität München – Institute for
Advanced Study, funded by the German Excellence Initiative and the European
Union Seventh Framework Programme under grant agreement n◦ 291763.

New Platoon
Speci�ication

merge?

Platoon

p 1p 2p 3p 4v 5

Individual

join request vote vote vote

decide
ackackackjoin response

speci�ication request

Consensus

Figure 1: Our idea of a consensus-based join maneuver. An individual
vehicle requests to join an existing platoon. The join request is for-
warded to each platoon vehicle, which will vote on the request. If all
vehicles agree, the new vehicle is accepted and the new specification
is sent to all vehicles.

However, the linear spatial structure of a platoon and its
dynamic changes via merge and split operations introduce
challenging constraints to the topology of the traditional con-
sensus problem. In this paper we analyze the possible topol-
ogy in a static and dynamic way to create a formalization
about the consensus guaranteeswithin a platoon. Furthermore,
vehicles in a platoon can not only communicate their own
states (conventional consensus) but also observe and measure
certain states of neighboring vehicles, such as velocity, and
could contribute these information to a consensus protocol.
Even if consensus is reached about a certain operation, any

vehicle within the platoon can prevent the actual execution
of that operation simply by its physical presence. For exam-
ple, if the platoon decides to accelerate, any single vehicle
not performing the acceleration blocks the entire operation.
Therefore, we aim to detect faults rather than be able to tolerate
them. Furthermore, misbehaving vehicles should be identified
in order to penalize them in a reputation system.
Overall, platoons are highly relevant CPS but the conven-

tional leader-based management poses severe risks on the
security and safety of all platoon vehicles because it inherits
a single point of failure by design. We therefore propose a
distributed, consensus-based management of the platoon, ana-
lyze the challenges that arise for this specific application, and
provide a first solution to demonstrate the feasibility.

A. Scope and Contributions
This paper addresses consensus mechanisms using vehicle-

to-vehicle (V2V) communication over a vehicular ad-hoc net-
work (VANET) for platoon management decisions. We do nei-

https://orcid.org/0000-0002-0006-7761
mailto:emanuel.regnath@tum.de
https://orcid.org/0000-0002-4096-2584
mailto:sebastian.steinhorst@tum.de

v2 v1v3v4v5PS

v2 v1v3v4v52P2S

v2 v1v3v4v5PSLA

Figure 2: Considered communication topologies of neighboring ve-
hicles. An arrow indicates that a vehicle can directly send messages
using a wireless V2V VANET.

ther address the motion control of vehicles within the platoon
nor the performance of the VANET itself. We consider three
different V2V communication topologies and assume a syn-
chronized message delivery with timeouts.

We propose a distributed platoon management scheme that
distributes the validation of platoon properties across all pla-
toon members and thus removes the leader as a single-point
of failure. In particular, we

• analyze under which conditions the consensus problem
can be solved for Cyber-Physical Systems (CPS), such as
platoons (Section III).

• propose CUBA, a consensus scheme specifically tailored
to platoons that communicates over VANET. (Section IV).

• discuss related approaches (Section V) and compare our
CUBA protocol illustrating its feasibility (Section VI).

II. Scenario, Model, and Assumptions

For describing and evaluating the platooning scenario, we
consider a set of vehicles V =

{
v1, v2, ...

}
on a highway and

some of them form a platoon P =
{
p1, p2, ...

}
⊆ V . Vehicles

vx can join a platoon P , two platoons P1 and P2 can merge
to P3 = P1 ∪ P2 and a vehicle vx can leave a platoon P ′ =
P\{vx}. As pointed out by [2], we assume amaximum platoon
size of |P| = N = 20. Each vehicle has specific properties,
such as color, length, or maximum velocity.

1) Interaction Topologies Due to the linear structure of a
platoon, the communication and sensing capabilities of each
vehicle can be described in general by the range in forward
and backward direction within the platoon.

Following the notation of [3], we consider three communi-
cation topologies (see Figure 2) that are suitable for consensus
based platoon management:

• Predecessor – Successor (PS)
• Two-Predecessor – Two-Successor (2P2S)
• Predecessor – Successor – Leader to All (PSLA)
Despite communication, we also need to consider the sens-

ing topology of each vehicle. Sensing is important to verify
the sent claims of vehicles, such as its physical presence and
its identity. Since there are numerous vehicle properties that
could be sensed in different ways, it is very difficult to model
all sensing capabilities in a unified topology graph. We leave
the general specification of heterogeneous sensing topologies
as an open problem for future work. For simplicity, we only
consider sensing the license plate of a vehicle and that each
vehicle is able to read the license plate of its predecessor
and successor in order to verify the authenticity of a vehicle.

This sensing topology would correspond to the Predecessor-
Successor (PS) communication topology.
We furthermore assume that it is possible to verify a vehicle

specification according to a license plate using a trusted third-
party certification service or distributed certification (e.g. us-
ing Blockchain) [4].

III. Consensus within Platoons
In this section we will analyze the differences between

the conventional consensus problem of state replication in
databases and the consensus problem to achieve self organi-
zation in platoons as a Cyber-Physical System (CPS). We will
especially address the problems of heterogeneous voting and
zero fault tolerance.

A. Conventional Consensus

In a consensus protocol, each agent needs to decide which
state transitions are applied and in which order, which is
equivalent to providing a reliable totally ordered broadcast.
The consensus problem is considered solved if three properties
hold:

• Agreement: All correct vehicles decide the same value.
• Integrity: All correct vehicles decide only once.
• Termination: All correct vehicles decide before timeout.

Agreement and Integrity are safety properties, Termination is a
liveness property. A vehicle is correct if it follows the consensus
protocol.
For useful applications, the decision should also be correct

with respect to some policy or desired behavior. Derived from
the notion of [5], we require two additional properties:

• Validity: The decision of a correct Acceptor was validated
by a correct Validator. The terms Acceptor and Validator
will be defined in Subsection III-C.

• Provability: The validity of a decision can be verified by
any vehicle.

B. Assumptions

Solving consensus in self-organizing systems is difficult,
especially if vehicles could stop communicating or could even
send malicious messages. In order to address these challenges,
many systems (including ours) make the following assump-
tions:

• Partial synchronous: Message delays are in general un-
known and unbounded but every message will eventually
be delivered before a fixed deadline.

• Known participants: Each participant knows every other
participant that is allowed to vote.

• Signatures: Each participant can verify the sender of a
message using signatures. As shown by [6] signatures
prevent clients from forging messages and can be used
to identify malicious nodes.

C. Heterogeneous Agreement

In contrast to conventional consensus systems where each
node can validate and vote on all possible requests, not all
vehicles within a platoonmight be able to validate the same set
of requested transitions. For example, a vehicle approaching

the tail of a platoon can probably only be sensed by the last
vehicle of the platoon.

We therefore propose a more detailed role assignment. In
our consensus system there are seven distinct roles:

• Requester: vehicle that requests an operation
• Receiver: processes requests from a Requester
• Responder: responds to Requester when consensus is
reached

• Proposer: proposes a new system state
• Validator: can validate a proposed state
• Acceptor: can vote for a proposed state
• Learner: will receive accepted state

D. Zero Fault Tolerance

Conventional consensus algorithms, which are mostly ap-
plied to databases, can tolerate a certain amount of f failures as
long as a sufficient majority (2f + 1) operates correctly. Since,
the correct state of such a system is determined by majority,
each agent can determine the current state by receiving a
majority of correct votes.The remaining votes of unresponsive,
outdated, or malicious agents can simply be ignored. As a
result, the final decisions of faulty agents have no influence
on the decisions of correct agents, allowing correct agents to
maintain a consistent system state.

However, for CPSs these assumptions do not apply and solv-
ing consensus is fundamentally different from conventional
consensus. Platoons, for example, are safety critical CPSs and
the safety of a single passenger weights more than the deci-
sion of any majority. As a result, we cannot tolerate a single
negative vote or failure.

In our consensus scheme, we therefore require all partici-
pants to agree on the same state transition. Note that the goal
of our scheme is not to tolerate failures but to reliably detect if
an unanimous decision was reached by consensus, or in case
consensus could not be reached, which vehicles are responsible
for the failing decision.

These responsible vehicles could have failed to transmit
their vote, voted against the decision, or tried to send a ma-
licious message.

E. Promise vs. Reality

Considering a platoon in which vehicles want to perform
a merge operation, then reaching consensus is only a virtual
agreement of the vehicles to perform certain actions. Besides
changing some virtual data structures, these actions could also
involve a physical process that can be blocked, slowed down,
or changed by external constraints.

Many physical processes within the platoon require each
vehicle to participate and work correctly. Even in the case
consensus could be reached, it might not be possible to execute
the overall operation safely. In the moment of execution, a ve-
hicle that promised to perform a certain action might be forced
to postpone or stop the action, or even perform a completely
different action to ensure the safety of its passengers. Despite
external influences that are beyond the consensus decision,
any vehicle could also be subject to a critical failure or even
maliciously block operations within the platoon by its mere
physical presence.

p1
p2
p3
p4

v5

req ack 3 replych 1 ch 2 ch 3 ack 1 ack 2

Figure 3: Join request, normal operation, 2P2S: Vehicle v5 sends the
request to the platoon vehicles p4 and p3. p4 will start a consensus
round andwhen p1 receives a valid chain of accepting votes, it decides
for the new platoon and sends an ACK back to v5.

Therefore, we try to reliably detect any failures and then
separate sub-platoons from the failed vehicle.
Since failed or malicious vehicles pose a severe risk to

other vehicles, another important goal is to distinguish these
vehicles from vehicles that were forced to deviate from the
consensus but otherwise operate correctly and honestly.
The matter gets more complicated as we also need to con-

sider that malicious vehicles may send false messages but
not all vehicles might be able to sense the true nature of the
deviation.
In our platoon scenario we therefore distinguish two types

of consensus rounds:
1) consensus about a planned action, which requires all

vehicles to agree.
2) consensus whether and which vehicle failed, which re-

quires f + 1 vehicles to agree.
We assume that only f failures can occur at maximum and

that all other vehicles participate honestly.

IV. Our CUBA protocol
We now introduce our Chained Unanimous Byzantine

Agreement (CUBA) protocol, which is suitable for platoons and
other distributed CPS that want to reliably detect failures be-
cause they cannot afford to tolerate (ignore) any single failure.
CUBAworks by passingmessages hop-by-hop instead of using
broadcasts. Each hop confirms the messages sent by previous
hops.This concept is similar to BChain [7], a general consensus
protocol, which, however, is not feasible for platoons (For
discussion, see the related work Section V).
In contrast to BChain, our protocol is designed to terminate

successfully only if all involved acceptors agree on the same
value. In case no consensus can be reached, our protocol will
detect which acceptor was responsible for the failing consen-
sus, such that the correct nodes can take action.The maximum
number of failures f that can reliably be detected depends on
the underlying network topology.

A. Role Assignment
We apply the following roles:
• Any vehicle vx (including platoon vehicles) is a Requester.
• Any platoon vehicle px is Acceptor, and Learner.
• The platoon vehicles at the top p1 and tail pN are Re-
ceivers, Responders, and Proposers.

• The direct neighbors of a vehicle vx are Validators for that
vehicle as they can physically sense vx and read its license
plate.

B. Normal Operation

In normal operation, all vehicles operate correctly and need
to agree on the same proposal. The proposal could be any
planned platoon operation. We use three message types: ⟨Ch⟩,
⟨Ack⟩, and ⟨Nak⟩.

Each message is structured as
⟨
T, s, (h), lo, (ln), (m), σ

⟩
where fields in parentheses are optional. T is the type of the
message (chain, ACK, NAK), s is an integer indicating the
sequence number of the current consensus round, h is the
cryptographic hash of the previous message, lo is the own
license plate number of the sender, ln is the license plate
number of the next (succeeding) vehicle if present, m is the
proposed message or state to vote upon, and σ the signature
of the sending vehicle.

The protocol execution is illustrated in Figure 3.
1) A Proposer proposes a new state or planned operation

and forwards the proposal in form of a ⟨Ch⟩ towards the
other end of the platoon.

2) Each intermediate vehicle validates the proposal, and
votes for it by appending its own ⟨Ch⟩ message to the
proposed ⟨Ch⟩. If an intermediate vehicle receives several
chained ⟨Ch⟩ messages, it will first validate each vote by
verifying four predicates:
a) the sequence number in each message matches the

current sequence number,
b) h of the current message matches the hash of the

previous ⟨Ch⟩,
c) lo of the message matches ln of the previous message,
d) the signature σ is valid using the public key correspond-

ing to lo.
3) Once the last Acceptor (other Proposer) received the pro-

posal and all votes, it decides. If all votes agree on the
proposal, it decides for the proposal and sends an ⟨Ack⟩
including all signatures back to the other Acceptors (now
in the role of Learners). If there is one vote against the
proposal, it decides against the proposal and sends an
⟨Nak⟩ together with all signatures.

4) Each intermediate vehicle (now Learner) receives and
validates the signatures of the ⟨Ack⟩ or ⟨Nak⟩ and decides
accordingly until the last Learner (=Proposer) is reached.

To ensure that all vehicles will receive the ⟨Ack⟩ of a suc-
cessful consensus round we make the critical assumptions that
each vehicle can send messages to the next f + 1 vehicles in
one direction. Otherwisewe could not guarantee that decisions
for a proposal are propagated to all vehicles. This assumption
limits the possible topologies to 2P2S.

C. Example: Platoon Formation

Platoon formation can happen between two single vehicles,
between a single vehicle and an existing platoon or between
two existing platoons. The Proposers of a platoon will also
react to join requests from vehicles outside of the platoon. In
the following, we consider a single vehicle v5 that wants to
join an existing platoon P =

{
p1, p2, p3, p4

}
as illustrated in

Figure 1. The single vehicle v5 approaches the tail vehicle p4 of
the platoon until it can read its license plate and then runs the
following protocol:

p1
p2
p3
p4

v5

req – replych 1 – NAK nak 3nak 2a)

Figure 4: Join request, p3 failure/timeout: When p4 starts the consen-
sus round, p2 receives the message and starts the timeout timer. Since
p3 is unresponsive, p2 will wait until the timeout and then forward a
⟨Nak⟩.

1) The Requester v5 requests and receives the current pla-
toon specification ⟨Spec⟩ from p4.

2) The Requester v5 verifies ⟨Spec⟩ and decides whether it
wants to join.

3) The Requester v5 sends a join request to the tail p4. The
request contains information about the vehicle v5.

4) The Proposer p4 starts a new consensus round by forward-
ing a ⟨Ch⟩ message including the join request.

5) When the consensus round was successful, the Proposer
p4 replies with the new platoon specification ⟨Spec⟩ in-
cluding all ⟨Ch⟩.

6) TheRequester v5 verifies ⟨Spec⟩ and if valid, accepts it and
becomes p5. The next consensus decision now requires
votes from 5 platoon vehicles.
a) Initial Formation The initial platoon formation be-

tween two individual vehicles v1 and v2 works similar to the
described join maneuver. The difference is that the Requester
v2 will receive a ⟨Spec⟩ that includes only v1. If v2 sends
the join request, v1 can immediately decide as it represents a
platoon with only one vehicle. Once v1 appends a ⟨Ch⟩ with
its signature to the request and sends the chain back to v1, a
new platoon P =

{
p1, p2

}
is formed.

D. Failed Consensus
Each vehicle sets a timer with the time period that cor-

responds to the expected consensus execution time for the
remaining set of vehicles. This time is calculated as

tTO = (N − i) · τ (1)
where (N − i) represents the number of remaining vehicles
that need to vote and τ is a fixed and pre-defined timeout value
for every vehicle. In case, the successor vehicle can provide a
consensus proof (valid ⟨Ack⟩) before the timer runs out, the
vehicle decides for the consensus value and forwards ⟨Ack⟩.
In all other cases, the vehicle decides that the consensus failed
and forwards a ⟨Nak⟩ in which case itmay also include the ID
of another vehicle it suspects to deviate from the protocol or
to have timed out.
An example for a timeout of p4 is shown in Figure 4. p2

will wait until p3 times out and then forwards a ⟨Nak⟩. When
the ⟨Nak⟩ returns from p1, p2 will forward it to p3, giving it
a second chance to respond. Forwarding the messages to all
vehicles despite an early ⟨Nak⟩ is important for determining
the failed vehicle. p4 will wait until its timeout timer runs out
and decides that the consensus failed.
Under the assumption that it is not possible to forge mes-

sages, consensus is only reached if and only if all vehicles

spt 1 spt 2 – ch 1
p1
p2
p3
p4

– ch 2 ack 1 ack 2a)

spt 1 spt 2 – NAK
p1
p2
p3
p4

� 1 nak 2 nak 3 nak 4b)

Figure 5: Suspect round to determinewhich vehicle failed proposed by
p1. a) p3 was suspected by p4 and really timed out. b) p3 is malicious
and suspected p4, but p4 is still running.

respond correctly and in time < τ . Any non-correct response
will result in a non-valid ⟨Ack⟩ or a timeout. Therefore each
vehicle is able to reliably detect a failed consensus.

E. Detection of Failing Vehicle
However, detection of the vehicle that is responsible for the

failure is more complicated. For example, a malicious vehicle
could falsely accuse a neighboring vehicle to have timed out.

After a failed consensus round, the last acceptor checks if the
⟨Nak⟩ includes a suspected vehicle and – when true – starts a
suspect round.This special consensus round requires only f+1
chain votes from neighbors in communication range of the
suspected vehicle to be successful because with a maximum of
f faults at least one vote will be correct. Furthermore, before
chaining votes, ⟨Spt⟩ messages are forwarded to all vehicles.
This serves two purposes: 1. each vehicle knows which vehicle
is suspected, 2. each neighbor of the suspected vehicle has the
chance to observe a timeout or conflicting messages of the
suspected vehicle before deciding against it.

An example of a suspect round for a timeout of p3 is il-
lustrated in Figure 5a which would be triggered by p1 after
the timeout round in Figure 4. In the normal round, p2 would
suspect p3 for the timeout and after the consensus failed, p1
would start a suspect round suspecting p3 by forwarding a
⟨Spt⟩ message. p4 would witness another timeout by p3 and
voting with a ⟨Ch⟩ against it. Once the ⟨Ch⟩ reaches p2 and p3
does not respond in time, p2 will also vote against p3, reaching
f+1 votes.Thus, p1 will decide that p3 timed out and forwards
the decision with the signatures of the f +1 votes in an ⟨Ack⟩
message. Once the failed vehicle is identified, the platoon is
split to ensure the safety of the remaining vehicles.

For the network topology, we need f + 1 communication
hops in both directions to reliable identify f failing vehicles,
which means a 2P2S topology for f = 1.

V. Related Work
A. BFT-ARM Platooning

The authors of [8] designed BFT-ARM, a consensus protocol
for continuous sensor values in an asynchronous inter-vehicle
network.The protocol uses median validity, where the decided
value is only required to be close to the median of all correctly
proposed values and claims to tolerate up to f < N

3 Byzantine

Protocol Messages per Round
PBFT 2N2 − 2N
BFT-ARM 3N2 −N − 2
BChain 2Nf +N − 4f2 − 1
CUBA 2Nf + 2N − f2 − 3f − 2

Table I: Number of messages per consensus round depending on the
number of agentsN and the maximum number of possible failures f .

nodes. This is achieved by calculating the median only over
the sorted (2f +1) middle values in the full range of all (3f +
1) proposed values, cutting off f/2 values at each end of the
range.
The protocol is focused on tolerating some faulty measure-

ments in order to agree on a common value and is not de-
signed for safety critical decisions that require the agreement
of all involved vehicles. Furthermore, the protocol relies on a
trusted subsystem which provides unforgeable counter values.
Overall, the application focus of BFT-ARM is different from
our protocol and thus not suitable for platoon management.
B. BChain
BChain [7], is a general consensus protocol that does not

work for platoons in its original form but shares some concepts
with our CUBA. Nodes are ordered within a chain, which is
divided into two parts: The first 2f +1 nodes within the chain
are acceptors and the last f nodes are learners. A request
is forwarded hop-by-hop from the head (1st node) towards
the acceptor tail (node 2f + 1) using ⟨Ch⟩ messages. Once
the acceptor tail receives and accepts a ⟨Ch⟩, it will send 3
messages: 1) a reply to the client, 2) an ⟨Ack⟩ message that
traverses backwards to the head, and 3) its ⟨Ch⟩ to the learners.
In order to handle failures, each node starts a timer after

sending its ⟨Ch⟩ and in case a timer expires before receiving
an ⟨Ack⟩, the node will issue a ⟨Spt⟩ to the head. The head is
then responsible for re-ordering the chain, such that malicious
or crashed nodes are moved towards the end.
While such a reordering is possible in a consensus overlay

network where the underlying network topology allows sev-
eral routes between nodes, it is not feasible in platoons where
the routes and connections depend on the spacial location of
nodes. It would require changing the position of vehicles by
overtaking maneuvers. Furthermore, requests must be always
sent to the head, which increases the risk of blocking or
slowing down the protocol execution if the head is faulty. Com-
pared to our protocol, BChain can not guarantee to terminate
in the first round but would require 3q rounds in the worst
case, where q is the number of faulty nodes [7].
C. Consensus from Control Theory
In control theory, algorithms such as the Average Consensus

are used to solve a distributed control problem. While this
family of algorithms is well-studied and suitable for control-
ling, e.g. the distance between platoon vehicles [9], it does not
consider faulty or malicious agents but rather assumes that
every agent is running and responding within a certain time
period.

VI. Analysis
In this section we discuss the advantages and drawbacks of

CUBA and provide an analytical evaluation of its performance.

BFT-ARM CUBA BChain Leader

0 10 20 30
0

50

100

150

a) # Vehicles

M
es
sa
ge
sp

er
Ro

un
d

0 10 20 30
0

50

100

150

b) # Vehicles

Figure 6: Required number of messages per round for different pla-
toon sizes. a) assuming maximum possible failures f = 1 b) assuming
maximum possible failures f = 2.

A. Consensus Safety
CUBA offers a safe consensus based platoon management.

In contrast to majority-based consensus protocols, CUBA re-
quires all vehicles to agree on the same decision and this
decision is verified by all vehicles. Therefore, failures can be
reliably detected, which prevents any unintended interactions
between the vehicles. The sequential execution of all messages
in an ordered chain also helps to avoid collision and retransmis-
sion of messages because only one vehicle is sending. Further-
more, the fixed timeouts guarantee a deterministic consensus
execution within a bounded period of time, where BChain
would perform expensive re-chaining in the case of failure.

In contrast to BFT-ARM, our protocol does not require view
changes, where the Proposer is changed when it is suspected,
as any identified failure will lead to a splitting of the platoon.
Therefore, we achieve a simpler protocol that only utilizes two
types of consensus rounds. Due to the use of signatures, it is
not possible to produce wrong decisions as long as one vehicle
is correct. Reliable detection of failures is possible as long as the
vehicles can reach f+1 neighboring vehicles in each direction.

B. Verifiable Platoon Specification
Using signatures during consensus also enables us to gen-

erate a platoon specification that was signed by all involved
vehicles. Vehicles outside of the platoon can then query the
specification and verify the signatures to ensure that the spec-
ification is correct and corresponds to the agreement.

C. Communication Overhead
While conventional consensus protocols often measure the

throughput of processed requests for statemachine replication,
we are interested in the number of messages that need to be
sent to run one consensus round because the bandwidth is lim-
ited for VANETs. We therefore derived the equations in Table I
for the number of messages from the protocol description in
the corresponding papers. Note that the number of messages
does not change with the number of actual failures q but only
with the maximum number f . The reliability of a consensus-
based approach introduces some overhead to the leader-based
approach, for which we assume 2N messages (sendmessage to
each vehicle and receive ACK). Figure 6 illustrates that all de-
centralized approaches require more messages than the leader-
based communication but in contrast to BFT-ARM, CUBA also
scales linear to the number of platoon vehicles. Furthermore,
the messages are more equally distributed among the vehicles
in CUBA compared to the leader-based approach, where the

BFT-ARM CUBA Leader

0 10 20 30
0

1,000

2,000

3,000

a) # Vehicles

Ti
m
e
[m

s]

0 10 20 30
0

1,000

2,000

3,000

b) # Vehicles

Figure 7: Consensus time per round. a) in normal operation without
failures (f = 1, q = 0). b) with one failure (f = q = 1).

leader needs to process all messages. Note that BChain is
not compared but only shown for completeness because this
protocol cannot be applied to platoons.
Another important metric is the overall time required to

reach consensus, which is illustrated in Figure 7. Here, we
assume 40ms latency between two vehicles for transmission
and processing and 100ms as the timeout timer value. For
large platoons this results in consensus times around 2 s but
CUBA always terminates faster than BFT-ARM due to the
reduced rounds required to reach consensus.

VII. Conclusion
We have illustrated the benefits of distributed, consensus

based platoon management over conventional centralized and
leader-based platoons and presented CUBA, a new consensus
protocol for platoon management, which addresses the chal-
lenges of consensus in Cyber-Physical Systems. CUBA focuses
on failure detection and failing vehicle identification and guar-
antees to terminate in a fixed time window. For typical platoon
sizes up to 20 vehicles, the communication overhead of CUBA
is low compared to leader-based systems and significantly less
than related consensus approaches for platoons.

References
[1] D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-

based vehicular cyber-physical systems,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 263–284, 2016.

[2] M. Amoozadeh, H. Deng, C.-N. Chuah, H. M. Zhang, and D. Ghosal,
“Platoon management with cooperative adaptive cruise control enabled
by VANET,” Vehicular Communications, vol. 2, no. 2, pp. 110–123, 4 2015.

[3] Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability of
homogeneous vehicular platoon: Study on the influence of information
flow topologies,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 1, pp. 14–26, 2016.

[4] S. Rowan, M. Clear, M. Gerla, M. Huggard, and C. M. Goldrick, “Securing
vehicle to vehicle communications using blockchain through visible light
and acoustic side-channels,” arXiv, vol. abs/1704.02553, 2017.

[5] J. Sousa and A. Bessani, “From Byzantine Consensus to BFT StateMachine
Replication: A Latency-Optimal Transformation,” in 2012 Ninth European
Dependable Computing Conference, May 2012, pp. 37–48.

[6] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making
byzantine fault tolerant systems tolerate byzantine faults,” in Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implemen-
tation. Berkeley, CA, USA: USENIX Association, 2009, pp. 153–168.

[7] S. Duan, H. Meling, S. Peisert, and H. Zhang, “BChain: Byzantine Replica-
tion with HighThroughput and Embedded Reconfiguration,” in Principles
of Distributed Systems, 2014, pp. 91–106.

[8] M. Wegner, W. Xu, R. Kapitza, and L. Wolf, “Byzantine Consensus in
Vehicle Platooning via Inter-Vehicle Communication,” Proceedings of the
4th GI/ITG KuVS Fachgespräch Inter-Vehicle Communication (FG-IVC
2016), Humboldt University, Berlin, Germany, Tech. Rep., 3 2016.

[9] L. Y.Wang, A. Syed, G. Yin, A. Pandya, andH. Zhang, “Coordinated vehicle
platoon control:Weighted and constrained consensus and communication
network topologies,” in 2012 IEEE 51st IEEE Conference on Decision and
Control (CDC), Dec 2012, pp. 4057–4062.

https://doi.org/10.1016/j.vehcom.2015.03.004
https://doi.org/10.1016/j.vehcom.2015.03.004
http://arxiv.org/abs/1704.02553
http://arxiv.org/abs/1704.02553
http://arxiv.org/abs/1704.02553
https://doi.org/10.1109/EDCC.2012.32
https://doi.org/10.1109/EDCC.2012.32
http://dl.acm.org/citation.cfm?id=1558977.1558988
http://dl.acm.org/citation.cfm?id=1558977.1558988
https://doi.org/10.1007/978-3-319-14472-6_7
https://doi.org/10.1007/978-3-319-14472-6_7
https://www.ibr.cs.tu-bs.de/papers/wegner-kuvs2016.pdf
https://www.ibr.cs.tu-bs.de/papers/wegner-kuvs2016.pdf
https://doi.org/10.1109/CDC.2012.6427034
https://doi.org/10.1109/CDC.2012.6427034
https://doi.org/10.1109/CDC.2012.6427034

