
Maximum-Contention Control Unit (MCCU): Resource
Access Count and Contention Time Enforcement

Jordi Cardona∗†, Carles Hernandez∗, Jaume Abella∗ and Francisco J. Cazorla∗‡
∗ Barcelona Supercomputing Center † Universitat Politècnica de Catalunya ‡ IIIA-CSIC

Abstract—In real-time systems, the techniques to derive bounds
to the contention tasks can suffer in multicore build on resource
quota monitoring and enforcement. Existing techniques track and
bound the number of requests to hardware shared resources that
each core (task) is allowed to perform. In this paper we show that
current software-only solutions work well when there is a single
resource and type of request to track and bound, but do not scale
to the more general case of several shared resources that accept
different request types, each with a different associated latency.
To handle this (more general) case, we propose low-overhead
hardware support called Maximum-Contention Control Unit
(MCCU). The MCCU performs fine-grain tracking of different
types of requests, preventing a core to cause more interference
on its contenders than budgeted. In this process, the MCCU also
helps verifying that individual requests duration does not exceed
their theoretical bounds, hence dealing with scenarios in which
requests can have an arbitrarily large duration.

I. INTRODUCTION

Safety standards for critical real-time embedded systems
(CRTES) in domains such as avionics and automotive require
rigorous validation and verification (V&V). Timing V&V, the
focus of this paper, provides evidence for the correct temporal
schedulability of the system. This builds on deriving tight and
reliable Worst-Case Execution Time (WCET) estimates. The
quality of the WCET estimates often depends on engineer’s
previous experience. For instance, common industrial practice
for timing analysis of complex platforms consists in running
several tests measuring the highest execution or high water-
mark and adding an experience-based safety margin to it to
cover the impact on ‘unobserved’ effects.

In CRTES, the advent of autonomous vehicles has increased
the computing performance demands, that are satisfied by new
high-performance hardware features [8], [22]. The other side
of the coin is that high-performance resources like shared
caches, interconnection networks and memory hamper timing
V&V and in particular deriving tight and trustworthy timing
WCET estimates [7], [13]. Without proper management of
hardware shared resources, WCET on multicores can become
much worse than their average behavior, defying the benefits
of multicores in CRTES [23].

At hardware level, several designs [9], [10], [20], [23], [25]
have been proposed to better factor in multicore contention
in task’s WCET estimates. However, to our knowledge, for
cost reasons those solutions have not been fully adopted by
industry yet. In particular, industry is reluctant to re-design
and re-verify already-verified functional unit blocks (FUBs).

Software solutions for quota monitoring and enforcement
(SQME) have been proposed to handle multicore contention
in more generic processors with limited hardware support for
time predictability [17], [24]. In general, SQME approaches
build on limiting per task (core) maximum shared resources
utilization. To that end, the operating system monitors task’s
activities using the available hardware performance monitoring

counters (PMCs) and suspends tasks execution when their
assigned budget is exhausted.

Contribution. We make the following two contributions to
the field of multicore contention bounding in CRTES.

First, we identify key limitations of SQME. On the one
hand, SQME work well only when are applied to one sin-
gle shared resource in which all request types are assumed
to have the same (worst) access latency. However, for the
general case where several hardware shared resources accept
different request types with different latencies, SQME gen-
erate unnecessary interrupts to determine whether tasks have
consumed their budget, not only increasing task WCET but
also hampering deriving bounds to WCET. On the other hand,
SQME build on maximum per-request latency estimates that
are derived empirically in real processors [16], but the lack of
means to verify that those estimates actual bound maximum
latencies which brings some uncertainty on the estimates
built on top of those bounds. Moreover, in some AMBA bus
implementations, a single request can potentially hold the bus
for an unbounded duration. That means that setting quotas on
request access counts, as done by SQME, does not suffice to
bound contention time.

And second, to overcome the limitations of SQME, we
propose to include in multicore processors a Maximum-
Contention Control Unit (MCCU). The MCCU is a software-
controllable low-overhead hardware unit able to � accurately
handle several resources dealing with several request types.
Unlike SQME that may need to trigger several interrupts
or perform frequent checks to handle utilization quotas, the
MCCU only requires to trigger one interrupt when the quota
allocated to a task is actually exhausted, allowing to signif-
icantly reduce the overheads of the enforcement mechanism.
The MCCU, by monitoring requests duration, also � allows
monitoring seamlessly whether theoretical latency bounds
derived empirically are effectively respected at all times and
preserves quota enforcement even in the presence of requests
with unbounded duration. The MCCU also � handles those
(AMBA-compliant) scenarios in which a core/master can hold
the bus for long time, preventing quota violations.

We show the effectiveness of the MCCU tailoring it for
a 4-core multicore setup resembling the Cobham Gaisler
NGMP processor for the space domain [4]. Our results for
MediaBench show that while SQME can easily generate in the
order of dozens of unnecessary interrupts to control quota on
access counts, our proposed MCCU generates only interrupts
when the task consumes all its contention quota removing any
overheads and simplifying timing V&V.

In terms of implementation, the MCCU is a FUB connected
as a slave to the AMBA interconnection network, thus it does
not require any modification on existing FUBs. In particular,
the MCCU interface only needs some addressable space for
being configured, snooping AMBA signals and raising specific

704978-3-9819263-2-3/DATE19/ c©2019 EDAA

interrupts whenever appropriate. This is arguably simpler than
introducing small modifications in existing FUBs such as
caches and memory controllers, which would require expen-
sive and time-consuming re-verification costs.

II. BACKGROUND AND RELATED WORKS ON

CONTENTION CONTROL AND MODELLING FOR CRTES

Hardware techniques: Several hardware designs providing
predictability-aware resource sharing exist [9], [10], [20], [23],
[25]. These designs combine the use of time-predictable arbi-
tration schemes and provisioning each core/task with separate
queues in each hardware shared resource to avoid a given core
to clog that resource. Unfortunately, those changes require the
re-verification of affected FUBs such as cache memories, buses
and memory controllers among others that is the main reason
for chip vendors not having adopt these solutions yet.

Software techniques: Contention models build on a timing
estimate of the isolation, i.e. without contention, execution
time of the task τa, Cisol

a , to derive a multicore estimate of
τa’s execution time (Cmuc

a). To that end, the models bound the
contention τa’s requests can suffer in the access to hardware
shared resources, Δcont

a so that Cmuc
a = Cisol

i +Δcont
a .

Δcont
a is computed combining (i) the longest contention

each of its request can suffer, Lmax and (ii) the number of
requests, na, performed by τa and its contenders running
in the other cores, referred to as c(τa). Let cr(x → a)
be the number of τa requests that contend in the access to
a share resource with the requests of another concurrently
running task tx. It is defined as crb→a = min(na, nb).
Overall, the longest contention τa can suffer is defined as:
Δcont

a =
∑

τx∈c(τa)
crx→a × Lmax.

State of the art works on on this area can be classified into
several groups. First those that derive bounds to the number
of requests performed by tasks to shared resources [5], [17]
(n) which is affected, among others, by tasks’ input data and
the execution paths they traverse.

Another strand of works derive bounds to the maximum
contention delay each request of a task can suffer [7], [11],
[16] (Lmax). These works build on time-predictable arbitration
policies (e.g. round-robin) used in many shared hardware
resources in high-performance embedded processors. For in-
stance, for round-robin the longest contention delay a request
can suffer is (Nc − 1) × L when Nc is the number of
requestors and L the duration of a request [18]. These works
also build on documentation from processor manuals, when
available, and carry strong validation through an extensive set
of measurements to reduce the uncertainty on the validity of
the bound [7], [16], which however cannot be removed.

And third, SQME works build on those bounds to derive
contention models to bound Δcont

a in on-chip shared resources
(e.g. bus and caches) [6], [11], [17] and enforce bounds (quo-
tas) to task’ access counts hence limiting Δcont

a [5], [17], [19].
SQME techniques reduce the impact of contention on WCET
estimates of the monitored tasks activity by stalling contender
tasks if they go beyond their quota, preventing Δcont

a of the
task under analysis from being violated [1], [15], [17], [24].
SQME techniques also allow defining contention scenarios
and derive partially time-composable WCET estimates valid
under those scenarios. The basic idea is to upperbound the
number of accesses of each type that potential contenders
will put on the different shared resources and derive WCET

TABLE I: Event and latency values

Lbus,lh
max Lbus,sh

max Lbus,lm
max Lbus,sm

max

5 10 50 100

TABLE II: Example of the evolution of the quota assigned to τb.
Each row corresponds to an iteration of the SQME solutions

Quota (ebbus,xx) Consumed (evbus,yy) Δcont
b→a

xx=lh xx=sh xx=lm xx=sm yy=lh yy=sh yy=lm yy=sm

20 40 14 8 20 10 2 1 1600
16 22 8 9 6 22 5 2 900
10 15 6 4 8 15 4 3 210
4 4 1 1 3 2 0 1 75

estimates using those bounds. With this approach, WCET
estimates are time-composable as long as the load put by
contenders once the system is deployed is equal or lower to
the one used to obtain these estimates.

III. PROBLEM STATEMENT

Existing SQME focus on a single shared resource – usually
the memory as it concentrates a big fraction of the contention
tasks can suffer – and a single type of request accessing that
resource. However, in general, multicores comprise several
shared resources R each of which can accept different types
Yr of requests. Also requests can have different access times
and hence, cause different contention delays. The worst-
case (longest) contention τb can cause on τa, i.e. Δcont

b→a, is
computed as shown Equation 1.

Δcont
b→a=

∑
r∈R

∑
y∈Yr

crr,yb→a × Lr,y
max (1)

The contention τa can suffer from its contenders c(τa) is:

Δcont
a =

∑
τx∈c(τa)

∑
r∈R

∑
y∈Yr

crr,yx→a × Lr,y
max (2)

For the single request type model, a contender task τb is
suspended once it consumes its quota, i.e. it performs crb→a

accesses. In other words, if τb requests are below crb→a, its
contention time quota is not exhausted.

When there are several types of requests, there are several
combinations of event counts that lead to a quota violation
and hence, event counts need to be conservative to detect any
potential violation. This is better explained with an example.
Let er,yi be the event monitor that counts the number of
accesses of type y to resource r from core i and ebr,yi the
respective budget allocated to a given task. For the sake of
this example, let us assume a multicore processor with the bus
connecting the cores with a shared L2 cache as the only shared
resource. Further assume that the L2 is partitioned and each
core accesses its own private memory controller, so contention
can only happen in the bus. Four types of requests can be sent
to the bus: load or store (write) accesses that can hit or miss in
the L2 (lh, sh, lm, sm). Each of these requests has a different
maximum latency as shown in Table I. Finally, let us assume
that τb is assigned a contention budget Δcont

b→a = 2000 cycles.
Iteration 1: Row 1 in Table II (quota columns) shows

one potential way in which quotas on access counts can be
set to prevent τb to cause at most Δcont

b→a contention cycles
on τa. In particular (ebbus,lh=20, ebbus,sh=40, ebbus,lm=14,
ebbus,sm = 8) that for short we represent as (20,40,14,8). Once

Design, Automation And Test in Europe (DATE 2019) 705

Fig. 1: Main blocks of the MCCU Fig. 2: MCCU for multiple tasks Fig. 3: Blocks to check Li,j
max is not exceeded

these values are programmed in the PMCs, τb is allowed to
run concurrently with τa.

Let assume that, during its execution, τb makes accesses
(evbus,lh=20,evbus,sh=10, evbus,lm=2, evbus,sm = 1) that we
represent as (20, 10, 2, 1). When τb makes its 20th load hit
access to the bus, an interrupt is raised since the ebbus,lh quota
is exhausted. The remaining contention budget is derived as:

Δcont
b→a=2000−(20× 5 + 10× 10 + 2× 50 + 1× 100)=1600

Iteration 2: Row 2 in Table II, under quota, shows one
potential way in which quotas on access counts can be set
so that once τb runs again, it cannot create more contention
than allowed, i.e. Δcont

b→a ≤ 1600: (16, 22, 8, 9). At the end of
this second step the accesses performed by τb are (6,22,5,2)
leaving a contention budget of 1600− 700 = 900 cycles.

This process repeats, generating an interrupt per iteration,
until the contention budget is lower than the highest Lmax.

In general, the need for pre-programming all ebr,yi leads to
cases where one counter is exhausted earlier than the others,
thus raising an interrupt despite contention budget is not yet
exhausted. This process repeats until the remaining budget is
small enough not to be worth to continue with the execution.
In fact, the smaller the remaining quota is, the more often
interrupts are generated normally. Overall, monitoring the use
of multiple shared resources in software (i.e. with SQME) just
triggering interrupts only when actually exceeding contention
quota is not possible. This results in significant overheads as
we quantify in the Evaluation Section.

IV. MCCU

We propose the MCCU, a software-controllable low-
overhead hardware unit to accurately handle several shared
resources dealing with several request types, each with dif-
ferent access latency. We implement the MCCU as a new
system-on-chip component that is attached to the on-chip bus
(e.g. AMBA). This avoids introducing additional modifications
to the rest of processor components (FUBs), thus drastically
reducing the costs of re-design and re-verification.

A. Control logic and hardware

For each resource and request type to be tracked, the MCCU
keeps Lr,y

max in a register so a total of ||R|| · ||Yr|| registers
are needed, see Figure 1. Also one quota register per core is
required to save the remaining quota cycles Δcont.

Prior to the execution of the program (e.g. at boot time), all
Lr,y
max are initialized � sequentially via a single write port, see

Figure 1. Since this step is done once, its overhead – in the
order of dozens or hundreds of processor cycles – is negligible.

At task boundary, or software partition boundary like those
in avionics ARINC 653 [2], � the Operating System (OS)
programs the MCCU with the corresponding quota, Δcont.
The MCCU can be attached to the on-chip bus as a slave,
e.g. AMBA Peripheral Bus (APB) slave, so that the quota
counter and the registers storing the contention associated to
each resource and access type can be configured and accessed
using specific memory addresses, the APB addressable space.

While less frequent in CRTES, some deployments may
allow task migration across cores. This requires that, whenever
a task is swapped out, the OS saves its quota register in the
corresponding task struct that the OS uses for the task.
When the task is swapped back in, the OS restores the quota
register. Note that Lr,y

max values are intrinsic to the processor
and hence, the OS can keep a single copy that can restore at
boot time.

Upon each access of type y to resource r (< r, y >), the
corresponding Lr,y

max latency for that access is retrieved �.
Then, � the upper-bound latency of the access is subtracted
from the remaining quota, which is properly updated. If the
quota remaining is zero or it is close enough (e.g. it is below
the latency of some access types), � an interrupt is triggered
by forwarding this signal to the interrupt controller, indicating
that the quota of τb has been exhausted.

B. Extension for Several Contenders

Interestingly, when dealing with several tasks, the table with
maximum contention values per resource and access type does
not need to be replicated. Instead, we only need to set a quota
register per task, and use the task identifier (AMBA master
signal) to retrieve the appropriate quota value and update
it conveniently, see Figure 2. This approach allows setting
specific quotas for each task so that, if one of them overruns
its budget, the appropriate interrupt is triggered, but the other
tasks remain unaffected. This approach is also suitable for
scenarios with several critical tasks and contenders since the
MCCU allows to set quotas for all (monitored) contending
tasks and the maximum contention they could generate is
independent of the particular task under analysis. Hence,
the MCCU does not monitor contention for each task under
analysis and contender task pair, but instead, it only monitors
contention generated per task individually. For instance, let us
assume a 4-core processor where τa is allowed to run without
any quota control, τb – despite being critical – has a specific
quota to limit the contention it may cause on τa (e.g. 10,000
cycles), and τc and τd are non-critical tasks.

In this context, contention quota for τc and τd must be set as
the lowest contention they are allowed to produce individually
on τa and τb. Also τb quota corresponds to the maximum

706 Design, Automation And Test in Europe (DATE 2019)

contention it is allowed to cause on τa. Finally, since τa has
no quota, it is programmed either with a special value so that
it is ignored, or it is simply set to the maximum value possible
(e.g. 232 − 1) so that it cannot overrun its quota in practice.
Overall the contention each task τx can generate (Δx→) is:

Δa→ = 232 − 1 Δb→ = 10, 000;

Δc→ = min(Δc→a,Δc→b); Δd→ = min(Δd→a,Δd→b)

C. Seamless verification of Li,j
max bounds

Li,j
max is estimated empirically in real architectures, which

always leaves some residual risk that estimates do not bound
maximum latencies. While extensive testing helps reducing
this residual risk, the MCCU allows for a seamless verification
of Li,j

max bounds with a minor extension. In particular, upon
each access to shared resources, the MCCU receives as input
the request type and retrieves the corresponding Li,j

max bound.
As shown in the bottom part of Figure 3, by simply monitoring
when requests start and finish with a request duration counter,
rdc, the request duration can be compared with Li,j

max and,
upon an exceedance, raise an interrupt.

This allows detecting inaccuracies in the derivation of Lr,y
max

that might not be detected during the testing phase, which
could affect the reliability of the software-estimated quotas.

In the context of AMBA, locked transfers allow masters to
keep the ownership of the bus until the transfer completes. This
enables masters to keep the bus locked indefinitely, without
the arbiter being able to relinquish the grant from that master.
Lock transfers are typically used to manage atomic operations
such as read-modify-write, needed for synchronization. To
handle locked transfers with the MCCU, we can set up a
specific Lmax register for locked transfers (or several of them
if multiple types of locked transfers exist), and manage them as
any other type of request. Additionally, since locked requests
may be unbounded, we keep track of the duration of the
in-flight request with a request duration counter (rdc), see
Figure 3. At request completion time, we check whether it
exceeds the corresponding Lr,y

max. We also check whether the
locked request takes longer than any Lr,y

max even if it is not yet
finished. In both cases, an interrupt is raised, indicating that
evidence has been found that the derived bounds have been
violated. This is fundamental to increase confidence – reduce
the residual risk in accordance with standards such as ISO
26262 in automotive.

D. Hardware Cost Analysis
Area. the MCCU requires � a Lr,y

max register for each
resource and request type to be tracked. Note however, that
registers are not replicated per core. Hence the number of
registers needed is given by Δcont

b→a and ||R|| · ||Yr||. In
addition, a � ‘quota’ register is needed per core to keep the
contention budget each core has available. Also � a request
duration counter, rdc, per core is needed. In our reference
SoC architecture, see Figure 4, the access to the bus does
not implement split bus transactions so that by controlling
the access to the bus we also control the access to memory.
If split bus transactions are implemented, then the MCCU is
also connected to the L2-to-memory interface for monitoring
purposes. The L2 cache is partitioned as it is the case in many
commercial architectures (e.g. NGMP [4] and ARM A9 [3]).
Overall the MCCU tracks 4 bus access types: loads/stores that

Fig. 4: Reference SoC architecture. PMU stands for performance
monitoring unit that keeps the events and PMCs

hit/miss in the L2. The 4 Lmax registers (often tens of cycles)
are normally encoded with just 1 byte each. Also, few bytes are
needed (e.g. 4) for the quota register for each of the Nc = 4
cores. Thus, hardware overhead is negligible (up to 24 bytes
in our reference SoC: 2× 4 bytes for maximum latencies and
4× 4 bytes for quota registers).

Delay. As shown in Figure 3, combinational logic consists
of few decoders, multiplexors and comparators, as well as a
subtractor one of whose operands (Lmax) has few bits (at most
1 byte). Hence, the area and latency of this logic is well below
that of an integer Arithmetic Logic Unit, whose number, size
and complexity of combinational blocks is fairly larger.

The use of a MCCU has other implications in terms of
latency similar in nature to those of a PMU, but of lower
magnitude. In particular, a PMU has low complexity itself,
but its input consists of signals monitoring events occurring
all along the processor, thus potentially taking several cycles
to arrive to the PMU, which leads to event counts that can
never be up-to-date and reflect event counts with some (yet
limited) delay. In the case of the MCCU, events monitored are
typically available as part of the AMBA AHB bus interface
shown in Figure 4. Thus, connecting the MCCU to the AHB,
either directly as a slave or as part of another slave (e.g.
along with the PMU), makes input signals be available almost
immediately when they arrive to the AHB bus. The internal
processing of the MCCU, Figure 3, is simple enough to fit in
one cycle or, if needed, be pipelined when the target processor
frequency is high. Finally, on a quota violation there may be
some delay to propagate the interrupt to the interrupt controller
which, again, is limited to very few cycles in practice.

Overall, the end-to-end delay since an access starts until a
potential interrupt is triggered may be in the order of 10 cycles,
which could at most allow another access (e.g. the slowest
one) to start, thus leading to a slight quota overrun of some
tens of cycles. In the context of microcontrollers operating at
several hundreds of MHz at least, such quota overrun could
cost at most around 100ns, which is an insignificant impact
for systems whose response time is in the order of hundreds
of milliseconds (e.g. a braking system).

Scalability. For larger multicores, the Lr,y
max registers do

not depend on the number of cores, but on the number and
type of requests. Only one quota register is needed per core.
Hence, the absolute hardware cost increases negligibly. La-
tency wise, signal propagation may increase MCCU latencies.
Also, MCCU accesses latency can increase due to access
serialization to the MCCU to keep a single read/write port.
This can delay by few cycles MCCU access, in the worst case,
when several cores try to access the MCCU simultaneously. In
both cases, the impact of the increase of few processor cycles
is negligible as described in the previous paragraph.

Design, Automation And Test in Europe (DATE 2019) 707

V. EVALUATION

A. Experimental framework
We evaluate the MCCU on a reference NGMP multicore

architecture [4]. In particular, we use its implementation in
a SoCLib-based [21] performance simulator with negligible
performance discrepancies against the real hardware [12]: 1%
on average and 3% at most. Our processor setup, see Figure 4,
consists of 4 LEON4 cores including 16KB 4-way write-
through L1 caches connected through an on-chip round-robin
bus to a 4-way 256KB shared write-back L2 cache and a
shared memory controller. The NGMP allows the L2 cache
to be way-partitioned so that each core receives one way.

The MCCU tracks the 4 access types in Section III: lh, sh,
lm and sm. Since the L2 is writeback, L2 misses evicting
dirty data generate two memory accesses: one to write back
dirty data and one to retrieve the data requested.

Following the methodology of previous works [7], [16], the
latencies for the different types of request to the bus have been
derived empirically, resulting in these values: Lbus,lh

max = 10,
Lbus,sh
max = 3, Lbus,lm

max = 32, and Lbus,sm
max = 37.

We use the well-known MediaBench benchmark suite [14],
which includes communications and multimedia functions
increasingly relevant for many CRTES domains with au-
tonomous vehicles. We only excluded mpeg2.encode
benchmark due to issues executing it in our reference platform.

B. Scenarios evaluated
As explained in Section IV-B, the contention quota assigned

to each (contender) task is determined by the minimum amount
of contention its sibling tasks can afford.

We analyze several scenarios in which each (contender)
task is allowed to cause variable contention on the task
under analysis. In some scenarios, the contender task does not
exceed its assigned contention quota (and hence should not
be suspended). In particular, we allocate a quota 5%, 10%,
...25% higher than needed, represented in the corresponding
figures as 1.05, 1.1, ... 1.25 respectively. In other scenarios,
the contender task exceeds its quota, so it must be suspended.
In particular it is allocated a quota smaller than the actual
contention it generates according to the model (Equation 2).
In particular we cover the values 0.8, 0.85, 0.9, 0.95, 1.0.

For SQME, given a maximum contention budget τb can
generate on τa, Δcont

b→a, there are several ways in which bounds
to access counts can be assigned. For instance, assuming a
single resource with two request types of latencies 10 and
20 cycles, and a contention quota of 100 cycles, the possible
ways in which bounds to access counts can be assigned are:
(10, 0), (8, 1), (6, 2), (4, 3), (2, 4), (0, 5). Determining the best
access bounds a priori is challenging since the number of
accesses of each type of a program can depend on factors
such as input data and vary throughout program execution.
Hence, any a-priori choice, which we refer to as request bound
breakdown scenarios (rbbs), is arbitrary.

We have explored two rbbs. In both cases, in the first
iteration, we distribute contention quota homogeneously across
request types. Hence, each request type yr is given a FairShare
of the overall quota: FairShare = (Δcont

b→a)/(||R|| · ||Y∇||).
For each request type ebr,y , requests are allowed as defined

next: ebr,y = �FairShare/Lr,y
max�. Whenever the quota for a

given request type is exhausted, in the following iterations we

Fig. 5: Number of interrupts generated by SW solutions.

either follow the same approach based on a fair quota share
(rbbsfair−fair), or we assign the quota proportionally to the
consumed quota across accesses so far (rbbsfair−prop).

For instance, let us assume that the quota is 1,000 cycles
and two request types with Lr,y

max 10 and 20 cycles respec-
tively. In this case, we allocate 500 cycles to each request
type in the first iteration, thus granting 50 and 25 accesses
respectively. Let us now assume that the task performs 50 and
5 accesses respectively, thus exhausting the quota for the first
access type. The remaining quota would be 400 cycles. Under
rbbsfair−fair, we would allocate 200 cycles to each request
type, so 20 and 10 accesses. Under rbbsfair−prop, instead, we
would take into account that each access type has used 500 and
100 cycles respectively, so we would split the remaining 400
cycles keeping the same ratio, so 333 and 67, thus granting
33 and 6 accesses of each type respectively.

C. Sufficient contention quota
1) SQME results: Figure 5 shows the number of interrupts

raised by each task under the different scenarios in which tasks
have sufficient budget. It is worth mentioning that the latency
of an interrupt is the time between the start of an Interrupt
Request (IRQ) and the completion of the respective Interrupt
Service Routine (ISR). The direct cost of interrupts together
with their impact on processor state (e.g. cache state) impact
execution time (and WCET) in non-obvious ways. Moreover,
just predicting a priori the number of interrupts to account
for them in the WCET is challenging. Therefore, in addition
to their actual cost, unnecessary interrupts caused by SQME
challenge the derivation of reliable and tight WCET estimates.

In Figure 5, the z-axis shows the quotas that range from
1.05x to 1.25x of the actual quota each benchmark (on
the x-axis) would need in practice. As shown, the num-
ber of unnecessarily-generated interrupts is high for both
rbbsfair−fair (top plot) and rbbsfair−prop (bottom plot)
software approaches and increases as the contention quota
decreases down to 1.05. For rbbsfair−fair, interrupts are quite
stable around 5, while for rbbsfair−prop, on average, the
number of interrupts decreases, and in many cases is just 1. For
some benchmarks such as epic.d and pgp.e, they increase

708 Design, Automation And Test in Europe (DATE 2019)

Fig. 6: Increase in Δcont
b→a due to the simple support for the

single-request approach w.r.t. MCCU.

significantly due to the varying behavior of the benchmarks
over time. Either the case, software-only solutions (SQME)
need to allocate quota statically to request types, thus causing
unnecessary interrupts due to their inability to allocate quota
dynamically to the request types that occur in practice.

Resorting back to the single-request solution. A simple
approach overcome the problem of distributing the quota
across request types, consists of assuming a minimal hardware
support that adds the desired events in a given counter. In our
case, evcomb = evlh+evsh+evlm+evsm. That is, all requests
are assumed to be of the same type. In the CRTES domain,
this necessarily means to assume that all requests are from
the worst type, so with the highest latency, which requires
reformulating Equation 2 as follows.

Δcont
b→a= max

r∈R,y∈Yr

(Lr,y
max)×

⎛
⎝∑

r∈R

∑
y∈Yr

crr,yb→a

⎞
⎠ (3)

While this solution would certainly avoid generating unnec-
essary interrupts, assuming that all requests are from the worst
type implies that quota is consumed – pessimistically – much
faster, leading to a single (but much earlier) interrupt.

In order to show the impact of this approach in our reference
architecture, we have measured in Figure 6 the increment
in contention delay, Δcont

b→a in Equation 3, with respect to
Equation 1, the latter of which is captured by the hardware
model in the MCCU.

The observed increase for MediaBench in our reference
architecture is 9.6x on average and as high as 12.3x. This
indicates that quota is consumed at a 9.6x higher rate with
this approach, which is simply an unaffordable overhead that
makes this solution not attractive either. In fact, this would
require that the task under analysis could afford 9.6x higher
contention than with the MCCU.

2) MCCU: For the MCCU, zero unnecessary interrupts are
generated. Since quota suffices, the contender task will always
complete its execution before exhausting its quota.

VI. CONCLUSIONS

We present the MCCU, a low-overhead hardware com-
ponent that allows allocating contention quotas to tasks for
shared hardware resources and monitoring whether those quo-
tas are exhausted. The MCCU raises one interrupt only when
strictly needed, hence avoiding the limitations of software-
only solutions that allocate individual quotas per resource
and access type resulting in frequent unnecessary interrupts.
Moreover, the MCCU allows assessing seamlessly whether the
maximum latency per request type estimated is exceeded, thus
detecting potential issues in the WCET estimation process.
Finally, the hardware overhead of the MCCU is quite limited

and does not require re-designing or re-verifying existing
FUBs, which would challenge its adoption due to cost reasons.
Our MCCU can be applied into other models even though that
will be addressed in future work.

VII. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) un-
der grant TIN2015-65316-P, the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773) and
the HiPEAC Network of Excellence. Carles Hernández is
jointly funded by the MINECO and FEDER funds through
grant TIN2014-60404-JIN. Jaume Abella has been partially
supported by the MINECO under Ramon y Cajal postdoctoral
fellowship number RYC-2013-14717.

REFERENCES

[1] A. Agrawal et al. Contention-Aware Dynamic Memory Bandwidth
Isolation with Predictability in COTS Multicores: An Avionics Case
Study. In ECRTS, 2017.

[2] ARINC Inc. ARINC Specification 653: Avionics Application Software
Standard Standard Interface, Part 1 and 4, Subset Services, June 2012.

[3] ARM Ltd. ARM Cortex-A9 Technical Reference Manual r4p1, 2016.
[4] Cobham Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-

NGMP-DRAFT - Data Sheet and Users Manual, 2011.
[5] D. Dasari et al. Response time analysis of cots-based multicores

considering the contention on the shared memory bus. In IEEE
TrustCom, 2011.

[6] E. Dı́az et al. MC2: Multicore and cache analysis via deterministic and
probabilistic jitter bounding. In Ada-Europe, 2017.

[7] M. Fernández et al. Assessing the suitability of the ngmp multi-core
processor in the space domain. In EMSOFT, 2012.

[8] E. Francis. Autonomous cars: no longer just science fiction. Automotive
Industries, 193, 2014.

[9] A. Hansson et al. Compsoc: A template for composable and predictable
multi-processor system on chips. ACM Trans. Design Autom. Electr.
Syst., 14:2:1–2:24, 2009.

[10] C. Hernández et al. Design and implementation of a time predictable
processor: Evaluation with a space case study. In ECRTS, 2017.

[11] J. Jalle et al. Bounding Resource Contention Interference in the Next-
Generation Microprocessor (NGMP). In ERTS, 2015.

[12] J. Jalle et al. Validating a timing simulator for the NGMP multicore
processor. In DASIA, 2016.

[13] P. Kumar et al. Taming non-blocking caches to improve isolation in
multicore real-time systems. In RTAS, 2016.

[14] C. Lee et al. Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO, 1997.

[15] R. Mancuso et al. Wcet(m) estimation in multi-core systems using single
core equivalence. In ECRTS, 2015.

[16] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing
architectures in avionics. In EDCC. IEEE Computer Society, 2012.

[17] J. Nowotsch et al. Multi-core interference-sensitive wcet analysis
leveraging runtime resource capacity enforcement. In ECRTS, 2014.

[18] M. Paolieri et al. Hardware support for wcet analysis of hard real-time
multicore systems. In ISCA, 2009.

[19] R. Pellizzoni et al. Worst case delay analysis for memory interference
in multicore systems. In DATE, 2010.

[20] M. Schoeberl and A. Rocha. T-crest: A time-predictable multi-core
platform for aerospace applications. In DASIA, 2014.

[21] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.
[22] K. Suleman. Intel paves the road for bmw’s inext autonomous cars in

2021. 2017.
[23] T. Ungerer et al. Merasa: Multicore execution of hard real-time

applications supporting analyzability. IEEE Micro, 30(5):66–75, 2010.
[24] H. Yun et al. Memguard: Memory bandwidth reservation system for

efficient performance isolation in multi-core platforms. In RTAS, 2013.
[25] M. Zimmer et al. Flexpret: A processor platform for mixed-criticality

systems. In RTAS, pages 101–110, 2014.

Design, Automation And Test in Europe (DATE 2019) 709

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

