
LAEC: Look-Ahead Error Correction Codes in
Embedded Processors L1 Data Cache
Pedro Benedicte∗†, Carles Hernandez∗, Jaume Abella∗ and Francisco J. Cazorla∗‡

∗ Barcelona Supercomputing Center † Universitat Politècnica de Catalunya ‡ IIIA-CSIC

Abstract—As implementation technology shrinks, the presence
of errors in cache memories is becoming an increasing issue in all
computing domains. Critical systems, e.g. space and automotive,
are specially exposed and susceptible to reliability issues. Further-
more, hardware designs in these systems are migrating to multi-
level cache multicore systems, in which write-through first level
data (DL1) caches have been shown to heavily harm average and
guaranteed performance. While write-back DL1 caches solve this
problem they come with their own challenges: they need Error
Correction Codes (ECC) to tolerate soft errors, but implementing
DL1 ECC in simple embedded micro-controllers requires either
complex hardware to squash instructions consuming erroneous
data, or delayed delivery of data to correct potential errors,
which impacts performance even if such process is pipelined.
In this paper we present a low-complexity hardware mechanism
to anticipate data fetch and error correction in DL1 so that both
(1) correct data is always delivered, but (2) avoiding additional
delays in most of the cases. This achieves both high guaranteed
performance and an effective solutions against errors.

I. INTRODUCTION

Critical embedded systems have seen a rapid increase
in their (guaranteed) performance requirements in recent
years [8]. This trend is fueled by the use of complex artificial-
intelligence based software to handle huge amounts of data,
e.g. coming from cameras, and implement autonomous driv-
ing functionality [8]. At hardware level, this has caused a
fast transition from simple 8- and 16-bit single-core micro-
controllers encompassing multicore processors equipped with
several cache levels. A common processor design in automo-
tive [1], avionics and space [5] is to have private first level
caches that access a shared L2 cache via a communication
means (e.g. a bus). Previous studies show that contention in the
access to hardware share resources can increase tasks worst-
case execution time (WCET) significantly [14], [15]. In this
line, the use of write-through DL1 caches has a huge negative
impact on performance since every store instruction accesses
the shared communication hardware. The effects on WCET
intensify since time allowances must be done to capture worst
case scenarios. In particular, write-through DL1 can increase
WCET up to 6x just for the bus contention compared to write-
back designs [9].

The sensitivity of caches to errors (faults) is another issue
of up most importance critical systems. Critical systems must
undergo a strict certification process to provide evidence
that specific failure rates are below specific thresholds set
in applicable safety standards, e.g. ISO26262 [21] in cars.
Critical systems include safety mechanisms for fault tolerance
to ensure low-enough acceptable failure rates.

It follows that chip designers for critical systems face a
conundrum in the design of DL1 caches to provide both
reduced WCET estimates (high guaranteed performance) and
keep low rates under control. On the one hand, instruction

(read-only) caches and write-through DL1 never keep a dirty
copy of any data. Hence, they can implement low-cost error
detection mechanisms such as parity, since error-free copies of
the data exist elsewhere (e.g. in the L2 that is ECC protected).
This however comes at the cost of increased WCET estimates.
On the other hand, write-back or hybrid write-through/write-
back DL1 caches [9] contain the impact of contention in
WCET estimates by avoiding that every store access shared
resources. DL1 write-back caches design may keep dirty data
and hence, error correction means are needed to keep failure
rates low enough. However, tolerating faults in DL1 cache
memories requires, in general, the use of Error Correction
Codes (ECC) to allow recovering data that has been corrupted,
which carries significant impact in either DL1 cache latency
or design complexity. If DL1 cache data is delivered before
correction, ECC does not impact the critical path and can be
computed offline. However, upon the detection of an error,
direct and indirect consumers of erroneous data are squashed
and restore a correct state before resuming operation. In
general, simple microcontrollers used for critical real-time
systems lack such support. If cache data is delivered after
correction, an additional stage is needed after loading data
to compute ECC and validate whether data is correct. Thus,
back-to-back execution of consumers after a load operation
occurs with an additional delay (typically one cycle), which
has non-negligible impact in performance.

In this paper, we present an alternative deployment of ECC
in L1 caches for critical real-time microcontrollers aimed at
mitigating the impact of ECC calculation in L1 caches. We
propose a Look-Ahead Error Correction (LAEC) scheme that
anticipates the whole DL1 access process by one cycle, thus
allowing to eliminate any performance overhead whenever
such anticipation is possible. In particular, for in-order cores
common in critical real-time embedded systems (e.g. LEON4,
ARM Cortex-R5 cores), whenever the input address registers
are not computed by the immediate predecessor instruction
of a load instruction and the predecessor instruction is not a
load instruction, we can perform the address calculation, DL1
access, and ECC computation one cycle ahead of time. In
this way, data can be delivered in the same cycle it would
be delivered in a non-protected DL1 cache without antici-
pation. We note that the constraints that could preclude the
effectiveness of our mechanism occur seldom, thus allowing
LAEC to achieve a performance close to that of an error-
free processor without ECC, while outperforming designs that
require an additional cycle before delivering error-free data.

We have evaluated LAEC by implementing it with Single-
Error Correction Double-Error Detection (SECDED) in the
DL1 cache of a cycle accurate processor model of the
LEON4 [5]. Our results show that our look-ahead error
correction scheme outperforms the baseline read-and-correct
scheme by 6% on average across EEMBC Automotive [28]

812978-3-9819263-2-3/DATE19/ c©2019 EDAA



TABLE I: Commercial processors and their characteristics.

Processor Frequency L1 WT L1 WB
ARM Cortex R5 160MHz Yes, ECC/parity Yes, ECC/parity
ARM Cortex M7 200MHz Yes, ECC Yes, ECC
Freescale PowerQUICC 250MHz Yes, Parity Yes, parity
Cobham LEON 3 100MHz Yes, parity No
Cobham LEON 4 150MHz Yes, parity No

benchmarks, and is within 3.9% the performance of an ideal
error-free design without any ECC support.

II. MOTIVATION

Current processor designs for critical systems employ dif-
ferent approaches to include ECC schemes in caches. This
is partially motivated by the fact that actual latency over-
heads depend on the particular ECC technique employed. For
instance, using a parity bit is the simplest and fastest tech-
nique, and SECDED is more complex and slower. In general,
processors targeting safety critical systems require having the
ability to recover from faults which forces processor designers
to architect solutions able to achieve that goal. As shown
in Table I processors available in the market use different
approaches to protect caches from errors. For instance, the
LEON family of processors advocates for using write-through
caches with parity in the L1. The Freescale PowerQUICC
offers the user the possibility to configure L1 caches as write-
through or write-back restricting recovery capabilities to write-
trough configuration only. They pay the costs in contention
to reduce faults, since in the space domain these are more
common. Finally, in the Arm Cortex family the processor IP
is sold with the possibility of implementing both write policies
and allowing using ECC or parity in L1 caches. However, as
acknowledged in the datasheet [6], using ECC in the L1 can
impact the maximum operating frequency of the processor. In
this case the final decision on whether to tradeoff performance
for reliability is left to the integrator.

A. Correcting Errors in Write-Through (WT) DL1 caches

A practical solution typically found in processors for critical
system consists of using a cache hierarchy with inclusive
caches and write-through (WT) policy in the DL1 [5], [7],
[29]. A commonality in these designs is to include a parity
bit in DL1 caches and SECDED in the L2 cache since the
relative impact of latency overhead of SECDED in the L2 is
lower. The main reason is that, even if L2 read hit latencies
are increased due to the introduction of SECDED, its impact
in overall performance is low due a two-fold reason. First, L2
read accesses occur seldom, and second, having an additional
L2 cycle causes limited impact due to the already high L2
access latencies to send requests, access the L2 itself and
return data read to the core. Overall, this configuration (DL1
parity + L2 SECDED) ensures that errors can be detected with
the parity bit with virtually no impact in latency in the DL1,
and recovered with the SECDED mechanism implemented in
the L2.

While configurations using WT caches offer a workaround
to the problem of correcting data in the DL1, this config-
uration presents the drawbacks that are inherent to the use
of WT caches such as lower performance and higher energy
consumption since every store operation is always propagated
from the DL1 to the upper levels of the memory hierarchy (i.e.
hardware shared resources). To mitigate this issue processors

may include a store-buffer and/or use an L2 cache implement-
ing a write-back (WB) policy. However, it has been shown [9]
that performance guarantees (WCET estimates) on multicore
processors incorporating WT caches are quite poor when
compared with their WB counterpart despite implementing
store-buffers and a WB L2 cache. This result is especially
important since processors targeting critical systems do not
only require guaranteeing reliable operation, but also offering
high performance and time-predictable behavior [21], which
calls for multicore processors implementing ECC in WB DL1
caches in an efficient manner.

B. Correcting Errors in Write-Back (WB) L1 caches

WB policies do not update, on a DL1 hit, the upper levels
of the memory hierarchy. Hence, in our setup modified data
can reside exclusively in the DL1, so using a WB policy
requires implementing error correction capabilities to recover
from errors in the DL1. However, as explained before, this has
generally an impact in the access time to DL1 cache. Several
approaches exist to deal with the increase in DL1 access
latency and they are implemented in commercial processors
already. The particular processor architecture, the target oper-
ating frequency, and the manufacturing technology determine
when to use one approach or the other. Below we describe
four existing approaches:

1) Decrease the operating processor frequency is the
most trivial approach to allow SECDED in the DL1 so
that the error correction process can be accommodated
within the last cycle of the cache access. However,
this has a significant impact in the performance of
the system. Some commercial processors for which the
targeted operating frequency is sufficiently low or whose
critical path is determined by other components may opt
for this solution [6].

2) Extra cache cycles. Adding extra (non-pipelined) cycles
in the DL1 access so that ECC computation fits in
the L1 cache access time without impacting operating
frequency. However, such a solution virtually doubles
the time utilization of the DL1.

3) Extra stage. Pipelining cache accesses such that instruc-
tions proceed normally, adding a final cycle for ECC
computation. Pipeline stalls will be introduced in the
case of data dependencies (i.e. an instruction requires
data for which ECC computation is not yet performed).
The delay of the logic that detects and corrects errors
can vary depending on the number of bits corrected.
For SECDED, considered in this paper, this latency is
smaller than an DL1 cache access [13], [18], and thus
fits in a single additional cache cycle or stage pipeline.

4) Speculate and flush. Using a speculate and flush ap-
proach consists of processing accesses and delivering
unchecked data, which may be used in parallel with ECC
computation. Whenever the result of the ECC determines
that the propagated data was erroneous, the pipeline is
flushed or some instructions squashed, and a previous
correct state needs to be recovered.

From these four approaches, we discard the former due to
its noticeable performance degradation, and the latter due to
the implementation complexity required to implement a flush
mechanism in simple microcontrollers for critical systems
like the ones we target. The extra stage and cache cycles

Design, Automation And Test in Europe (DATE 2019) 813



solutions offer acceptable cost and implementation complexity
trafeoffs, and will be the reference policies we compare our
proposal with. Our proposal builds upon the Extra stage one,
but anticipates the load access and ECC computation whenever
possible so that no additional stalls are introduced due to ECC
computation. In the next section we introduce details of the
baseline approaches and present our look-ahead scheme.

III. LOOK-AHEAD ERROR-CORRECTION

We propose an alternative approach to deploying ECC in
DL1 caches. It consists in anticipating one cycle the address
computation, the load access, and the ECC computation. This
can be done when no data or structural dependence with
older instructions occurs. Effectively anticipating one cycle
the processing of DL1 load hits allows anticipating ECC
computation by one cycle too. As a result, an instruction
dependent on the loaded data can be executed back-to-back
with the load without experiencing any delay due to ECC
computation.

In this section, we first introduce the mechanism used to
anticipate the address in our Look-Ahead Error-Correction
(LAEC) proposal. Then, we describe the processor model on
which the implementation and experiments will be conducted.
Finally, we describe the implementation details of Extra Cache
Cycle and Extra Stage approaches, as well as LAEC.

A. Address anticipation mechanism

There are several ways to predict the address of cache ac-
cess. For instance, cache designs could incorporate a predictor
similar to the ones employed in hardware data prefetchers [16].
However, since the focus of this paper is deploying ECC
in relatively simple processors, we opt for an alternative
method to predict the next DL1 access address. LAEC avoids
mispredictions by anticipating address calculation only when it
is guaranteed that such anticipation will deliver correct results.

In particular, LAEC avoids speculating on the address
to prevent unnecessary accesses to the DL1. We anticipate
address computation by reading the base register one cycle
earlier if it has not to be modified by any previous instruction.
This allows the address of the access to be computed one cycle
earlier using an adder to add the register and the offset. LAEC
also requires including two extra ports to the register file to
retrieve the registers one cycle earlier, but in general an in-
order single-issue processor has a small register file with few
ports, so this would incur low power cost. In fact, it has been
shown that energy is largely dominated by cache memories,
so the energy consumption of the register file is small [26].
An access look-ahead can be performed when following two
conditions hold:

1) No resource hazard. Since we anticipate the DL1 access
and ECC computation by one cycle, we may conflict
with the previous instruction if it accesses the DL1
simultaneously with the anticipated instruction. This
occurs when the previous instruction is a non-predicted
(i.e. branch speculated) load.

2) No data hazard. When the instruction prior to the load
produces the address register of the load, we cannot
anticipate the address computation. This is so because
the input data for the ongoing instruction (load) is not
yet ready whenever we want to anticipate its execution.

L1D
Cache

Fetch Decode Reg. 
Access Execute Memory Exception Write-

Back

Fig. 1: Baseline NGMP-like processor pipeline.

If none of these hazards occur, then we can compute the
address, access DL1, and compute the ECC one cycle ahead
of time. With no resource hazard, we guarantee that the DL1
read port is available. With no data hazard we guarantee that
we are loading the right data, so no misprediction can occur
and there is no need to flush.

B. Processor Model

In order to implement LAEC in the DL1, we use a system
resembling the NGMP [5]: a multicore processor that includes
4 single-issue in-order pipelined cores with L1 private caches
and a shared L2 cache. In the NGMP, error recovery is
guaranteed by using WT DL1 caches with a parity bit and
implementing SECDED in the WB shared L2. However, to
implement LAEC we modify the baseline implementation
to include a WB DL1 cache. Note that this modification
is already in the roadmap of the LEON processor family
whose providers have already announced LEON5 processor
implementing WB DL1 caches [11]. Also, using a WB DL1
cache has already been shown effective for this setup [9].

The original NGMP system has a seven stage pipelined
design (see Figure 1). The memory stage uses a write buffer
(not shown in Figure 1 for simplicity) where all writes are
stored until they can access DL1. A load that misses in DL1
blocks the pipeline. All loads stall the memory stage until the
write buffer is empty to avoid consistency issues. Writes also
stall the pipeline with backpressure when the write buffer is
full, until it gets completely empty.

r3 = load(r1+r2) F D RA Exe M Exc WB
r5 = r3 + r4 F D RA Exe Exe M Exc WB

Fig. 2: Chronogram of a data dependency stall on the NGMP.

In Figure 2 we show an example of two consecutive
instructions with a data hazard between them that results in
a 1 cycle stall for the younger instruction. In red we show
the stage in which the young instruction stalls and in black
the stage where the DL1 cache is accessed. In this case, it
matches the memory stage, but this is not always the case in
our proposed approach.

Next, we present the implementation details for existing
Extra Cache Cycle and Extra Stage solutions as well as for
LAEC. We also show how they could be implemented in a
processor like the NGMP.

C. Extra Cache Cycle Implementation

A first simple approach that would require little changes
to the current architecture is to make the ECC check in the
memory stage so that this stage spans across two cycles, thus
increasing the latency of a load hit from 1 cycle to 2 cycles.

In terms of hardware cost and implementation complexity,
besides the ECC logic and its associated array in the DL1, little
extra logic is needed in order to stall earlier processor stages
(those before the memory stage), since stall logic already exists
to stall the pipeline upon a DL1 cache miss.

814 Design, Automation And Test in Europe (DATE 2019)



The performance impact that this solution can have is
relatively high, since it will double the cycles in the memory
stage for DL1 hits.

r3 = load(r1+r2) F D RA Exe M M Exc WB
r5 = r3 + r4 F D RA Exe Exe Exe M Exc WB

Fig. 3: Data dependency stall with Extra Cache Cycle.

Figure 3 extends the example in Figure 2 when the Extra
Cache Cycle solution is applied. Now the young instruction
that depends on the loaded data needs to stall one additional
cycle for the value to be both loaded and checked. The stage
in blue performs the ECC computation, which is done on the
second cycle of the memory stage.

D. Extra Stage Implementation

Another simple approach would be to add a new pipeline
stage after the Memory one: the ECC stage. This stage would
compute the ECC for DL1 load hits, and compare it with the
existing value stored in its ECC array. For writes that hit, it
would compute the new ECC and store it in the ECC array.

In terms of timing, this solution can stall the pipeline when
a load that hits in cache is followed (distance 1 or 2) by
an instruction that uses the loaded value. In particular, the
instruction immediately after the load cannot use the loaded
value because its execute stage overlaps with the load memory
stage. The second instruction starts its execution stage right
after the load fetches the data from DL1 on a cache hit. Hence,
if the second instruction after the load was allowed to use the
loaded value as a source operand before computing its ECC
and this value was incorrect, a complex recovery mechanism
would be required to restore the processor state to a previous
correct state. Instead, in our implementation, if this scenario
happens, the processor stalls to avoid continuing the execution
with a potential incorrect value.

It is worth noting that this only happens for loads that hit
on the DL1 cache. For loads that miss, and have to request the
data to higher levels (L2 or memory), the ECC of the data is
checked in the corresponding cache level or main memory, so
there is no need to check it again in the new ECC stage. For
stores, the write buffer is usually enough to hide this latency.

In addition to the ECC logic and ECC array in the DL1,
small extra hardware is needed in order to stall the stages
before the Memory one. However, as explained before, this
logic already exists to manage DL1 load misses.

In terms of potential impact, this solution is affected nega-
tively by the number of times that an instruction consuming
the loaded data is stalled due to the ECC stage, which can
occur often since it is common having a consumer for loaded
data in the range of the 2 following instructions.

r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r3 + r4 F D RA Exe Exe Exe M ECC Exc

Fig. 4: Data dependency stall with Extra Stage.

Figure 4 shows a scenario similar to that of the Extra
Cycle solution. The young instruction needs to stall for 2
cycles due to the data hazard. The advantage over the previous
solution is shown in Figure 5: when there is no data hazard,
consecutive instructions can continue execution without a stall,
since Memory and ECC are pipelined.

r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r6 + r4 F D RA Exe M ECC Exc WB

Fig. 5: No data dependencies with Extra Stage.

E. LAEC implementation

LAEC anticipates the load and ECC computation by 1
cycle. To that end, the address registers are read one cycle
earlier, so two additional read ports are required in the register
file. If any of the registers has been generated but not yet
stored in the register file, it can be obtained from existing
bypasses. Since the address computation for the load needs
to be performed one cycle earlier (RA stage), an additional
adder is also required (see Figure 6). We have checked with
CACTI [17] the access times of a register file and an DL1
cache like the ones found in the LEON4 [5] (1088 bits for
the register file, 16KB for the DL1 in 65nm). The difference
between both is enough to include a 32 bit adder [2], so this
addition does not increase the stage time of the memory stage.

L1D 
Cache 

Logic 
Array 

+ 
@

F D RA Exe M ECC Exc WB 

ECC Register 
Bank 

Fig. 6: Modified NGMP-like processor to support ECC using
LAEC.

If the previous instruction generates one of the source
operands of the load instruction, this technique cannot be used,
since it would require the operands a cycle earlier than they are
available. In this case, the processor operates normally (like in
the Extra Stage implementation), with no look-ahead. Then,
if any of the 2 instructions right after the load requires the
loaded data, there will be a cycle penalty due to the address
not being previously computed. Analogously, if the previous
instruction is a non-predicted load, it will require the DL1 port
(memory stage) simultaneously with the current anticipated
load. In this case, the current load cannot be anticipated due
to a resource hazard. These two scenarios are the only ones
where our solution can introduce a penalty in execution time.
This means that LAEC always performs equal or better than
the Extra Stage implementation since, in the worse case, it
cannot anticipate the load and just operates the same way as
the Extra stage.

r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r3 + r4 F D RA Exe Exe M ECC Exc WB

(a) Look-ahead on LAEC.

r1 = r4 + r6 F D RA Exe M ECC Exc WB
r3 = load (r1+r2) F D RA Exe M ECC Exc WB
r5 = r3 + r4 F D RA Exe Exe Exe M ECC

(b) Normal (no look-ahead) execution on LAEC.

Fig. 7: Possible scenarios with LAEC.

Figure 7 (a) shows a scenario where the added ECC penalty
cycle can be avoided because of prediction. Registers r1 and
r2 are both read and added on the RA (Register Access) stage.
Then, on the Exe (Execution) stage, the DL1 cache is accessed.
Afterwards, on the M (Memory) stage the ECC is computed.
This results in the loaded data being ready to the younger
instruction without additional penalty when compared to the

Design, Automation And Test in Europe (DATE 2019) 815



TABLE II: Performance impact of existing approaches.

a2
ti

m
e

ai
ff

tr

ai
fi

rf

ai
if

ft

b
as

ef
p

b
it

m
n

p

ca
ch

eb

ca
n

rd
r

id
ct

rn

ii
rfl

t

m
at

ri
x

p
n

tr
ch

p
u

w
m

o
d

rs
p

ee
d

tb
lo

o
k

tt
sp

rk

av
er

ag
e

% of hit loads 89 97 90 97 84 98 77 86 92 86 99 90 85 84 88 84 89

% of dep. loads 68 53 66 54 80 65 13 67 59 63 64 61 66 66 68 61 60

% of loads 23 21 26 21 24 20 18 29 21 26 20 25 31 29 29 31 25

baseline no-ECC solution (Figure 2). Conversely, Figure 7 (b)
shows a scenario where there is still penalty due to a data
dependency that prevents the look-ahead. Now the load is
preceded by an instruction that computes one of its source
registers. This means that r1 is not ready in the RA stage,
so a normal execution (DL1 access on the M stage and ECC
computation on ECC stage) is performed, resulting in a 1 cycle
extra stall.

The schematic of the modifications required is shown in
Figure 6. Note that the DL1 cache can now be accessed in
two different stages: Exe or M. It will be accessed in Exe
when there is a look-ahead (in red) and in M when there is
not (in blue). Likewise, the ECC logic and array can also
be accessed in two different stages: M (for look-ahead, in
red) and ECC (normal execution, in blue). Since the baseline
processor already includes most of the control logic needed
for this solution, as well as bypasses from the desired stages,
there is no significant cost in terms of hardware. The only
explicit changes apart from the logic are a 32-bit adder and
two extra read ports on the register file. Overall, implementing
our LAEC proposal in an NGMP-like processor incurs in low
hardware cost and implementation complexity.

IV. EVALUATION

We use the SoCLib [30] to model the NGMP architec-
ture [5]. In the base design, each core has a 7-stage pipeline
(up to 8 stages with our modifications), a private L1 instruc-
tion cache and a 4-way 32B/line DL1 cache. It is a 4-core
system connected with a bus to a shared L2 cache, which
then connects to off-chip memory. We evaluate the EEMBC
automotive [28] benchmarks, a suite of common critical real-
time programs used in the automotive domain. The simulations
are run in a multicore system but only a single core executes
a task, since the focus of this work is on core performance.

The overhead of the existing approaches is due to stalls that
happen when there is a DL1 hit that has a data dependency
with the preceding instruction.

The first row in Table II shows the percentage of load
instructions that hit in the DL1 cache. We see that with an
average of 89% hit rate, most of the loads generate hits in
cache, hence potentially generating stalls. The second row
shows the percentage of load instructions followed, at a dis-
tance 1 or 2, by an instruction that uses as a source operand the
loaded data. On average 60% of the loads cause a stall. Finally,
loads represent between a 20% and 30% of all the executed
instructions, significant enough to impact performance.

A. Experimental results

Figure 8 shows the increase in execution time with respect to
a no-ECC system. Extra cycle shows the highest performance
degradation, with a 17% execution time increase on average
w.r.t. a configuration without ECC stage, reaching up to 20%
for some benchmarks (aifftr and matrix).

a2
tim
e

ai
fft
r

ai
fir
f

ai
iff
t

ba
se
fp

bi
tm
np

ca
ch
eb

ca
nr
dr

id
ct
rn
iir
flt

m
at
rix

pn
tr
ch

pu
w
m
od

rs
pe
ed

tb
lo
ok

tt
sp
rk

av
er
ag
e

1.0

1.1

1.2

E
xe
cu
ti
o
n
ti
m
e
in
cr
ea
se Extra Cycle Extra Stage LAEC

Fig. 8: Execution time increase of the different solutions
compared to the baseline no-ECC system.

Extra stage shows around 7% less performance degradation
than Extra cycle, with a 10% on average. This occurs because
its pipelined designed avoids some stalls. All benchmarks per-
form similarly, except cacheb. This benchmark shows little
performance degradation compared with the baseline no-ECC
(2%). This is due to the number of loads that are followed by
dependent instructions. While in rest of benchmarks between
50% and 80% of the loads have this property, in cacheb just
13% of the loads have it. This results in fewer cases that stall
the pipeline an additional cycle, and thus in lower performance
degradation.

Finally, LAEC, due to its anticipated load execution, saves
most of the stalls. On average, LAEC increases execution
time less than 4%, being such increase below 1% in several
benchmarks such as basefp, cacheb, canrdr, puwmod,
rspeed and ttsprk. Out of the two potential conditions
that LAEC needs to meet to cause a stall (resource and data
hazards), most of them are due to data hazards. That is, the
scenario where an instruction generates the address to be
loaded, the next instruction performs the load that hits in
cache, and the next 1 or 2 instructions consume the loaded
data (as shown in Figure 7 a)). There are four benchmarks
(aifftr, aiifft, bitmnp, matrix) that show almost no
improvement when comparing LAEC with Extra Stage. This
is because most of the loads that have dependent instructions
executed right after, so causing stalls for Extra Stage, also have
their source operand produced by the previous instruction,
which prevents load anticipation and causes stalls for LAEC.

In terms of power, the proposed solution has minimal impact
(less than 1%). However, since the execution time is increased,
leakage energy consumption increases proportionally to the
increase in execution time. This means that for extra cycle and
extra stage, leakage energy consumption increases by around
17% and 10% on average; and for LAEC by less than 4%.

Note that, as explained before, while compiler optimizations
could help mitigating stalls, they are normally forbidden in
critical software due to traceability between source and binary
files needed for certification. Moreover, those systems often
execute legacy code where no binary modifications are possi-
ble. On average, LAEC shows a 13% decrease in performance
degradation when compared to Extra cycle and a 6% decrease
compared to Extra stage.

V. RELATED WORK

The most common microarchitectural solution to error cor-
rection relies on the use of parity or error ECC [10] to detect
and correct errors. Parity suffices for read-only caches (e.g.

816 Design, Automation And Test in Europe (DATE 2019)



instruction caches) and write-through caches. When data can
be dirty, then ECC is required.

Several works aims at providing support for both, permanent
and transient faults. Those works often consider high perma-
nent fault rates due to low voltage operation, and propose
mechanisms to tolerate those faults while providing resilience
against transient faults. Some works propose disabling faulty
entries at different granularities [3], [27], potentially setting
up spare cache lines to replace faulty ones [23], or combining
faulty entries to form fault-free ones [22], [32], potentially
combining these designs with heterogeneous ECC depending
on the faultiness of cache lines [33].

Some authors combine fault tolerance in caches with real-
time requirements by ensuring that ECC guarantees that non-
correctable permanent fault rates are below specific thresh-
olds [24], [25], or by guaranteeing that spares (in the form
of a victim cache) suffice to guarantee sufficiently low non-
correctable permanent fault rates [4].

Some techniques target specifically soft errors. Some au-
thors propose early evicting dirty cache lines to mitigate
the probability of uncorrectable errors due to multi-bit up-
sets (MBUs) in caches with single-error-correction capabil-
ities [31]. In our work we do not consider MBUs since
technologies used in critical real-time systems are intended
to suffer sufficienly low MBU rates. In any case, this con-
cern is orthogonal to our work. Coarser-grain solutions such
as lockstep execution are also common in critical real-time
systems [19], [20]. However, those designs often combine also
lockstep execution with ECC protection in caches, as in the
case of the LEON3FT processor for the space domain [12],
thus being orthogonal to our approach.

VI. CONCLUSIONS

Emerging real-time applications require increased perfor-
mance in embedded systems, but also enough reliability levels
for specific domains. Write-back L1 caches can help increase
performance of such multi-core systems, but dirty data requires
additional error correction. Unfortunately, implementing ECC,
such as SECDED, increases the end-to-end latency to fetch
and correct data. This can result in significant performance
degradation due to data dependencies between loads that hit
in the L1 cache and the following (consumer) instructions. We
propose a novel approach to mitigate this issue, called Look-
Ahead Error-Correction (LAEC) that anticipates data loading
by one cycle whenever possible to avoid potential stalls. Our
results show that our technique improves performance by 6%-
13% w.r.t. existing solutions, and is only within 4% of the
ideal case where no ECC is needed. Our proposal not only has
low execution time overhead but also low design complexity
and hardware cost since no costly instruction flush and state
recovery is needed.

ACKNOWLEDGMENTS

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness (MINECO) un-
der grant TIN2015-65316-P, the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 772773) and
the HiPEAC Network of Excellence. Pedro Benedicte and
Jaume Abella have been partially supported by the MINECO
under FPU15/01394 grant and Ramon y Cajal postdoctoral
fellowship number RYC-2013-14717 respectively.

REFERENCES

[1] RENESAS R-Car H3. https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

[2] A. Agah et al. Tertiary-Tree 12-GHz 32-bit Adder in 65nm Technology.
In ISCAS, 2007.

[3] J. Abella et al. Low vccmin fault-tolerant cache with highly predictable
performance. In MICRO, 2009.

[4] J. Abella et al. RVC: A mechanism for time-analyzable real-time
processors with faulty caches. In HiPEAC conference, 2011.

[5] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-
NGMP-DRAFT - Data Sheet and Users Manual, 2011.

[6] ARM. ARM Cortex-M7 processor. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0489b/DDI0489B cortex m7 trm.pdf.

[7] ARM. ARM Cortex R5 technical reference manual.
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460d/
DDI0460D cortex r5 r1p2 trm.pdf.

[8] ARM. ARM expects vehicle compute performance to increase
100x in next decade. https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decad
php, 2015.

[9] P. Benedicte et al. HWP: hardware support to reconcile cache energy,
complexity, performance and WCET estimates in multicore real-time
systems. In ECRTS, 2018.

[10] C.L. Chen and M.Y. Hsiao. Error-correcting codes for semiconductor
memory applications: A state of the art review. IBM Journal of Research
and Development, 28(2):124–134, 1984.

[11] Cobham Gaisler. Flight Software Workshop 2017. http://flightsoftware.
jhuapl.edu/files/2017/Day-3/02-Hellstrom-Cobham-HiRel.pdf.

[12] Cobham Gaisler. GR712RC. Dual-Core LEON3FT SPARC V8 Proces-
sor. User’s Manual, 2018.

[13] D. Strukov. The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories. In ACSSC, 2006.

[14] D. Dasari et al. Response time analysis of COTS-based multicores
considering the contention on the shared memory bus. In IEEE
TrustCom, 2011.

[15] M. Paulitsch et al. Mixed-criticality embedded systems - A balance
ensuring partitioning and performance. In Euromicro DSD, 2015.

[16] M. Shevgoor et al. Efficiently prefetching complex address patterns. In
MICRO, pages 141–152, Dec 2015.

[17] N. Muralimanohar et al. CACTI 6.0: A tool to understand large caches.
In HP Tech Report HPL-2009-85, 2009.

[18] H. Duwe et al. Correction prediction: Reducing error correction latency
for on-chip memories . In HPCA, 2015.

[19] IBM. PowerPC 750GX Lockstep Facility. Application note, 2008.
[20] Infineon. AURIX - TriCore datasheet, 2012.
[21] International Standards Organization. ISO/DIS 26262. Road Vehicles –

Functional Safety, 2009.
[22] C.-K. Koh et al. Tolerating process variations in large, set-associative

caches: The buddy cache. ACM Trans. Archit. Code Optim., 6(2), 2009.
[23] I. Koren and Z. Koren. Defect tolerance in vlsi circuits: techniques and

yield analysis. Proceedings of the IEEE, 86(9):1819–1838, 1998.
[24] B. Maric et al. Efficient cache architectures for reliable hybrid voltage

operation using EDC codes. In DATE, 2013.
[25] B. Maric et al. Analyzing the efficiency of L1 caches for reliable hybrid-

voltage operation using EDC codes. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(10):2211–2215, 2014.

[26] B. Maric et al. Hybrid cache designs for reliable hybrid high and ultra-
low voltage operation. TODAES, 20(1), November 2014.

[27] C. McNairy and J. Mayfield. Montecito error protection and mitigation.
In HPCRI, 2005.

[28] J. Poovey. Characterization of the EEMBC Benchmark Suite, 2007.
[29] Freescale Semiconductor. MPC8548E PowerQUICC III. http://cache.

freescale.com/files/32bit/doc/data sheet/MPC8548EEC.pdf.
[30] SoCLib. The soclib project. http://www.soclib.fr/trac/dev.
[31] X. Vera et al. Reducing soft error vulnerability of data caches. In SELSE

Workshop, 2007.
[32] C. Wilkerson et al. Trading off cache capacity for reliability to enable

low voltage operation. In ISCA, 2008.
[33] C. Wilkerson et al. Reducing cache power with low-cost, multi-bit error-

correcting codes. In ISCA, 2010.

Design, Automation And Test in Europe (DATE 2019) 817



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


