
Hard Real-Time Scheduling of Streaming
Applications Modeled as Cyclic CSDF Graphs

Sobhan Niknam, Peng Wang and Todor Stefanov
Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands

Email: {s.niknam, p.wang, t.p.stefanov}@liacs.leidenuniv.nl

Abstract—Recently, it has been shown that the classical hard
real-time scheduling theory can be applied to streaming applica-
tions modeled as acyclic Cyclo-Static Dataflow (CSDF) graphs.
However, many streaming applications are modeled as cyclic
CSDF graphs, thus they are not supported by such scheduling
theory. Therefore, in this paper, we propose an approach which
enables to apply the classical hard real-time scheduling theory
on streaming applications modeled as cyclic CSDF graphs. The
proposed approach converts each task in a cyclic CSDF graph to
a constrained-deadline periodic task. This conversion enables the
utilization of many hard real-time scheduling algorithms which
offer properties such as temporal isolation and fast calculation
of the required number of processors for scheduling the tasks.
We evaluate the performance of our approach in comparison to
existing scheduling approaches. The evaluation, on a set of real-
life benchmarks, demonstrates that our approach can schedule
the tasks in an application, modeled as a cyclic CSDF graph, with
guaranteed throughput equal or comparable to the throughput
obtained by existing scheduling approaches while providing
hard real-time guarantees for every task in the application
thereby enabling temporal isolation among concurrently running
tasks/applications on a multi-processor platform.

I. Introduction

Streaming applications is an important group of embedded
software that involves a wide spectrum of applications from
different domains such as image processing, video/audio process-
ing, and digital signal processing. To handle the ever-increasing
computational demand and hard real-time constraints of these
applications, modern embedded systems have been equipped
with Multi-Processor System-on-Chip (MPSoC) to benefit from
parallel execution. Designing such embedded systems, however,
imposes two main challenges: 1) how to efficiently represent
parallelism found in a streaming application and 2) how to map
and schedule the application tasks on an MPSoC platform such
that hard real-time requirements are satisfied.

To address the first challenge, parallel Models of Computation
(MoCs) have been adopted as common practice for expressing
the parallelism in an application to efficiently exploit the com-
putational capacity of MPSoCs [1]. Two well-known parallel
MoCs are Synchronous Dataflow (SDF) [2] and its generaliza-
tion, Cyclo-Static Dataflow (CSDF) [3]. Within a parallel MoC, a
streaming application is represented as a task graph with concur-
rently executing and communicating tasks. Thus, the parallelism
is explicitly exposed in the model.

To address the second challenge, recently, scheduling frame-
works, called Strictly Periodic Scheduling (SPS) [4], and Im-
proved Strictly Periodic Scheduling (ISPS) [5], have been pro-
posed to convert the tasks in a streaming application, modeled
as an acyclic CSDF graph, to a set of implicit-deadline periodic
tasks. As a result, a variety of hard real-time scheduling algo-
rithms for periodic tasks, from the classical real-time scheduling
theory [6], can be applied to schedule such streaming applica-
tions with a certain guaranteed performance, i.e., throughput/la-
tency. These algorithms can perform fast admission control and
scheduling decisions for new incoming applications in an MPSoC

platform using fast schedulability analysis, while providing hard
real-time guarantees and temporal isolation, i.e., the ability to
start/stop applications at runtime without affecting the timing
behavior of other concurrently running applications on the same
MPSoC. In addition, these algorithms provide fast analytical
calculation of the minimum number of processors needed to
schedule the tasks in an application instead of performing a
complex and time-consuming design space exploration needed
by conventional static scheduling of streaming applications, i.e.,
self-timed scheduling [7].

The SPS and ISPS frameworks, however, are limited to
acyclic CSDF graphs and cannot schedule a streaming applica-
tion modeled as a cyclic CSDF graph, i.e., a graph where the
tasks have cyclic data dependencies. Consequently, hard real-
time scheduling algorithms cannot be applied to many streaming
applications modeled as cyclic CSDF graphs. Therefore, in this
paper, we address the aforementioned limitation of the SPS [4]
and ISPS [5] frameworks by proposing a novel scheduling frame-
work, called Generalized Strictly Periodic Scheduling (GSPS),
that can handle cyclic CSDF graphs. As a consequence, our
framework can cover a wider range of applications and enable
a variety of proven hard real-time scheduling algorithms [6] for
multiprocessors to be applied. More specifically, the main novel
contributions of this paper are summarized as follows:

• We propose a sufficient test to check for the existence of a
strictly periodic schedule for a streaming application modeled
as a cyclic (C)SDF graph;

• If a strictly periodic schedule exists for an application, the
tasks of the application are converted to a set of constrained-
deadline periodic tasks by computing their periods, deadlines,
and earliest start times. As a consequence, this conversion
enables the utilization of many well-developed hard real-time
scheduling algorithms [6] on streaming applications modeled
as cyclic (C)SDF graphs to benefit from the properties of these
algorithms such as hard real-time guarantees, fast admission
control, temporal isolation, and fast calculation of the number
of required processors;

• We show, on a set of real-life benchmarks, that our approach
can schedule the tasks in an application (cyclic (C)SDF graph)
as strictly periodic tasks with hard real-time guaranteed
throughput which is equal or comparable to the throughput
obtained by existing scheduling approaches.

Scope of work. In this paper, we consider homogeneous MPSoCs
with distributed program and data memory to ensure predictabil-
ity of the execution at runtime and scalability. We assume that
the communication infrastructure used for inter-processor com-
munication is predictable, i.e., it provides guaranteed commu-
nication latency. We use the worst-case communication latency
to compute the worst-case execution time of a task, which in
our approach includes the worst-case time needed for the task’s
computation and the worst-case time needed to perform inter-task
data communication on the considered platform.
Paper organization. The remainder of the paper is organized as
follows: Section II gives an overview of the related work. Section

1528978-3-9819263-2-3/DATE19/ c©2019 EDAA

III introduces the background material needed for understanding
the contributions of this paper. Section IV gives a motivational
example. Section V presents the proposed GSPS scheduling
framework. Section VI presents the results of the evaluation of
the proposed framework. Finally, Section VII ends the paper with
conclusions.

II. RelatedWork

In this section, we compare our hard real-time scheduling
framework with the existing hard real-time and periodic schedul-
ing approaches [4], [5], [8]–[10] for streaming applications. In [4]
and [5], the authors convert each task in an acyclic CSDF graph to
an implicit-deadline periodic task, by deriving the task’s earliest
start time and period. In addition, the minimum buffer sizes of
channels, that guarantee the strictly periodic execution of the
tasks, are computed in [4] and [5]. These approaches, however,
are limited to applications modeled as acyclic (C)SDF graphs.
In contrast, our approach is more general than the approaches
in [4] and [5] and can schedule an application, modeled as a
cyclic (C)SDF graph, in strictly periodic fashion, if a strictly
periodic schedule exists. As a result, many well-developed hard
real-time scheduling algorithms [6] for periodic tasks can be
applied to schedule the tasks in a cyclic CSDF graph to provide
temporal isolation between concurrently running applications,
fast admission control of new incoming applications, and to
compute the minimum number of required processors, using fast
schedulability tests.

Ali et al. [8] propose an algorithm to convert the tasks in
an application to a set of constrained-deadline periodic tasks
by extracting the tasks’ offset, arbitrary deadline, and period.
Similar to our approach, this algorithm can deal with cyclic
data dependencies in the application. However, this approach
considers streaming applications modeled as Homogeneous SDF
(HSDF) graphs derived by applying a certain transformation on
initial (C)SDF graphs. Transforming a graph from (C)SDF to
HSDF is a crucial step in which the number of tasks in the
streaming application can exponentially grow, e.g., the HSDF
graph of the application Echo [9], derived from a cyclic CSDF
graph with 38 tasks, has over 42000 tasks. Such exponential
growth of the application in terms of number of tasks can lead to
a time-consuming analysis. Moreover, such exponential growth
results in a significant memory overhead for storing the tasks’
code and significant scheduling overhead due to excessive task
preemptions at runtime. In addition, the derived schedule, of a
transformed (C)SDF graph to a HSDF graph, is valid if all multi-
rate tasks in the (C)SDF graph are transformed to functionally
equivalent single-rate tasks in the HSDF graph which requires
modification of the tasks’ code. In contrast, our approach can
be directly applied to streaming applications modeled with a
more expressive MoC, i.e., (C)SDF graph, which avoids the
significant memory and scheduling overheads introduced by large
HSDF graphs as well as modification of the tasks’ code is not
required. In addition, our approach is faster because it avoids the
exponentially complex conversion of (C)SDF to HSDF.

In [9], the authors propose a framework to derive the maximum
throughput of a CSDF graph under a periodic schedule and to
calculate the minimum buffer sizes under a given throughput
constraint. These are formulated as linear programming (LP)
problems and solved approximately. In [10], a scheduling frame-
work for exploration of the trade-off between throughput and min-
imum buffer sizes of (C)SDF graphs under self-timed scheduling
is proposed. In [9], however, the calculation of the minimum
number of processors required for the derived schedule is not
taken into consideration. Moreover, the approaches in [9] and
[10] do not provide hard real-time guarantees for every task in

an application. Therefore, they do not ensure temporal isola-
tion among tasks/applications. As a consequence, the schedule
of already running applications has to be recalculated when a
new application comes in the system. In contrast, our approach
converts the tasks in applications to constrained-deadline periodic
tasks. This conversion enables the utilization of many hard real-
time scheduling algorithms [6] to provide temporal isolation and
fast calculation of the minimum number of processors needed to
schedule the tasks under certain throughput constraint. Moreover,
we propose a simple analytical approach to test for the existence
of a strictly periodic schedule and derive the maximum through-
put of a CSDF graph under the strictly periodic schedule instead
of approximately solving LP problems as done in [9].

III. Background

In this section, we provide a brief overview of the considered
system model, the CSDF MoC, and the SPS [4] framework. This
background is needed to understand the novel contributions of our
work.

A. System Model

The considered MPSoC platforms in this work are homoge-
neous, i.e., they contain a set Π = {π1, π2, · · · , πm} of m identical
processors with distributed memories. The processors execute a
set Γ = {τ1, τ2, · · · , τn} of n periodic tasks. Tasks can be pre-
empted at any time. Every periodic task τi ∈ Γ is represented by
a tuple τi = (Ci, S i,Di,Ti), where Ci is the worst-case execution
time (WCET), S i is the start time, Di is the deadline, and Ti is
the period of the task, where Ci ≤ Di ≤ Ti. When Di = Ti,
the task τi is an implicit-deadline periodic (IDP) task. Otherwise,
the task τi is a constrained-deadline periodic (CDP) task. The
utilization of task τi, denoted as ui, is defined as ui = Ci/Ti, where
ui ∈ (0, 1]. For a task set Γ, uΓ is the total utilization of Γ given by
uΓ =

∑
τi∈Γ ui. Similarly, the density of task τi is δi = Ci/Di and

the total density of Γ is δΓ =
∑
τi∈Γ δi. For the CDP task model,

the sufficient schedulability test for the global optimal scheduling
[11] is δΓ ≤ m. Therefore, the minimum number of processors
according to this test for global optimal scheduling is:

mOPT = �δΓ�. (1)

The other class of scheduling algorithms for periodic task sets
are partitioned algorithms [6] that do not require task migration.
With partitioned scheduling, tasks are first allocated to processors
and the tasks on each processor are scheduled using a uniproces-
sor scheduling algorithm. The minimum number of processors
needed to schedule a task set Γ assuming partitioned scheduling
is:

mPAR = min
x∈N
{x | ∃ x-partition of Γ ∧

∀i ∈ [1, x] : Γi is schedulable on πi}. (2)

B. Cyclo-Static Data Flow (CSDF)

An application modeled as a CSDF [3] graph is a directed
graph G = (V, E), where V is a set of tasks and E is a
set of edges. Task τi ∈ V represents computation and edge
eu = (τi, τ j) ∈ E represents the transfer of data tokens from
task τi to task τ j. Each task τi ∈ V has Pi phases and an
execution sequence [fi(1), fi(2), · · · , fi(Pi)] of length Pi. This
means that the execution of each phase φ of task τi is associated
with a certain function fi(φ). Consequently, the execution time
and the data production/consumption rate for each output/input
edge of task τi are also defined for each phase. Therefore,
each task τi ∈ V has the following sequences of length Pi: a
sequence of the WCETs [Ci(1),Ci(2), · · · ,Ci(Pi)], a predefined
data production sequence of [xu

i (1), xu
i (2), · · · , xu

i (Pi)] on its every
output channel eu, and a predefined data consumption sequence

Design, Automation And Test in Europe (DATE 2019) 1529

e1

e2

e3

e5 e4

τ1
[1, 2, 1]

[1, 0, 1]

[0, 1, 0]

[0, 1, 1]

τ2
[2][1] [1]

τ3
[3]

[1] [1]

τ4
[2, 3]

[2, 0]

[0, 1]

[1, 1]

Fig. 1. A cyclic CSDF graph G. The backward edge e5 in G has 2 initial
tokens that are represented with black dots.

of [yu
i (1), yu

i (2), · · · , yu
i (Pi)] on its every input channel eu. If every

task τi in a CSDF graph G has a single phase, i.e., Pi = 1, then
the graph G is an SDF [2] graph that means the SDF MoC is a
subset of the CSDF MoC.

It has been proven in [3] that a valid static schedule of a CSDF
graph can be generated at design-time if the graph is consistent
and live. A CSDF graph is said to be consistent if a non-trivial so-
lution exists for the repetition vector �q = [q1, q2, · · · , qn]T ∈ N

n.
An entry qi indicates the number of invocations of task τi in one
graph iteration of the CSDF graph. If a deadlock-free schedule
can be found, G is then said to be live. Throughout this paper, we
consider and use consistent and live CSDF graphs. Fig. 1 shows
an example of a cyclic CSDF graph with �q = [3, 2, 1, 2]T . The
sequence of the WCETs of each task τi is shown below its name.
For instance, task τ1 has the sequence of the WCETs [1, 2, 1] time
units and its data production sequence on channel e1 is [1, 0, 1].

C. Strictly Periodic Scheduling Framework

In [4], the strictly periodic scheduling (SPS) framework
for acyclic CSDF graphs is proposed. In this framework, ev-
ery task τi ∈ V in an acyclic CSDF graph G is converted
to a real-time IDP task by deriving its period (Ti) and ear-
liest start time (S i). In this framework, the period (Ti) of
every task τi ∈ V is derived by the following expression:

Ti =
lcm(�q)

qi
· s, ∀τi ∈ V, (3) s ≥

⌈
Ŵ

lcm(�q)

⌉
, (4)

where lcm(�q) is the least common multiple of all repetition entries
in �q, Ŵ = maxτ j∈V {C j.q j} is the maximum task workload of the
CSDF graph, and C j = max1≤φ≤P j

{C j(φ)}. Note that when the

scaling factor s = š = �Ŵ/lcm(�q)�, the minimum period (Ťi)
is derived using Eq. (3). In general, the derived periods of tasks
satisfy the condition q1T1 = · · · = qnTn = α, where α is the graph
iteration period representing the duration needed by the graph
to complete one iteration. Once the task periods are computed,
the throughput of each task τi can be computed as 1/Ti. The
throughput R of graph G, defined as the number of samples the
graph can produce during a given time interval, is determined by
the period of the output task (Tout) and is given by R = 1/Tout.

Then, the earliest start time of task τ j ∈ V , denoted S j, is
calculated such that τ j is never blocked on reading data tokens
from any input FIFO channel connected to it during its periodic
execution, using the following expression:

S j =

{
0 i f prec(τ j) = ∅
maxτi∈prec(τ j)(S i→ j) i f prec(τ j) � ∅ (5)

where prec(τ j) represents the set of predecessor tasks of τ j and
S i→ j is given by:

S i→ j = min
t∈[0,S i+α]

{t : prd
[S i,max{S i,t}+k)

(τi, eu)

≥ cns
[t,max{S i,t}+k]

(τ j, eu), ∀k ∈ [0, α]}, (6)

where S i is the earliest start time of a predecessor task τi,
prd[ts,te)(τi, eu) is the total number of tokens produced by τi to

�� �

τ1

τ4

τ3

τ2

� � �� ���� �� ��

S1 T1

S2 T2

S3 T3

S4 T4
�� ��

Fig. 2. The SPS of the CSDF graph G in Fig. 1 without considering the
backward edge e5. Up arrows are job releases and down arrows job deadlines.

edge eu during the time interval [ts, te), and cns[ts,te](τ j, eu) is the
total number of tokens consumed by τ j from edge eu during the
time interval [ts, te].

In this framework, once the start times of tasks have been cal-
culated, the minimum buffer size of each communication channel
eu connecting tasks τi and τ j is calculated that is the maximum
number of stored data tokens in channel eu during the execution
of τi and τ j in one graph iteration period. The application latency
is also calculated as the elapsed time between the arrival of a data
sample to the application and the output of the processed sample
by the application.

IV. Motivational Example

The goal of this section is to show how the tasks in the cyclic
CSDF graph G, shown in Fig. 1, can be scheduled in strictly peri-
odic fashion using our GSPS framework proposed in Section V.
First, assume that G has no backward edge e5. Then, G has no
cycles and the SPS framework [4] can convert the tasks in G to
IDP tasks represented by the following tuples: τ1 = (C1 = 2, S 1 =
0, Ť1 = 2), τ2 = (2, 3, 3), τ3 = (3, 4, 6), and τ4 = (3, 9, 3). The
schedule for this periodic task set is shown in Fig. 2. Considering
e5, however, this schedule is not valid because there is no data
token available on e5 for τ1 to consume at time 8 and therefore
the strict periodicity of tasks’ execution is no longer guaranteed.
To solve this problem, we must ensure that τ4 can produce a data
token before the fifth firing of τ1, as shown by the dashed line in
Fig. 2. Therefore, e5 introduces a latency constraint between τ1

and τ5. Please note that the derived periods of the tasks, for the
schedule shown in Fig. 2, are the minimum periods (Ťi) by using
the scaling factor s = š = �Ŵ/lcm(�q)� = 1 in Eq. (3). But, there
exist other longer valid periods for a task by using any integer
s > š = �Ŵ/lcm(�q)� = 1 in Eq. (3). By taking s = 3, a new
schedule can be derived that can respect the latency constraint
introduced by backward edge e5 to guarantee strict periodicity
of the tasks’ execution, as shown in Fig. 3. In this schedule,
the tasks are CDP tasks that are represented by the following
tuples in task set Γ ={τ1 = (C1 = 2, S 1 = 0,D1 = 3,T1 = 6),
τ2 = (2, 6, 3, 9), τ3 = (3, 9, 18, 18), τ4 = (3, 18, 3, 9)}. Please
note that the deadline (Di) of each task is derived with the goal
of minimizing the number of required processors to schedule the
tasks. The above example shows that the tasks in the cyclic CSDF
graph G can be converted to a set of CDP tasks, thus, a variety of
hard real-time scheduling algorithms [6] can be applied to the
cyclic CSDF graph G in order to provide temporal isolation, fast
admission control, and easy calculation of the minimum required
processors. For instance, for the set Γ of CDP tasks in Fig. 3,
δΓ = 2.5 and the minimum number of processors for optimal and
partitioned First-Fit Increasing Deadlines EDF (FFID-EDF) [6]
schedulers are mOPT = 3 and mPAR = 3 according to Eq. (1) and
Eq. (2), respectively. Therefore, the goal of our GSPS framework
proposed in Section V is to test for the existence and to derive
such strictly periodic schedule for an application modeled as a
cyclic CSDF graph which implies that the tasks in the graph can
be converted to a set of CDP tasks.

1530 Design, Automation And Test in Europe (DATE 2019)

�� �

τ1

τ4

τ3

τ2

� � �� ���� �� �� �� �� �� �� �� �� �� ��

Fig. 3. The GSPS of the CSDF graph G in Fig. 1.

V. Proposed Approach

In this section, we present our analytical framework, called
Generalized Strictly Periodic Scheduling (GSPS), for scheduling
and converting the tasks in a cyclic CSDF graph to a set of CDP
tasks. First, we test for the existence of a strictly periodic schedule
for a cyclic (C)SDF graph in Section V-A. Then, if a strictly
periodic schedule exists, the period (Ti), deadline (Di), and earli-
est start time (S i) of each periodic (CDP) task are computed, in
Section V-B, such that all data dependencies between the tasks
are satisfied with the goal of minimizing the number of required
processors to schedule the tasks.

A. Existence of a Strictly Periodic Schedule

As explained in Section IV, to find a strictly periodic schedule
for a cyclic (C)SDF graph, an appropriate scaling factor s ≥ š has
to be determined such that all latency constraints introduced by
backward edges are satisfied. Therefore, to test for the existence
of a strictly periodic schedule, the existence of such scaling factor
s must be tested. To do so, we need to analyze the start times of the
tasks belonging to each cycle in the (C)SDF graph. Using Eq. (6)
and the minimum periods of the tasks (Ťi), we can define interval
Δ̌i→ j for each edge eu = (τi, τ j) ∈ E as follows:

Δ̌i→ j = S i→ j − S i − Di (7)

that is the minimum distance between the deadline (Di) of task τi

and the earliest start time (S i→ j) of task τ j due to edge eu. This
means that τ j cannot start execution earlier than Δ̌i→ j time units
after the deadline of τi, i.e.,

S i + Di + Δ̌i→ j ≤ S j. (8)

Otherwise, task τ j cannot find enough data tokens on edge eu

to read in order to execute in strictly periodic fashion. The data
token production and consumption curves on edge eu along with
the Δ̌i→ j interval are illustrated in Fig. 4, when Di = Ci. To
execute task τ j in strictly periodic fashion, the cumulative data
token production of τi on channel eu must always be greater than
or equal to the cumulative data token consumption of τ j from eu.
This is ensured by shifting the consumption curve by Δ̌i→ j time
units to the right after the deadline of τi, as shown in Fig. 4. In
Fig. 4, pointΦ is a critical point determining that the consumption
curve cannot be shifted to the left because the consumption curve
will be above the production curve. Thus τ j cannot start execution
earlier than S i→ j.

To compute S i→ j using Eq. (6) for edge eu, S i must be known.
Therefore, to use Eq. (6) for each edge independently, we assume

S i =

(⌊
γ/

q j∑
l=1

yu
j (((l − 1) mod Pj) + 1)

⌋
+ 1
)
α, (9)

where γ is the number of initial tokens on channel eu,
∑q j

l=1
yu

j (((l−
1) mod Pj)+ 1) is the amount of tokens that τ j consumes from eu

during one graph iteration, and �γ/∑q j

l=1
yu

j (((l − 1) mod Pj) + 1)
is the maximum number of graph iterations where τ j can execute
before starting τi. This S i is sufficiently large to ensure that actual
Δ̌i→ j can be computed. For example, using Eq. (7), Eq. (6), and

S i S i→ j
tΦŤi Ť j

Δ̌i→ j

Di = Ci

prd
cns

Fig. 4. Production and consumption curves on edge eu = (τi, τ j).

Eq. (9) for G in Fig. 1, we have Δ̌1→2 = 1, Δ̌1→3 = 2, Δ̌2→4 = 3,
Δ̌3→4 = −3, and Δ̌4→1 = −7.

The Δ̌i→ j interval is the key component in our analysis to find a
strictly periodic schedule for the tasks in a cyclic (C)SDF graph.
Since the Δ̌i→ j interval is calculated using the minimum period
computed by Eq. (3) with scaling factor s = š, we need to find
how interval Δ̌i→ j changes by taking scaling factor s > š. This is
provided by the following lemma.

Lemma 1. The Δi→ j interval changes proportionally to the
scaling factor s as follows:

Δi→ j =
Δ̌i→ j

š
· s (10)

where š is the minimum scaling factor computed by Eq. (4) and
Δ̌i→ j is the minimum interval computed by Eq. (7).

Proof. Consider an arbitrary edge eu = (τi, τ j) ∈ E where the
data token production and consumption curves can be visualized
similarly to Fig. 4. For the minimum periods (Ťi and Ť j) of tasks
τi and τ j computed using Eq. (3) with s = š, we assume that
the critical point Φ happens after x and y executions of τi and
τ j, respectively, e.g., 3 executions of τi and 2 executions of τ j in
Fig. 4, that implies

S i + Di + x · Ťi = S i→ j + y · Ť j

(7)⇐⇒ x · Ťi = y · Ť j + Δ̌i→ j (11)

(3)⇐⇒ (x · lcm(�q)

qi

− y · lcm(�q)

qj

) =
Δ̌i→ j

š
. (12)

Now, we assume that after taking scaling factor s > š, a new
critical point Φ′ exists after x′ and y′ executions of τi and τ j,
respectively. Therefore, we have

x′ · Ti = y′ · T j + Δi→ j

(3)⇐⇒ (x′ · lcm(�q)

qi

− y′ · lcm(�q)

qj

) =
Δi→ j

s
. (13)

Moreover, for the previous critical point Φ, we know that y
executions of τ j cannot finish before finishing x executions of τi

because the consumption curve cannot be above the production
curve. Therefore, after taking scaling factor s > š, we still have

x · Ti ≤ y · T j + Δi→ j

(3)⇐⇒ (x · lcm(�q)

qi

− y · lcm(�q)

qj

) ≤ Δi→ j

s
. (14)

Then, by substituting Eq. (12) and Eq. (13) in Eq. (14), we have
Δ̌i→ j

š
≤ (x′ · lcm(�q)

qi

− y′ · lcm(�q)

qj

)
(3)⇐⇒ y′ · Ť j + Δ̌i→ j ≤ x′ · Ťi. (15)

However, y′ · Ť j + Δ̌i→ j < x′ · Ťi is not possible due to the fact that
y′ executions of τ j cannot finish before finishing x′ executions of
τi for the critical point Φ′ because the consumption curve cannot
be above the production curve. Therefore, from Eq. (15), we can
only have

y′ · Ť j + Δ̌i→ j = x′ · Ťi

(11)⇐⇒ x′ · Ťi − y′ · Ť j = x · Ťi − y · Ť j

(3)⇐⇒ (x′ · lcm(�q)

qi

− y′ · lcm(�q)

qj

) = (x · lcm(�q)

qi

− y · lcm(�q)

qj

). (16)

From Eq. (12), Eq. (13), and Eq. (16) we can conclude that
Δi→ j/s = Δ̌i→ j/š⇔ Δi→ j = Δ̌i→ j/š · s. �

Design, Automation And Test in Europe (DATE 2019) 1531

Now, we propose a sufficient test for the existence of a strictly
periodic schedule for a cyclic (C)SDF graph by formulating a
theorem and prove it by using Lemma 1.

Theorem 1. For the tasks in a cyclic (C)SDF graph G, a
strictly periodic schedule exists if for every cyclic path 	 =
{τ	1→τ	2→· · ·→τ	x→τ	1} ∈ L in G:

x∑
i=1

Δ̌	i→	((i mod x)+1) < 0. (17)

where L is a set of all cyclic paths in G and Δ̌	i→	((i mod x)+1) is
computed using Eq. (7).

Proof. In a cyclic path 	 = {τ	1→τ	2→· · ·→τ	x→τ	1} ∈ L and
assuming an arbitrary scaling factor s	 ≥ š, the earliest start time
S 	x of task τ	x, when D	i = C	i, ∀τ	i ∈ L, can be computed by
considering its predecessor task τ	(x−1) using Eq. (8) as follows:
S 	x = S 	(x−1)+C	(x−1)+Δ	(x−1)→	x.Now, by recursively computing
S 	(x−1) and substituting it in the above equation, the earliest start
time S 	x of task τ	x is:

S 	x = S 	1 +

x−1∑
i=1

C	i +

x−1∑
i=1

Δ	i→	(i+1). (18)

Due to the edge from τ	x to τ	1, the starting time S 	1 of τ	1 is
constrained by Eq. (8) as follows:

S 	x +C	x + Δ	x→	1 ≤ S 	1. (19)

By using Eq. (10) (Lemma 1) and Eq. (18) in Eq. (19), we have

S 	1 +

x∑
i=1

C	i +
s	
š
·

x∑
i=1

Δ̌	i→	((i mod x)+1) ≤ S 	1

⇔
x∑

i=1

C	i +
s	
š
·

x∑
i=1

Δ̌	i→	((i mod x)+1) ≤ 0. (20)

Eq. (20) holds only if
∑x

i=1 Δ̌	i→	((i mod x)+1) < 0, because
∑x

i=1 C	i,
š, and s	 are positive numbers by definition and we can always
select sufficiently large scaling factor s	 ≥ š. �

B. Deriving Period, Earliest Start Time, and Deadline of Tasks

In this section, we derive the period, deadline, and earliest start
time of each task in a cyclic (C)SDF graph scheduled in strictly
periodic fashion, if such schedule exists according to Theorem 1.

(1) Period: Considering Eq. (20), the minimum scaling factor
s	 that satisfies Eq. (20) is:

s	 = š ·
∑x

i=1 C	i

−∑x
i=1 Δ̌	i→	((i mod x)+1)

.

Since there may exist several cyclic paths in the graph, the
minimum scaling factor s for the graph that guarantees strictly
periodic execution of all tasks is:

s =
⌈
š ·max(max

∀ 	∈L
(

∑x
i=1 C	i

−∑x
i=1 Δ̌	i→	((i mod x)+1)

), 1)
⌉
.

Then, using Eq. (3) and the above computed scaling factor s, the
periods of the tasks can be derived.

(2) Deadline: Since the number of processors needed to sched-
ule a task set Γ of CDP tasks depends on the total density δΓ of
the tasks [6], our objective to derive the deadline of the tasks is
to minimize δΓ in order to minimize the number of processors.
Therefore, we formulate our optimization problem as follows:

Minimize δΓ =
∑
τi∈Γ

Ci

Di
(21a)

subject to: S i + Di − S j ≤ −Δi→ j ∀eu = (τi, τ j) ∈ E (21b)

− Di ≤ −Ci, Di ≤ Ti ∀τi ∈ Γ (21c)

where Eq. (21a) is the objective function and Di is an optimization
variable. In addition, Eqs. (21b) are the constraints given by

TABLE I
Benchmarks used for evaluation.

Application |V| |E| Source
Modem 16 35

[12]
MP3 playback 4 4
MP3 Decoder 15 21

[13]
MPEG-4 Advanced Video Coding (AVC) Decoder 4 6
MPEG-4 Simple Profile (SP) Decoder 5 10
Channel Equalizer 10 22
WLAN 802.11p transceiver 8 9 [14]
TDS-CDMA receiver 16 25 [15]
Long Term Evolution (LTE) 10 15 [16]
Echo 38 82 [9]

Eq. (8), and Eqs. (21c) bound all optimization variables in the
objective function by the WCET Ci and period Ti derived in
Section V-B(1). S i and S j are implicit variables which are not
in the objective function Eq. (21a), but still need to be considered
in the optimization procedure.

(3) Earliest Start Time: To derive the earliest start times of the
tasks, we use the derived deadline of the tasks in Section V-B(2)
in the following optimization problem:

Minimize
∑
τi∈Γ

S i (22a)

subject to: S i − S j ≤ −Δi→ j − Di ∀eu = (τi, τ j) ∈ E (22b)

− S i ≤ 0 ∀τi ∈ Γ (22c)

where Eq. (22a) is the objective function and S i is an optimization
variable. In addition, Eqs. (22b) are the constraints given by
Eq. (8), and Eqs. (22c) bound all optimization variables in the
objective function to be greater or equal to zero. Given that all
variables in both problems Eqs. (21) and (22) are integers and
both the objective functions and the constraints are convex, the
problems are integer convex programming problems [17], which
can be solved by using the existing CVX solver [18].

VI. Evaluation

In this section, we present experiments to evaluate our
GSPS framework proposed in Section V. As explained earlier,
our GSPS framework enables the application of many hard real-
time scheduling algorithms [6], which offer properties such as
hard real-time guarantees, temporal isolation, fast admission
control and scheduling decisions for new incoming applications,
and easy and fast calculation of the number of processors needed
for scheduling the tasks, on streaming applications modeled as
cyclic (C)SDF graphs. However, having these properties is not for
free. Thus, the goal of these experiments is to show what the cost
is for having these properties using our GSPS framework in terms
of the maximum achievable application throughput, the applica-
tion latency, and the buffer sizes of the communication channels
compared to scheduling frameworks, such as periodic scheduling
(PS) [9] and self-timed scheduling (STS) [10], which also can
be applied directly on cyclic (C)SDF graphs but do not provide
such properties. The experiments have been performed on a set
of ten real-life streaming applications, modeled as cyclic (C)SDF
graphs, taken from different sources. These applications are listed
in Table I. In this table, |V | and |E| denote the number of tasks and
communication channels in a (C)SDF graph, respectively.

The results of the evaluation for throughput R (one token/time
units), latency L (time units), and buffer sizes of the communi-
cation channels M (number of data tokens) of the applications
under our GSPS, PS, and STS are given in Table II. The
throughput, latency, and buffer sizes of the applications under
our GSPS, denoted by RGSPS

out , LGSPS, andMGSPS, are given in
columns 2, 3, and 4 in Table II, respectively. Columns 7 and 10
show the ratio between the throughput of the output tasks under
our GSPS and PS and STS, respectively. Looking at column
7, we can see that our GSPS can achieve the same throughput

1532 Design, Automation And Test in Europe (DATE 2019)

TABLE II
Comparison of different scheduling frameworks.

Application
GSPS PS [9] STS [10]

RGSPS
out [1

t.u.
] LGSPS[t.u.] MGSPS[Tkn] mGSPS

OPT
mGSPS

PAR

RGSPS
out

RPS
out

LGSPS

LPS
MGSPS

MPS
RGSPS

out

RSTS
out

LGSPS

LSTS
MGSPS

MSTS

Modem 1/16 64 50 10 10 1 2.78 1.25 1 2.78 1.25
MPEG-4 AVC 1/7632 15264 6 4 4 1 1.04 1 1 1.04 1
MPEG-4 SP 1/3960 11088 881 2 2 1 2.35 2.02 1 2.35 2.02

MP3 Decoder 1/3732288 33590592 42674 4 4 1 5.46 3.06 1 6.70 -
MP3 playback 1/25 46355 3958 3 4 1 1.12 1.22 0.91 1.30 -

WLAN 1/6 18 14 7 8 1 1.5 1.07 0.92 1.5 0.93
TDS-CDMA 1/675000 792829 44 7 8 1 1.62 1.19 1 1.62 1.19

LTE 1/280 1284 27 5 6 1 2.99 1.28 1 2.99 1.28
Channel Equalizer 1/9264 18989 24 7 7 0.91 1.57 1 0.66 - 1

Echo 1/26882376000 80754156016 30287 13 19 0.19 15.75 1.08 0.19 - 1.08

obtained by PS for 8 out of 10 applications. Looking at column
10, we can also see that the throughput under our GSPS is
equal or very close to the throughput under STS, that is the
optimal scheduling in terms of throughput, for the majority of
the applications. In both comparisons, the biggest difference is in
the case of Echo. This is mainly because, our GSPS schedules
all the phases of a task in a CSDF graph as a periodic task where
different firing of the task corresponds to one of the phases of
the task. Therefore, in contrast to PS and STS, the starting time
of the execution phases of the task is delayed under our GSPS.
As a consequence, if a multi-phase task exists in a cycle, a larger
scaling factor may be required by our GSPS to find a strictly
periodic schedule that results in a lower throughput compared
to PS and STS. From these comparisons, we can conclude that
although our GSPS results in a lower throughput for a few
applications compared to PS and STS, achieving the properties
of the hard real-time scheduling algorithms is for free in terms
of the maximum achievable throughput for the majority of the
applications under our GSPS.

For processor requirements under our GSPS, we compute the
minimum number of processors under optimal and partitioned
FFID-EDF [6] schedulers by using Eq. (1) and Eq. (2), denoted
with mGSPS

OPT
and mGSPS

PAR
in Table II, respectively. However, for PS,

the calculation of the number of processors was not considered
in [9], and for STS, finding the minimum number of processors
requires complex design space exploration to find the best allo-
cation which delivers the maximum achievable throughput [7].
This fact shows one advantage of using our GSPS compared to
using PS and STS when our GSPS gives the same throughput as
PS and STS.

Let us now analyze the latency and the buffer sizes of the
applications. Columns 8 and 11 gives the ratio of the maximum
latency of the applications under our GSPS to the latency of the
applications under PS and STS, respectively. As we can see, the
average latency of the applications under our GSPS is 3.8 and
2.5 times larger than the latency under PS and STS, respectively.
Similarly, the ratio of the buffer sizes of the applications under
our GSPS to the buffer sizes under PS and STS is given in
columns 9 and 12, respectively. From these columns, we can see
that the buffer sizes in our GSPS are on average 1.4 and 1.21
times larger than the buffer sizes under PS and STS. Obviously,
the larger latency and buffer sizes of the channels for the appli-
cations are the main costs in our GSPS framework to enable the
utilization of hard real-time scheduling algorithms on streaming
applications modeled as cyclic (C)SDF graphs. Please note that,
our GSPS causes larger latency and buffer sizes because of the
minimization of the number of processors we perform using
Eqs. (21), while PS and STS cause lower latency and buffer sizes
because they do not perform such minimization. Therefore, if we
also do not perform the processor minimization and only perform
minimization of the start times of the tasks using Eqs. (22) with
Di = Ci,∀τi ∈ Γ, our GSPS can achieve latency and buffer sizes

closer or equal to the latency and buffer sizes of the applications
under PS and STS.

VII. Conclusion

In this paper, we have presented our GSPS framework to
test for the existence of strictly periodic schedule for streaming
applications modeled as cyclic CSDF graphs. Then, if such
schedule exists, our GSPS converts each task in the graph to a
constrained-deadline periodic task. This conversion enables the
utilization of many hard real-time scheduling algorithms which
offer properties such as temporal isolation and fast calculation
of the required number of processors. Finally, we show, on a
set of real-life benchmarks, that strictly periodic scheduling is
capable of delivering equal or comparable throughput to existing
approaches for the majority of the applications we experimented
with.

VIII. Acknowledgment

This research is supported by The Netherlands Organisation for
Scientific Research (NWO) under project CPS-P3 (12695).

References

[1] A. Gerstlauer et al. Electronic system-level synthesis methodologies.
IEEE Trans. on CAD of Integrated Circuits and Systems, 2009.

[2] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987.

[3] G. Bilsen et al. Cycle-static dataflow. IEEE Transactions on signal
processing, 44(2):397–408, 1996.

[4] M. Bamakhrama and T. Stefanov. On the hard-real-time scheduling of
embedded streaming applications. DAES, 17(2):221–249, 2013.

[5] J. Spasic et al. On the improved hard real-time scheduling of cyclo-static
dataflow. ACM Trans. Embedded Computing Systems, 15(4):68, 2016.

[6] R. I. Davis and A. Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Comput. Surv., 43(4):35, 2011.

[7] S. Stuijk et al. Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs. In DAC, 2007.

[8] H. Ali et al. Generalized extraction of real-time parameters for
homogeneous synchronous dataflow graphs. In PDP, 2015.

[9] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. Periodic schedules
for cyclo-static dataflow. In ESTIMedia, 2013.

[10] S. Stuijk et al. Throughput-buffering trade-off exploration for cyclo-static
and synchronous dataflow graphs. IEEE Transactions on Computers,
57(10):1331–1345, 2008.

[11] T. Baker and S. Baruah. Schedulability analysis of multiprocessor spo-
radic task systems. In Handbook of Real-Time and Embedded Systems.
CRC Press, 2007.

[12] Sdfˆ 3, http://www.es.ele.tue.nl/sdf3/download/examples.php.
[13] B. D. Theelen et al. Scenario-aware dataflow. Technical Report ESR-

2008-08, 2008, http://www.es.ele.tue.nl/sadf/examples.php.
[14] P. S. Kurtin, J. PHM Hausmans, and M. JG Bekooij. Combining offsets

with precedence constraints to improve temporal analysis of cyclic real-
time streaming applications. In RTAS, 2016.

[15] O. Moreira. Temporal analysis and scheduling of hard real-time radios
running on a multi-processor. ser. PHD Thesis, TU Eindhoven, 2012.

[16] F. Siyoum et al. Analyzing synchronous dataflow scenarios for dynamic
software-defined radio applications. In SoC, 2011.

[17] D. Liu et al. Resource optimization for csdf-modeled streaming
applications with latency constraints. In DATE, 2014.

[18] M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software for disciplined
convex programming, 2008.

Design, Automation And Test in Europe (DATE 2019) 1533

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

