
Theoretical and Practical Aspects of Verification of
Quantum Computers

Yehuda Naveh
IBM Research – Haifa

Haifa, Israel

naveh@il.ibm.com

Elham Kashefi
School of Informatics

University of Edinburgh

Edinburgh, UK and

CNRS LIP6

Universite Pierre et Marie Curie

Paris, France

ekashefi@inf.ed.ac.uk

James R. Wootton
University of Basel

Basel, Switzerland

james.wootton@unibas.ch

Koen Bertels
QuTech Research Centre

Delft University of Technology

Delft, The Netherlands

k.l.m.bertels@tudelft.nl

Abstract—Quantum computing is emerging at a meteoric pace
from a pure academic field to a fully industrial framework.
Rapid advances are happening both in the physical realisations
of quantum chips, and in their potential software applications.
In contrast, we are not seeing that rapid growth in the design
and verification methodologies for scaled-up quantum machines.
In this work we describe the field of verification of quantum
computers. We discuss the underlying concepts of this field,
its theoretical and practical challenges, and state-of-the-art ap-
proaches to addressing those challenges. The goal of this paper
is to help facilitate early efforts to adapt and create verification
methodologies for quantum computers and systems. Without such
early efforts, a debilitating gap may form between the state-of-the-
art of low level physical technologies for quantum computers, and
our ability to build medium, large, and very large scale integrated
quantum circuits (M/L/VLSIQ).

Keywords—Quantum computing, verification, design automa-
tion, very large scale integrated quantum circuits, VLSIQ

I. INTRODUCTION

Quantum computing has undergone an unprecedented shift
in recent years. From pure academic sub-fields of physics and
computer science, it has emerged as a viable computation
scheme with prospects of being able to solve crucial and
meaningful tasks in the not distant future [27]. Major advances
in cooling techniques and material science have helped bring
about this revolution, allowing us to reach coherence times
three or four orders of magnitude longer than the basic com-
putation time of a single quantum gate [39]. These advances
in the physics of quantum computation have also triggered the
development of many application schemes that can naturally
exploit of the power of quantum computation [6].

In contrast to the huge advances in physical implementation
and in applications of quantum computing, we do not see a
similar surge of work in the fields of design and verification
methodologies and automation for quantum computers. We
feel that without such a surge, we may very rapidly find a
debilitating gap between our advances in the low-level capa-
bilities and our abilities to integrate and scale those capabilities
into a fully functional system.

Looking at the history of design and verification method-
ology for classical computers, we see that many currently

enshrined best practices evolved through lengthy processes
of trial and error. They emerged from painful gaps in the
ability of design and verification automation to keep pace with
low-level technology advancements. When we look forward
into a world with practical quantum computers, we should
learn from this experience in two ways. First, we should
understand that significant amounts of attention, resources,
and rigour need to be devoted to design and verification
methodologies as early in the process as possible, even if
initially it appears that the actual hardware is small in number
of bits and simple in its complexity. Second, we should closely
look at the processes leading to our current classical design
and verification methodologies, and attempt to learn and find
their parallels in quantum computation. This will allow us
to adopt the classical methodologies where they are relevant
to the quantum case, even if major changes are needed on
the way. It will also allow us to identify the gaps where
entirely new quantum design and verification methodologies
need to be invented. This will help us avoid stumbling into the
same pitfalls that classical computing design and verification
encountered in its long and pioneering history.

The purpose of this paper is hence to bring to the front of
the design automation community the theory, the major chal-
lenges, and the state-of-the-art solutions, in the verification of
quantum computers. As we will show, some of the verification
aspects of quantum computers are inherently very different
from the classical case. Still, the overall goal is the same —
to verify that the computer provides the results according to
its specification. This dichotomy between the similar goal and
the sometimes very different challenges means that only wide
expertise in classical verification methodologies, combined
with deep levels of new research, will bring us to the point
where we are fully ready for industrial-level verification tasks
of quantum computers.

We organise the paper as follows: In the next section we
provide broad background of the field of quantum computation.
Section III dives into the specialised field of quantum error
correction, which is one of the most pervasive topics in quan-
tum computing and its verification. Section IV provides some
of the theoretical tools for dealing with quantum verification,
and state-of-the-art approaches in using those tools. Section V
maps the methodologies for verification of quantum computers,

727978-3-9819263-0-9/DATE18/ c©2018 EDAA

and draws initial analogues between classical and quantum
methodologies. Section VI concludes this paper.

II. BACKGROUND

Research on quantum computing started in 1982 when
Richard Feynman suggested to use a quantum system to
simulate another quantum system [18]. The basic idea is to
exploit two fundamental phenomena of quantum mechanics,
superposition and entanglement. Together, this results in a
new computation scheme, allowing the polynomial solution of
classes of problems that are currently intractable by classical
computers [36].

Superposition A classical bit has two exclusive states,
0 or 1 and can only be in one state at any point in time.
In contrast, the elementary unit of quantum computers, the
quantum bit or qubit, can reside not only in a single basis
state | 0〉 or | 1〉 but also in a superposition of both states,
|ψ〉 = α | 0〉+ β | 1〉. α, β ∈ C are probability amplitudes that
satisfy |α|2 + |β|2 = 1. |α|2 and |β|2 represent the probability
of getting the measurement result +1 or −1, corresponding
to states | 0〉 or | 1〉 respectively, when measuring the qubit
in the computational basis. The act of measuring the qubit
will project the state of the qubit onto one of the basis states,
implying that a quantum state cannot be measured directly
without losing the stored information.

Entanglement and quantum interference In classical
computing, a system composed of n classical bits can only
store and process one of the 2n possible states at a time.
However, in quantum computing, multiple qubits can be com-
bined to form a single state, not separable into individual-
qubit states. This is called entanglement. Together with su-
perposition, this means that our most general state becomes
|ψ〉 = α0 | 0 · · · 00〉 + α1 | 0 · · · 01〉 + · · · + α2n−1 | 1 . . . 11〉,
where αi ∈ C and

∑
|αi|2 = 1. In contrast to classical

probability theory, the αi’s are probability amplitudes, not
probabilities, meaning that they can take negative values. A
quantum algorithm may then sum up states with positive
and negative amplitudes (or more generally, states with any
phase difference between them) for any entangled set of bits,
resulting in a smaller absolute value of the amplitude of the
final state. This destructive interference phenomena, unheard of
in classical computation — not even in probabilistic, analog,
or parallel computations, is presumably what gives quantum
algorithms their extra power.

A quantum gate can change the state of qubits. As the
qubit state can be represented by a vector, a quantum gate,
which is a reversible operation by nature, can be represented
by a unitary matrix. The simplest quantum gate is that acting
on a single qubit. For example, the identity and three Pauli
matrices

I ≡
[
1 0
0 1

]
X ≡

[
0 1
1 0

]
Y ≡

[
0 −i
i 0

]
Z ≡

[
1 0
0 −1

]

(1)

represent four common single-qubit gate operations: I repre-
sents a wait-gate operation applied to the qubit. X represents
a bit-flip operation, as after being applied with an X gate,
the qubit state transforms from |ψ〉 = α | 0〉 + β | 1〉 to
|ψ′〉 = β | 0〉 + α | 1〉. Similarly, a Z gate represents a phase
flip for the qubit, transforming its state to |ψ〉 = α | 0〉−β | 1〉.

A common multi-qubit gate is CNOT acting on two qubits.
The second (target) qubit will bit-flip conditioned on the first
(control) qubit:

CNOT ≡

⎡
⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ , (2)

transforming the two-qubit entangled state |ψ〉 = α | 00〉 +
β | 01〉+γ | 10〉+ δ | 11〉 to |ψ′〉 = α | 00〉+β | 01〉+γ | 11〉+
δ | 10〉.

Any quantum gate acting on n qubits can be represented
as a 2n × 2n matrix. If a gate is applied on a subset of n
qubits, all the 2n complex numbers in the state will change
accordingly [36]. This implies extremely large intrinsic paral-
lelism. Just as for classical gates, there are also universal sets
of quantum gates. An example is {H,T,CNOT}, where

H ≡ 1√
2

[
1 1
1 −1

]
and T ≡

[
1 0
0 eiπ/4

]
. (3)

Hence, superposition, entanglement, and quantum interference,
together with the possibility of operations through a universal
set of gates, lay the foundation for the universality and the
exponential speedup of quantum computer.

Even though the potential of quantum computing is huge,
the Achilles heel of quantum technology is the fragility of
the qubits. Through interaction between the qubits and the
environment, the information in the qubits leaks into the
environment, in a process called decoherence. The qubits’
fragility is therefore one of the main challenges for building
and using a quantum computer as this behaviour causes
errors during computation. Quantum error correction (QEC)
mechanisms are needed to make quantum computing fault-
tolerant and is therefore a key component of any quantum
computer architecture, as will be discussed in section III.

The challenges to build a circuit-model-based quantum
computer – commonly referred to as the standard universal
quantum computer – are huge. One of the main physics
challenges is to increase the number of qubits per chip that can
be entangled as well as to make their lifetimes longer and their
operation fidelity higher. Several physical systems are being
explored for quantum computing such as photons, quantum
dots, trapped ions, and superconductors. Current state-of-the-
art quantum chips contain around 10 qubits [21, 28, 16, 9,
48, 42]. As superconducting qubits are seen as one of the
most promising technologies, we assume this for the rest of
the paper [21, 28, 16, 13]. The engineering challenges focus on
the technology necessary to provide high speed control logic in
a way which is scalable, flexible, and with high fidelity. This
paper focuses on the challenges related to errors appearing
in the computation process, ways to avoid or correct them,
and methods for verifying overall correctness after taking into
account the inherent presence of errors.

III. QUANTUM ERROR CORRECTION

A. Overview

Managing noise in quantum systems is arguably the biggest
challenge for building fault-tolerant and scalable quantum

728 Design, Automation And Test in Europe (DATE 2018)

computers. Indeed, the majority of all resources in any fault-
tolerant quantum computation will be dedicated to this task.

For example, let us consider the usual paradigm of quantum
error correction [30]. This requires the repeated application
of a process to extract syndrome information. The required
process involves all qubits, and requires readout of a signif-
icant fraction of them. The repetition of this process must
be constant, with each round completed as fast as possible.
Furthermore, the number of physical qubits required will be
vastly greater than the number of logical qubits: the quantum
information of which we wish to encode reliably.

Implementing this process will be a massive technical
challenge. As will the handling of the vast amounts of classical
information that it extracts, which must be processed to
determine what errors occurred and how to compensate for
their effects. And all this computational effort is required to
simply store the logical qubits.

To perform quantum computation with all additional physi-
cal qubits, we can use a method such as code deformation [11].
This makes slight modifications to the error correction pro-
cedure from one round to the next. The small changes do
not affect the fault-tolerance of encoded qubits, but they do
change the nature of the encoding. The cumulative effect can
be to implement the basic operations required to process the
encoded quantum information.

It is therefore no overstatement to assert that quantum
error correction is essentially all that a fault-tolerant quantum
computer will do. Computation can then be regarded as a
bonus feature that we can trick the error correction process
into implementing.

Of course, computation is more than just a side effect. It is
the reason we are doing quantum error correction in the first
place. Methods of verification based on the details of how the
encoded logical qubits are processed are therefore necessary to
ensure the high-level functionality of a quantum device. But
to probe the vast majority of what a fault-tolerant quantum
computer does, we can look to quantum error correction.

Many experiments have already been done based on tasks
in this area. This includes proof-of-principle demonstrations
of error detection [13, 31, 44, 41], as well as correction of a
limited set of errors [28, 46]. More basic tests of the required
techniques have also been performed for state preparation [37],
syndrome measurement [40] and code deformation [47].

Despite these advances, no results have yet been published
that demonstrate a logical qubit whose fidelity is higher
than the physical qubits in which it is encoded. However, a
necessary condition for this has been achieved: it has been
shown that a logical bit encoded in a physical qubit can be
protected using the techniques of quantum error correction [28,
46].

These experiments used a quantum implementation of
the repetition code. Having no need to maintain arbitrary
superpositions of the states | 0〉 and | 1〉, this is much simpler
and more adaptable than most quantum error correcting codes.
This allows it to be realised on devices too small, or whose
connectivity is too limited, to implement other codes [21, 9].
Nevertheless, it uses all the basic techniques of quantum error
correction, and so serves as a basic test of its effectiveness.

The results of these experiments allow us to probe the two
standard assumptions used for quantum error correction: that
the probability of an error on the logical information decays
exponentially with the size of the code, and that it increases no
faster than linearly with the number of error correction rounds.

The experiment of Ref. [28] considered two sizes of
repetition code: one with a total of 5 physical qubits, and one
with a total of 9. The effectiveness of these was then analysed
over a total of eight syndrome measurement rounds. The results
showed that the fidelity of the stored bit was significantly
better than that of a bit stored in a single physical qubit for
all cases. The limited number of code sizes meant that the
exponential decay of failure rate with size could not be probed,
though increasing size was found to decrease the failure rate
significantly. The large number of rounds allowed the scaling
of many rounds to be studied. It was found that the increase
of logical error probability did not sharply deviate from linear
scaling, but some evidence of faster than linear scaling was
found. Since the dynamics of error processes are known to
lead to non-Markovian effects, this result is not unexpected.
However, it does serve to underline the importance of further
experimental and theoretical studies of how such effects will
affect quantum error correction.

The experiment of Ref. [46] considered the other extreme:
Only a single round of syndrome measurement was applied be-
fore final readout. This is due to the fact that post-measurement
access to a qubit can come with significant technical chal-
lenges. The measurement itself also requires long timescales
in comparison to other operations. For example, measurements
in the experiment of Ref. [28] took over 500 nanoseconds
(ns), whereas other operations required no more than 50 ns.
Such challenges will be addressed in due course, but current
development of prototype quantum devices often focuses on
expanding the number of qubits that can be achieved, rather
than the number of rounds of measurements and classical
feedback. Experiments with a single syndrome measurement
round will therefore be more accessible in the short term.

Though the experiment of Ref. [46] used only a single
syndrome measurement round, codes of many different sizes
where studied, with total physical qubit numbers ranging from
5 to 15. The results are therefore useful to assess the decay of
the logical error probability with code size d. The results from
this experiment are shown in Fig. 1. The results are indeed
consistent with an exponential decay though, again, results
from a finite interval such as this are far from conclusive. As
devices get ever larger, repetition codes of larger sizes must
be probed to ensure that this exponential decay remains.

B. Single round repetition code

Let us now consider the single round repetition code
experiment [46] in more detail, as a concrete example of a
test of quantum error correction.

When implemented classically, the repetition code is the
simplest form of error correction. The encoding step is
achieved by simply copying the information across multiple
qubits. The decoding step is done by majority voting.

Let us use d to represent the number of repetitions.
Consider a d = 5 instance of this code with which we wish

Design, Automation And Test in Europe (DATE 2018) 729

Figure 1. Logical error probabilities for encoded bit values 0 and 1. d is the
actual repetition code size (see discussion in Section III-B).

to encode the bit value 0. This is done by preparing the string
00000. If errors cause some of these bits to flip, resulting in
an output such as 01001, the 0 value is still in the majority.
Decoding would then recover the stored value successfully. If
one more error had occurred, however, giving an output such
as 01101, the value 1 would be in the majority. This would
cause the decoding to obtain the incorrect value of 1. Such
a mistake is referred to as a logical error. The probability of
logical errors occurring will be the main figure of merit used
to assess the effectiveness of the code.

To minimise the probability of a logical error over an
extended period of time, the decoding can be applied con-
tinuously. For a classical implementation, this can be done
by continuously reading out the values of each bit, finding
the minority and flipping to the majority value. This would
not only give information useful in determining where errors
have occurred, but also provide enough information to read
out the stored information during each round. Such behaviour
is not allowed in a quantum implementation. Though only
a bit of information can be protected, we must still treat it
as if it were a stored qubit in order to provide a test of the
techniques of quantum error correction. Extracting information
regarding a logical qubit during error correction would result
in changes to the quantum state, which would themselves be
errors. Quantum error correction must therefore be careful
to extract information only about the errors, with no logical
information revealed until final readout.

A process that can be used for this is shown in Fig. 2,
which represents a quantum circuit. On the left hand side, all
qubits are initialised in state | 0〉. On the right hand side, the
qubits are measured, resulting in an output of 0 or 1 for each.

The qubits are labelled alternately as code qubits and
ancilla qubits. The former are those on which the bit value to
be stored is repeated. This example shows a stored bit value
1, achieved by applying the bit-flip X gate to all code qubits.

Figure 2. Circuit for quantum repetition code with five physical qubits. This
example shows an encoded bit value of 1.

The ancilla qubits are left in state | 0〉 in all cases.

To extract information about errors, two rounds of CNOT
gates are applied. Here, the value of the ‘target’ qubit (that
connected to the gate with a large ’+’ dot) is replaced by the
XOR of the two inputs. The ancilla qubits serve as the target in
all cases, with their two neighbouring code qubits as control.
Given the initial | 0〉 value of the ancilla bits, the end effect is
for each ancilla state to represent the XOR of its neighbouring
code qubits. By the nature of the repetition encoding, the code
qubits should always have equal value when all is well, and so
each such XOR should always return 0. Measuring an ancilla to
be in state 1 is therefore a signature that an error has occurred.
This is the syndrome information, which tells us about errors
without revealing any of the encoded information. With this
we can attempt to infer the error and mitigate its effects. This
process can be repeated many times in general, but we consider
only one round in this case.

After the syndrome measurements, final readout is per-
formed. This includes a measurement of the code qubits, and
therefore extracts the encoded logical information as well as
syndrome information.

The whole process shown in Fig. 2 for a d = 3 code can
be straightforwardly scaled up to larger cases. Note that the
code requires d code qubits and d − 1 ancilla qubits, and so
2d− 1 in all.

For a scalable fault-tolerant quantum computer, the decod-
ing process will be done with fast algorithms which allow for
constant feedback and control on the code qubits. However,
due to the limited size of the problem in the experiment of
Ref. [46], lookup table decoding can be used instead. This table
can be populated with experimental data, allowing decoding
that is tailored to the exact nature of noise in the device.

Specifically, a large number of repetition code instances
are run for the purpose of populating the lookup table. This
consists of large number of runs in which the bit value 0 is
encoded, and the same for an encoded 1. In each case, the
number of times each possible 2d − 1 bit output occurs is
noted. Assuming that two possible bit values occur with equal
probability, this information directly forms the lookup table.

Whenever an instance of the repetition code is run later,
and its output needs to be decoded, we simply look at which
encoded value had that output occur the most in the lookup
table data. This is then assumed to be the value that was
encoded for the current instance. If this is not correct, the
output of the decoding is not the same as the original encoded
value. This is a logical error. By running many repetition code
samples, we can estimate the probability of this occurring.

730 Design, Automation And Test in Europe (DATE 2018)

For example, the output 00000 is more likely to occur for a
d = 3 code with encoded 0 (for which it represents the case of
no errors) than for encoded 1 (for which it would result from
errors on all code qubits). This result is therefore decoded as
0. This will most likely be the correct decoding, but since it is
possible for the 00000 output to occur for an encoded 1, this
decoding will sometimes lead to logical errors.

It should be noted that this decoding procedure could also
be performed using only the outputs of the code qubits. This
could lead us to question why the ancilla qubits are required at
all. The answer is simply that it would not be an instance of
quantum error correction otherwise. With the full syndrome
measurement round in place, the process contains all the
techniques of quantum error correction. Implementation and
analysis of this then allows us to verify that these processes
work as they should, and that the imperfections in the qubits,
measurements, and gates do not cause fatal problems within
the scope that the experiment considers.

The main point to verify is that the logical error probability
decays exponentially with system size. The reason why this is
expected can be seen from considering only the code qubits.
Errors must flip the majority of bits, at least �d/2�, in order
to confuse the decoding. If such errors occur independently
with probability p, the probability of such events scales with
p�d/2� (note that this is a slight oversimplification for clarity,
neglecting entropic effects). Though detailed analysis is left
to Ref. [46], such exponential scaling can be seen in Fig. 1,
obtained from a 16 qubit IBM device [26].

Fig. 1 also contains additional data not presented in
Ref. [46]. This data is available from the source code for the
experiment, available at [45]. It shows the effect of truncating
a code. For example, consider a d = 9 code run in the normal
way. However, when it comes to decoding the final readout,
the results for the last code and ancilla qubit are ignored. This
effectively leads to a d = 7 code. Ignoring the next two qubits
would give a d = 5 code, and so on. This allows us to compare
a normally implemented code with a given d with a larger one
truncated down to d.

It can be expected that the truncated code would perform
slightly worse. This is due to the final code qubit being
involved in a CNOT whose results are not used. The negative
effects of its imperfections would then outweigh any positive
effects of the information it obtains. However, if the truncated
code were to perform significantly worse, it would raise
questions as to how noise is distributed through the code by
the CNOT gates. The presence of such non-local effects could
be highly dangerous for quantum error correction.

Fortunately, the results in Fig. 1 suggest the former. Results
from a truncated d = 8 code and a truncated d = 3 code
are shown. They show good agreement to each other at those
points at which they coincide, as well as good agreement to
results from full codes.

The description here of quantum error correction and its
verification has been brief and qualitative. More details can
be found in the references given, but many more details are
also yet to be fixed. There is much that can be explored, and
new methodologies to construct. For members of the classical
verification community who wish to contribute, exploring the

source code of this repetition code experiment could be a good
place to start [45].

IV. THEORY OF QUANTUM VERIFICATION

Global Vision

Over the next five to ten years we can expect to see
a state of change as quantum technologies become part of
the mainstream computing landscape. Quantum computing
machines are likely to enter the market with high variability in
terms of architectures and capacities. Adopting and applying
such a highly variable and novel technology may be both costly
and risky for any individual company or research group. This
is exacerbated by the fact that the quantum approach has an
acute verification and validation problem. First, since classical
computations cannot scale-up to the computational power of
quantum mechanics, verifying the correctness of a quantum-
mediated computation is challenging. Second, the underlying
quantum structure resists classical certification analysis. The
required experiments are not beyond our reach and have been
implemented, but these are quantum experiments simulating
quantum theory. So even if we assume the correctness of
quantum theory, we are not able to verify the experimental
result due to the superior computational capacity of quantum
systems. What makes quantum not classical, makes its veri-
fication not classical either. Solving this challenge is a key
milestone on the way to make the translation from theory to
practice possible.

Encrypted Verification: The ability to compute with en-
crypted data, while hiding the underlying function, has opened
a new approach toward verification, through the detection of
a cheating server [10, 5, 38, 20, 8, 22]. When a user wants
to compute the solution to a classical problem in NP, he or
she can efficiently verify the result provided by a server. But
a dishonest server is not so easy to detect in other cases such
as quantum simulation [1] or Bounded-error Quantum Polyno-
mial time (BQP) problems [14]. The challenge is to mimic a
similar construction where an efficiently testable witness can
guarantee the correctness of the entire computation. We have
shown, as a proof-of-principle, that one can bootstrap a small
quantum device to test a bigger one [20]. The path forward
is to adapt these generic verification techniques to the specific
architecture and constraints of various hardware platform that
are emerging as quantum technology matures.

Generally speaking there are three levels of (quantum)
verification, all of which are important and require to be tailor-
made for the task in hand. The first level is testing the devices
in a setting where we trust the parties involved. Techniques
for randomised benchmarking and certain hypothesis testing
belong to this part. The second level is when we want to verify
a computation or certain fundamental property without trusting
our devices. Post-hoc verification and hypothesis testing for
quantum advantage scenarios belong here. Finally, one could
exploit verification techniques based on performing a hidden
computation. In this view, verification defines an interface
platform that enables one to deal at the same time with the
practical experimental restrictions as well as effect of noise on
the desired applications.

Interactive Proof System: In trying to address the verifi-
cation challange we return to complexity theory. The primary

Design, Automation And Test in Europe (DATE 2018) 731

complexity class that we are interested in is BQP, which
is the class of problems that can be solved efficiently by a
quantum computer. We are willing to allow our notion of
verification to include interactive communications between the
user and the device, leading to a family of protocols known
as an interactive-proof system. Such a protocol consists of two
entities: a verifier and a prover. The verifier is a Bounded-error
Probabilistic Polynomial time (BPP) machine, whereas the
prover has unbounded computational power. Given a problem
for which the verifier wants to check a reported solution, the
verifier and the prover interact for a number of rounds which
is polynomial in the size of the input to the problem. At
the end of this interaction, the verifier should accept a valid
solution with high probability, and reject, with high probability,
an invalid solution. The class of problems which admit such
a protocol is denoted Interactive Polynomial time (IP). It is
known that BQP ⊆ IP, which means that every problem which
can be efficiently solved by a quantum computer admits an
interactive-proof system. One would be tempted to think that
this solves the question of verification, however, the situation
is more subtle. Recall that in IP, the prover is computationally
unbounded, whereas for our purposes we would require the
prover to be restricted to BQP computations. Hence, the
question that we would like answered and, arguably, the
main open problem concerning quantum verification is the
following:

(Verifiability of BQP computations). Does every problem
in BQP admit an interactive-proof system in which the prover
is restricted to BQP computations?

This complexity theoretic formulation of the problem was
considered by Gottesman, Aaronson and Vazirani [2, 43]
and, in fact, Scott Aaronson has offered a 25$ prize for its
resolution [2]. While, as of yet, the question remains open,
one does arrive at a positive answer through slight alterations
of the interactive-proof system. Specifically, if the verifier
interacts with two or more BQP-restricted provers, instead
of one, and the provers are not allowed to communicate
with each other during the protocol, then it is possible to
efficiently verify arbitrary BQP computations [38, 23, 25, 33,
19, 34, 12]. Alternatively, in the single-prover setting, if we
allow the verifier to have a constant-size quantum computer
and the ability to send/receive quantum states to/from the
prover then it is again possible to verify all polynomial-time
quantum computations [5, 20, 22]. Note that in this case,
while the verifier is no longer fully classical, its computational
capability is still restricted to BPP since simulating a constant-
size quantum computer can be done in constant time. These
scenarios are depicted in Figures 5.

The primary technique that has been employed in most,
thought not all, of these settings, to achieve verification, is
known as blindness. This entails delegating a computation to
the provers in such a way that they cannot distinguish this
computation from any other of the same size, unconditionally.
In other words, the provers would not be able to differentiate
among the different computations even if they had unbounded
computational power. Intuitively, verification then follows by
having most of these computations be tests or traps which the
verifier can check. If the provers attempt to deviate they will
have a high chance of triggering these traps and prompt the

Figure 3. Classical verifier interacting with two entangled but non-
communicating quantum proversg q p

Figure 4. Verifier with the ability to prepare or measure constant-size quantum
states interacting with a single quantum prover

Figure 5. Models for verifiable quantum computation

verifier to reject.

A full review of a number of verification protocols could
be found in [22]. While none of these achieve the ultimate
goal of the field, which is to have a classical client verify the
computation performed by a single quantum server, each pro-
tocol provides a unique approach for performing verification
and has its own advantages and disadvantages. These protocols
combine elements from a multitude of areas including: cryp-
tography, complexity theory, error correction, and the theory of
quantum correlations. Proof-of-concept experiments for some
of these protocols have already been realised. What all of the
surveyed approaches have in common, is that none of them are
based on computational assumptions. In other words, they all
perform verification unconditionally. However, recently, there
have been attempts to reduce the verifier’s requirements by
incorporating computational assumptions as well. What this
means is that the protocols operate under the assumption that
certain problems are intractable for quantum computers. We
can therefore see a new direction emerging in developing
protocols based on computational assumptions. This could very
well lead to the first single-prover verification protocol with a
classical client.

V. VERIFICATION METHODOLOGIES

The verification of practical quantum computers opens up
an entirely new field of research. The theoretical ideas and
experimental approaches, as outlined in this paper, will remain

732 Design, Automation And Test in Europe (DATE 2018)

at the basis of this field. However, as we are entering an era
in which the scale and complexity of quantum hardware is ex-
pected to grow at a rapid pace, much more seemingly mundane
aspects would also need to be addressed. In this section, we
follow the evolution of classical verification methodologies,
and view the possible quantum methodologies in light of this
classical evolution.

At the lowest level, each qubit and each gate need to be
verified for correct functionality. In other words, we need to
verify that the quantum state is maintained, or more realisti-
cally, to determine average times by which the quantum state
loses coherency. A set of generic methods which are designed
to examine and verify the quantum state directly go under the
name of quantum tomography [15]. These are well-defined,
mathematically rigorous techniques of evaluating the quantum
state across the entire state space. Unfortunately, this type of
techniques is likely to remain purely academic (or at least
confined to the design stages where only a very small number
of bits and gates are of interest), because any application of
these techniques requires an exponential number of resources.

Going one level above quantum tomography is ran-
domised benchmarking [29, 32]. Here sequences of quantum
gates are applied in such a way that their end result is known
(typically, the last gate applied is used to reverse the entire
sequence so the end result is just the initial state). Technically,
this can be achieved by using gates chosen from a restricted
set of gates which allow exact and tractable calculation of the
result of the sequence [3]. By applying increasingly longer
sequences and checking whether end-of-test is as expected as
a function of sequence length, one may calculate the typical
time scales by which coherency is lost (and hence results not
corresponding with calculations). Moreover, by designing se-
quences with some specific properties (e.g., higher percentage
of gates of a particular type), one can gain more structured
insights into the behaviour of specific gates or combination of
gates.

Today, random benchmarking is generally designed in a
manual fashion. The designer wishes to test a particular aspect
of the design, whether in the hardware implementation of
qubits, or the physical process of applying gates, and designs
benchmarking sequences which would relate to the issue under
hand. Also, continuous validation of the chips and gates is
performed by carefully designed sequences of random bench-
marks. We can view this process as reminiscent of directed
testing of classical hardware designs. Here also, the designer or
low-level verification engineer designs specialised sets of tests
to examine specific prone to bugs behaviours. This activity, by
nature, requires a large amount of effort by experts. In addition,
such manual design of tests may still miss some areas of the
design that have not been thought of. In classical computing,
the field of constraint-based random test generation [4, 35]
has emerged to address precisely these two concerns. Here,
the expert is given a much higher-level modelling language
to model his or her intentions. Then software tools, based on
sophisticated algorithms, automatically generate large numbers
of random sequences, all biased towards the hints taken from
the user, but cover a very large set of diverse possibilities
within those biases. We certainly expect the important field
of quantum random benchmarking to evolve similarly. This
will reduce much of the required expert knowledge to a one-

time effort in building the model and in constructing an input
language for specifying constraints and wishes. After that, the
expert would just need to specify their wishes for a particular
set of runs, and let the machine produce large and smart sets
of random benchmarks all conforming to those wishes.

A natural next step in the evolution of constraint-based
automatic random benchmarking is the definition of tests at
higher-levels than the specification of gate sequences applied
to one or two qubits in parallel. Once we deal with a number of
parallel sequences, all applied to different qubits on the same
chip, we can start thinking in terms of program constructs.
Then a modelling language for those constructs should be in
place. Such a language should be designed with two aspects
in mind. It should have the ability to resemble common
programming idioms in order to be able to check realistic sce-
narios. But even more importantly, it should have the ability to
naturally specify common or expected prone-to-bugs scenarios.
For example, ability to easily specify some specific interaction
between two or more parallel sequences running on adjacent
qubits. Moreover, the language should be flexible enough to
be able to adopt to newly discovered scenarios, while all the
time being at sufficiently high level for the designer to be
readily able to specify the scenario he or she has in mind. The
combination of a high-level test specification language and an
automatic constraint-based random test generator would allow
for major sets of benchmarks to run with very high efficiency.
This is because designer time would now be used much more
effectively in specifying the test scenarios, so many more
scenarios can be created. In addition, the automatic generator
would make sure not to waste too much of its tests on scenarios
which were already covered by other tests.

This brings us to the notions of coverage and coverage
measurement [24]. Once the designer is accustomed to think-
ing in high-level modelling constructs, then not only he or
she can specify their intentions for test scenarios in those
constructs, but can also measure how well have the tests
covered their entire set of wishes. Of course, the modelling
of coverage measures need not be at the same level as the
test-specification constructs. For example, the designer may
specify the test such that random sequences of gates rapidly
exercise a number of qubits in the chip, and can even specify
a large percentage of CNOT gates in the sequences, but
then measure coverage at the gate (or even the pulse) level,
checking, e.g., that a CNOT gate was applied simultaneously
to all possible combinations of adjacent pairs of qubits on the
chip. Once coverage models become part of the methodol-
ogy, they can become increasingly more sophisticated, as the
team learns from experience about additional, possibly more
subtle, prone-to-bugs scenarios. Additionally, once coverage-
based test generation is in place, substantial shifts in overall
verification methodology may take place. For example, most
verification efforts at some point in time may be shifted to
one particular hard-to-cover (but important) coverage hole,
rather than continue across the board verification. Additionally,
verification time-lines may change and become more dynamic,
driven by coverage goals of the overall project, rather than by
extrapolation from past experience.

In the random-benchmarking scheme described above, sim-
ple end-of-test checking is the tool for ensuring correctness.
However, once testing methodology becomes more complex,

Design, Automation And Test in Europe (DATE 2018) 733

one can think of more elaborate checking mechanisms. Most
importantly is dynamic checking. Here, one can envision
checking mechanisms which are inserted within the sequence
implementing the tests and being checked online as part of the
sequence. This may allow for much higher flexibility in de-
signing the tests, in more powerful identification of issues (i.e.,
wrong behaviour can be found even if would have been masked
before reaching end of test), and in their faster identification.
However, compared to the other concepts outlined above,
implementation of on-line checking mechanisms may prove to
be more challenging. This is because the previous concepts are
supported by only software design and implementation, while
mechanisms for online checking may require interfering with
the actual gate transmission mechanisms, or even the hardware
chip.

A higher level of checking can be thought of as formal
verification [17]. Here, a one-time model is created, spec-
ifying all known relationships between static and dynamic
properties of the chip. Once this model is expressed in a
formal mathematical language, mathematical properties of the
design (including the gate implementation) can be checked
against this model. Dynamically, properties may be modelled
per ’cycle’ of the design (i.e., before and after each application
of a gate). Depending on the sophistication of the model,
complex scenarios can be analysed for covering wide areas of
the design functional space without running any actual physical
gate. If applicable, this method can prove to be especially
powerful in the quantum world, where real-life experiments
tend to be noisy and not necessarily conclusive. However, in
order for such formal methods to have any added benefit, very
detailed mathematical models of the chip must be created.
Those mathematical models must be created in a way that any
calculation of properties would still be tractable. This by itself
can prove to be tricky for quantum computation scenarios,
as the computation itself is non-tractable. So clearly, the
mathematical model must be at some level of approximation,
useful enough to prove non-trivial properties of the design,
but abstract enough to be able to disregard details leading to
intractability. Still, if such a model can be found, its prospects
in supporting formal verification of the design may be high.
This is because, at least for the time being, we are expected
to deal with a relatively small number of qubits and gate
sequences compared to the millions of bits dealt with in
classical formal verification. This means that we may be able
to expect run-times of formal verification tools which may
be much shorter than the sometimes prohibitive times reached
when verifying classical hardware.

Quantum hardware is today simulated at two different, and
extreme levels. First is the physical level, used to aid in actual
physical design of the chip. Second is the qubit and gate level,
which allow for simulating any given program on a classical
machine, provided of course the number of qubits is small
enough to allow for the exponential calculation inherent in the
simulation (or, alternatively, resort to approximate simulation).
One main reason for such simulation is in order to understand
physical noise mechanisms in the hardware. Hence, noise
models are incorporated into the simulator, and are then
simulated in order to check how well such models correspond
with the actual hardware behaviour. A large body of knowledge
in modelling and analysing soft errors in classical computers
may be relevant here [7]. While soft errors happen on very

rare occasions in classical machines, modelling their behaviour
and in particular their effect (whether transient or not) on the
overall program running on the machine is critical for the
machine’s operation. Such harm-analysis of soft errors may
prove relevant to the simulation analysis of decoherence and
other types of noise in quantum machines, both with and
without error correction mechanisms.

Finally, today’s quantum simulators are adequate for
present day situation of a relatively small number of qubits.
This is because the correctness of the logic itself can be
inferred by design and manual inspection. However, once
the number of qubits becomes sufficiently large, and their
connectivity sufficiently complex, logic-level simulators will
need to be built. Here, the simulator will accept the design plan
as an input, and tests will need to be created and simulated
over the design plan. The output of such logic-level simulator
is then passed to a checker designed to check whether the
simulated behaviour is as specified. Building such logic-level
simulators and checkers requires a few levels of formality. For
example, the specification of what the combined hardware and
gates are expected to do needs to be expressed in such a way
that an automatic checker could use. While such logic-level
simulators are commonly built and run for classical hardware,
and vast amount of experience has been obtained in writing
and checking classical logic-level specifications, not all of
this knowledge can be taken as-is to the quantum regime. As
one simple example, the quantum hardware by itself does not
implement the logic. For this dynamic gates are applied over
the circuit. So the question of how to define correctness of
the quantum chip is an interesting research area by itself. This
research must be completed before we can expect to build
reasonable logic-level simulators and checking mechanisms
— in turn, an important prerequisite for building medium,
large, and very large scale integrated quantum circuits, or
M/L/VLSIQ.

VI. CONCLUSIONS

We have shown in this work the entire spectrum of thought
related to verification of quantum computers. Going from
the pure theoretical aspects, namely, of whether and how a
result obtained on a quantum machine can be independently
verified, through computational aspects and insights obtained
from actual experimentation on a quantum computer, and all
the way to the methodologies needed for the verification of
scaled-up quantum computers. In all parts of this spectrum,
the unknowns overshadow the known. This is what gives the
topic a huge potential for ground-breaking research. Important
results in this field are likely to influence both the theoretical
thinking, and the practicality and quality of future quantum
computers. With very strong teams working at the forefront of
research both in the quantum computing community, and the
design automation community, we hope that this paper will
help facilitate cross-education and collaboration between the
teams, resulting in rapid and high quality advancements in the
crucially important field of quantum verification.

ACKNOWLEDGEMENTS

JRW is supported by the SNSF through the NCCR QSIT.
JRW acknowledges use of the IBM Q experience for this work.
The views expressed are those of the author and do not reflect

734 Design, Automation And Test in Europe (DATE 2018)

the official policy or position of IBM or the IBM Q experience
team. KB acknowledges funding by Intel in the context of the
QuTech-Intel collaboration. YN is grateful to Yael Ben-Haim,
Jay Gambetta, Gil Shurek, John Smolin, and Chris Wood for
many important discussions.

REFERENCES

[1] S. Aaronson and A. Arkhipov. “The computational com-
plexity of linear optics”. In: Proceedings of the forty-
third annual ACM symposium on Theory of computing.
ACM. 2011, pp. 333–342.

[2] Scott Aaronson. The Aaronson $25.00 Prize. http : / /
www.scottaaronson.com/blog/?p=284.

[3] Scott Aaronson and Daniel Gottesman. “Improved sim-
ulation of stabilizer circuits”. In: Phys. Rev. A 70.5
(2004), p. 052328. eprint: arXiv:quant-ph/0406196.

[4] Allon Adir et al. “Genesys-pro: Innovations in test pro-
gram generation for functional processor verification”.
In: IEEE Design & Test of Computers 21.2 (2004),
pp. 84–93.

[5] D. Aharonov, M. Ben-Or, and E. Eban. “Interactive
Proofs For Quantum Computations”. In: ICS. 2010,
p. 453.

[6] Applications of quantum computing. https : / / www .
research . ibm.com/ ibm- q/ learn /quantum- computing-
applications/. Accessed: 2017-11-30.

[7] Eli Arbel et al. “Automated detection and verification
of parity-protected memory elements”. In: Proceedings
of the 2014 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press. 2014, pp. 1–8.

[8] S. Barz et al. “Towards the experimental verification of
a quantum computer”. In: Submitted to Nature (2013).

[9] X. Bermudez et al. “Assessing the progress of trapped-
ion processors towards fault-tolerant quantum computa-
tion”. arXiv:1705.02771. 2017.

[10] A. Broadbent, J. Fitzsimons, and E. Kashefi. “Universal
Blind Quantum Computing”. In: FOCS. 2009.

[11] Benjamin J. Brown et al. “Poking Holes and Cutting
Corners to Achieve Clifford Gates with the Surface
Code”. In: Phys. Rev. X 7 (2 May 2017), p. 021029.
DOI: 10.1103/PhysRevX.7.021029.

[12] Andrea Coladangelo et al. “Verifier-on-a-Leash: new
schemes for verifiable delegated quantum computa-
tion, with quasilinear resources”. In: arXiv preprint
arXiv:1708.07359 (2017).

[13] A.D. Córcoles et al. “Demonstration of a quantum error
detection code using a square lattice of four super-
conducting qubits”. In: Nature Communications (Apr.
2015), p. 6979. DOI: 10.1038/ncomms7979. URL: https:
//www.nature.com/articles/ncomms7979.

[14] D. Aharonov, V. Jones, and Z. Landau. “A Polynomial
Quantum Algorithm for Approximating the Jones Poly-
nomial”. In: STOC. 2006.

[15] G. Mauro Dariano, Matteo G. A. Paris, and Massimil-
iano F. Sacchi. “Quantum Tomography”. In: Advances
in Imaging and Electron Physics 128 (2003), p. 205.

[16] G de Lange et al. “Realization of microwave quantum
circuits using hybrid superconducting-semiconducting
nanowire Josephson elements”. In: Physical Review
Letters 115.12, art.nr. 127002 (2015). harvest, pp. 1–5.

ISSN: 0031-9007. DOI: 10 . 1103 / PhysRevLett . 115 .
127002.

[17] Rolf Drechsler et al. Advanced formal verification.
Vol. 122. Springer, 2004.

[18] Richard Feynman. “Simulating physics with comput-
ers”. In: International Journal of Theoretical Physics
21.6 (June 1982), pp. 467–488.

[19] Joseph F Fitzsimons and Michal Hajdušek. “Post hoc
verification of quantum computation”. In: arXiv preprint
arXiv:1512.04375 (2015).

[20] Joseph F. Fitzsimons and Elham Kashefi. “Uncondition-
ally verifiable blind quantum computation”. In: Phys.
Rev. A 96 (2017).

[21] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen.
“Building logical qubits in a superconducting quantum
computing system”. In: npj Quantum Information 3.1
(2017), p. 2. ISSN: 2056-6387. DOI: 10.1038/s41534-
016-0004-0.

[22] Alexandru Gheorghiu, Theodoros Kapourniotis, and El-
ham Kashefi. “Verification of quantum computation: An
overview of existing approaches”. In: arXiv preprint
arXiv:1709.06984 (2017).

[23] Alexandru Gheorghiu, Elham Kashefi, and Petros
Wallden. “Robustness and device independence of ver-
ifiable blind quantum computing”. In: New Journal of
Physics 17.8 (2015), p. 083040.

[24] Raanan Grinwald et al. “User defined coverage—a
tool supported methodology for design verification”.
In: Proceedings of the 35th annual Design Automation
Conference. ACM. 1998, pp. 158–163.

[25] Michal Hajdušek, Carlos A Pérez-Delgado, and
Joseph F Fitzsimons. “Device-independent verifi-
able blind quantum computation”. In: arXiv preprint
arXiv:1502.02563 (2015).

[26] IBM QX team. “ibmqx3 backend specification”. GitHub
repository, accessed August 2017. 2017. URL: https://
ibm.biz/qiskit-ibmqx3.

[27] A. Kandala et al. “Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets”. In: Nature 549 (2017), p. 242.

[28] Julian Kelly et al. “State preservation by repetitive error
detection in a superconducting quantum circuit”. In:
Nature 519.7541 (2015), pp. 66–69.

[29] E. Knill et al. “Randomized benchmarking of quantum
gates”. In: Phys. Rev. A 77 (1 Jan. 2008), p. 012307.
DOI: 10.1103/PhysRevA.77.012307. URL: https://link.
aps.org/doi/10.1103/PhysRevA.77.012307.

[30] D. A. Lidar and T. A. Brun, eds. Quantum Error Correc-
tion. Cambride, UK: Cambridge University Press, 2013.

[31] N. M. Linke et al. “Fault-tolerant quantum error detec-
tion”. arXiv:1611.06946. 2016.

[32] Easwar Magesan, J. M. Gambetta, and Joseph Emerson.
“Scalable and Robust Randomized Benchmarking of
Quantum Processes”. In: Phys. Rev. Lett. 106 (18 May
2011), p. 180504. DOI: 10 . 1103 / PhysRevLett . 106 .
180504. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.106.180504.

[33] Matthew McKague. “Interactive Proofs for BQP via
Self-Tested Graph States”. In: Theory of Computing
12.3 (2016), pp. 1–42. DOI: 10.4086/toc.2016.v012a003.
URL: http : / / www . theoryofcomputing . org / articles /
v012a003.

Design, Automation And Test in Europe (DATE 2018) 735

[34] Anand Natarajan and Thomas Vidick. “Robust self-
testing of many-qubit states”. In: arXiv preprint
arXiv:1610.03574 (2016).

[35] Yehuda Naveh et al. “Constraint-based random stimuli
generation for hardware verification”. In: AI magazine
28.3 (2007), p. 13.

[36] Michael A. Nielsen and Isaac L. Chuang. Quantum
Computation and Quantum Information: 10th Anniver-
sary Edition. 10th. New York, NY, USA: Cambridge
University Press, 2011.

[37] D. Nigg et al. “Quantum computations on a topolog-
ically encoded qubit”. In: Science 345.6194 (2014),
pp. 302–305. DOI: 10.1126/science.1253742.

[38] B. Reichardt, F. Unger, and U. Vazirani. “Classical
command of quantum systems”. In: Nature 496.7446
(2013), p. 456.

[39] Chad Rigetti et al. “Superconducting qubit in a waveg-
uide cavity with a coherence time approaching 0.1 ms”.
In: Physical Review B 86.10 (2012), p. 100506.

[40] Maika Takita et al. “Demonstration of Weight-Four
Parity Measurements in the Surface Code Architecture”.
In: Phys. Rev. Lett. 117 (21 Nov. 2016), p. 210505. DOI:
10.1103/PhysRevLett.117.210505.

[41] Maika Takita et al. “Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits”. Oct. 2017. URL: https://link.aps.org/doi/10.
1103/PhysRevLett.119.180501.

[42] L. M. K. Vandersypen et al. “Interfacing spin qubits in
quantum dots and donors—hot, dense, and coherent”.
In: International journal of tourism sciences 3.1 (2017),
p. 34. ISSN: 2056-6387. DOI: 10 . 1038 / s41534 - 017 -
0038 - y. URL: https : / / publications . rwth - aachen . de /
record/707467.

[43] Umesh Vazirani. Workshop on the Computational
Worldview and the Sciences. http://users.cms.caltech.
edu/∼schulman/Workshops/CS- Lens- 2/report- comp-
worldview.pdf. 2007.

[44] C. Vuillot. “Error detection is already helpful on the
IBM 5Q chip”. arXiv:1705.08957. 2017.

[45] J. R. Wootton. “Repetition code for up to 15 qubits”.
GitHub repository, accessed August 2017. 2017. URL:
https://github.com/QISKit/qiskit- tutorial/blob/master/
2 quantum information/repetition code.ipynb.

[46] J. R. Wootton and Loss D. “A repetition code of 15
qubits”. arXiv:1709.00990. 2017.

[47] James R Wootton. “Demonstrating non-Abelian braid-
ing of surface code defects in a five qubit experi-
ment”. In: Quantum Science and Technology 2.1 (2017),
p. 015006.

[48] X. Yao et al. “Observation of eight-photon entangle-
ment”. In: Nature Photon. 6 (2012).

736 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

