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Abstract—The increased capabilities of modern real-time sys-
tems (RTS) expose them to various security threats. Recently,
frameworks that integrate security tasks without perturbing the
real-time tasks have been proposed, but they only target single
core systems. However, modern RTS are migrating towards
multicore platforms. This makes the problem of integrating
security mechanisms more complex, as designers now have
multiple choices for where to allocate the security tasks. In this
paper we propose HYDRA, a design space exploration algorithm
that finds an allocation of security tasks for multicore RTS
using the concept of opportunistic execution. HYDRA allows
security tasks to operate with existing real-time tasks without
perturbing system parameters or normal execution patterns,
while still meeting the desired monitoring frequency for intrusion
detection. Our evaluation uses a representative real-time control
system (along with synthetic task sets for a broader exploration)
to illustrate the efficacy of HYDRA.

I. INTRODUCTION

Real-time systems (RTS) rely on a variety of inputs for
their correct operation and have to meet stringent safety and
timing requirements. The drive towards remote monitoring and
control, increased connectivity through unreliable media such
as the Internet and the use of component-based subsystems
from different vendors are exposing modern RTS a multitude
of threats. A successful attack on systems with real-time
properties can have disastrous effects – from loss of human
life to damage to the environment and/or hard to replace
equipment. A number of high-profile attacks on real systems,
(e.g., denial-of-service (DoS) attacks from Internet-of-Things
devices [1], Stuxnet [2], BlackEnergy [3], etc.) have shown
that the threat is real. Hence it is essential to retrofit existing
critical RTS with detection, survival and recovery mechanisms.

As the use of multicore platforms in safety-critical real-time
systems is increasingly becoming common, the focus of this
work is on integrating or retrofitting security mechanisms into
multicore RTS. It is not straightforward to retrofit RTS with
security mechanisms that were developed for more general
purpose computing scenarios since, security mechanisms have
to (a) co-exist with the real-time tasks in the system and (b)
operate without impacting the timing and safety constraints of
the control logic. Further, it may not be feasible to adjust
the parameters (such as run-times, period, and execution
order, etc.) of real-time tasks to accommodate security tasks.
This creates an apparent tension between security and real-
time requirements. Unlike single core systems, integrating
security into multicore platforms is more challenging since
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designers have multiple choices across cores to retrofit security
mechanisms. For instance, is it better to dedicate a core to
all the security tasks or is it better to spread them out (in
conjunction with the real-time tasks) and if so, to which cores?

Our goal is to improve the security posture of multicore RTS
by integrating security mechanisms without violating real-
time constraints. Security mechanism could include protection,
detection or response mechanisms, depending on the system
requirements – for instance, a sensor correlation task (to
detect sensor manipulation) or an intrusion detection task. As
an illustrative example, consider the open source intrusion
detection mechanisms Tripwire [4] and Bro [5] that detect
integrity violations in the host and at the network level,
respectively1. The default configurations of Tripwire and Bro
contain several tasks (see Table I).

TABLE I
ILLUSTRATION OF SECURITY TASKS*

*The corresponding application for each of the security tasks is specified
in the parenthesis – TR: Tripwire, BR: Bro.
Task Function

Check own binary of the
security routine (TR)

Compare the hash value of
the application binary (e.g.,
/usr/sbin/tripwire,
/usr/local/bro/bin, etc.)

Check executables (TR) Check hash of the file-system binary
(/bin, /sbin)

Check critical libraries (TR) Check library hashes (/lib)
Check device and kernel
(TR)

Check hash of peripherals and kernel
information in /dev and /proc

Check config files (TR) Check configuration hashes (/etc)
Monitor network traffic (BR) Scan network interface (e.g., en0)

We propose to incorporate security mechanisms into a
multicore setup by implementing them as separate sporadic
tasks. Unlike periodic real-time/control tasks, security tasks
may not have strict period/deadline requirements. A metric
of success for such security tasks could be, for instance,
how quickly they can detect security violations (e.g., an
intrusion). This is in contrast with the measure of “control
loop performance” for real-time tasks. The challenge then, is
to determine the right periods (viz., minimum inter-execution
time) and core assignment for the security tasks. It is not trivial
to determine the execution frequency and core assignment of
security tasks (i.e., what security tasks will execute on which
core and with what frequency). For instance, some critical
security routines may be required to execute more frequently
than others. However, if the frequency of execution is too
high (e.g., shorter period) then it will use too much of the
processor time and lower the system utilization for real-time

1We use Tripwire and Bro as examples of security applications to be
integrated into multicore RTS – the ideas presented here apply more broadly.
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tasks. Hence, the security mechanism itself might prove to be
a hindrance to the system and reduce the overall functionality
or worse, negatively impact the system safety. In contrast,
if the period is too long, the security task may not always
detect violations since attacks could be launched between two
instances of the security task.

Our focus here is to integrate security in an existing (e.g.,
legacy) system where it is harder to (a) modify the micro-
architecture (say inclusion of extra hardware/processor cores)
or (b) change real-time task parameters (such as execution
time and/or period). Existing work that integrate security in
RTS either focuses on single core systems [6]–[11] and/or
require modification of system parameters [6]–[9], [11], [12]
and thus are not applicable for systems where it is harder to
change the real-time task parameters.

In this paper we introduce HYDRA2, a scheme for multicore
RTS that finds a suitable assignment of security tasks in order
to ensure that they can execute with a frequency close to what
a designer expects. The main contributions of this work can
be summarized as follows:

• Integrating security mechanisms in a multicore setup
where changing existing real-time task parameters is not
an option.

• A mathematical model to jointly obtain the assignment
of security tasks to respective cores with execution fre-
quency close to the desired values (Section III-A).

• An iterative scheme, HYDRA, that jointly finds the as-
signment and period of the security tasks (Section III-B).

• Comparisons of HYDRA with (i) assigning all security
tasks to a single dedicated core and (ii) an ‘optimal’
multicore allocation scheme (Section IV).

We evaluate HYDRA with synthetic workloads as well as
a representative real-time control system and security applica-
tions (Section IV).

II. SYSTEM AND SECURITY MODEL

A. Real-time Tasks

Let us consider a multicore platform comprised of M iden-
tical cores denoted by the set M = {π1, π2, · · · , πM} where
we schedule a set ΓR = {τ1, τ2, · · · , τNR

} of NR independent
sporadic real-time tasks. Each real-time task τr ∈ ΓR is
characterized by the tuple (Cr, Tr, Dr) where Cr is the worst-
case execution time (WCET), Tr is the minimum separation
(e.g., period) between two successive invocations and Dr is
the relative deadline. In this work, we consider partitioned
fixed-priority preemptive scheduling [13] since (a) it does not
introduce task migration costs and (b) it is widely supported in
many commercial and open-source real-time OSs (e.g., QNX,
OKL4, real-time Linux, etc.). We assume that real-time task
priorities are distinct and assigned according to rate monotonic
(RM) [14] order. We also assume that tasks have implicit
deadline, e.g., Dr = Tr, ∀τr ∈ ΓR.

We assume that real-time tasks are schedulable and as-
signed to the cores using existing multicore task partitioning
algorithm [13]. Since the taskset is schedulable, the following
necessary condition will hold [15]:∑

τr∈ΓR

DBF(τr, t) ≤ Mt, ∀t > 0 (1)

2In Greek mythology Hydra is a serpent with multiple heads. We refer to
our scheme as HYDRA since we are trying to maximize the potential across
multiple ‘heads’ (cores).

where the demand bound function DBF(τr, t) computes the
cumulative maximum execution requirements of the real-
time task τr and it is defined as follows: DBF(τr, t) =

max
(
0,
(⌊

t−Dr

Tr

⌋
+ 1

)
Cr

)
.

B. Threat Model

In this work we consider a generic threat model where a
malicious adversary can use various techniques to attack the
RTS. For example, the adversary might intercept the infor-
mation over the communication channel, forge messages or
prevent normal requests from being processed. The adversary
can also attack services within the OS, say, could compromise
the file system resulting in corrupted information or could
delay the delivery of control commands that may cause some
tasks to miss deadline. Other than trying to aggressively crash
the system, the adversary may utilize side-channels to monitor
the system behavior and infer certain system information
(e.g., user tasks, thermal profiles, cache information, etc.) that
eventually leads to the attacker actively taking control of the
system. Our focus is on threats that can be dealt with by
integrating additional security tasks. The addition of such tasks
may necessitate changing the schedule of real-time tasks as
was the case in earlier work [6]–[9], [11]. In this work we
focus on situations where added security tasks are not allowed
to impact the schedule of existing real-time tasks as is often the
case when integrating security into existing multicore systems.

C. Security Tasks

Since our goal is to ensure security without any modification
of real-time task parameters, we propose to integrate security
tasks as independent sporadic tasks. Let us consider additional
NS security tasks denoted by the set ΓS = {τ1, τ2, · · · , τNS

}.
We follow the sporadic security task model [10] and character-
ize each security task τs by the tuple (Cs, T

des
s , Tmax

s ) where
Cs is the WCET, T des

s is the best period (minimum inter-
arrival time) between successive releases (i.e., F des

s = 1
Tdes
s

is the desired frequency for τs effective security monitoring
and/or intrusion detection) and Tmax

i is the maximum period
beyond which security monitoring will not be effective. We
assume that periods for security tasks are assigned based on
the desired monitoring frequency3. Hence pri(τs1) > pri(τs2)
if Tmax

s1 < Tmax
s2 where pri(τi) denotes the priority of τi.

Security tasks also have implicit deadlines (e.g., they are
required to complete execution before its period).

One fundamental problem while integrating security mech-
anisms is to determine which security tasks will be assigned
to which core and executed when. Although security tasks
can execute in any of the M available cores and any period
T des
s ≤ Ts ≤ Tmax

s is acceptable, the actual task-to-core
assignment and the periods of the security tasks are not known
apriori. The goal of HYDRA therefore is to jointly find the
core-to-task assignment and suitable periods for security tasks.

III. ASSIGNMENT OF SECURITY TASKS WITH PERIOD

ADAPTATION

One way to integrate security mechanisms into existing
systems without perturbing real-time task behavior is to ex-
ecute security tasks with the lowest priority as compared

3For the purpose of this work we consider that the priorities are assigned
based on the desired monitoring frequency. Such a frequency-based priority
assignment, however, is not a requirement – the proposed scheme will work
with any given priority assignment policy.
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to the real-time tasks [10]. Thus security tasks will execute
opportunistically in the slack time (e.g., when other real-time
tasks are not running). As mentioned earlier, actual periods
of the security tasks are not known and we need to adapt
the periods within acceptable ranges to optimize the trade-
offs between schedulability and defense against intrusions.
We measure the security of the system by means of the
achievable periodic monitoring and our goal is to minimize the
perturbation between the achievable (unknown) period Ts and
the given desired period T des

s for all security tasks τs ∈ ΓS .
Therefore we consider the following metric [10]:

ηs =
T des
s

Ts
(2)

that denotes the tightness of periodic monitoring (e.g., how
close the period of the security task is to the desired period)

and bounded by
Tdes
s

Tmax
s

≤ ηs ≤ 1. As mentioned earlier, if the

interval between consecutive monitoring events is too large,
the adversary may remain undetected and harm the system
between two invocations of the security task. On the other
hand, very frequent execution of security tasks may impact
the schedulability of the system (due to higher utilization). The
metric in Eq. (2) allows us to measure how close the security
tasks are able to get to their desired monitoring frequencies.

Note that arbitrarily setting Ts = T des
s for all (or some)

security tasks τs ∈ ΓS may lead to the system becoming
unschedulable since low-priority security tasks may miss
deadlines due to interference from higher priority tasks. Also
exhaustively finding all possible acceptable periods for the
security tasks for all available cores is not feasible. It will
cause an exponential blow-up as numbers of tasks and cores
increase. For instance for a given taskset ΓS , there is a
total of |M × Γs| assignments possible4 (where A × B =
{(a, b) | a ∈ A ∧ b ∈ B} and | · | denotes set cardinality) and
for each combination the period for each security task τs ∈ ΓS

can be any value within the range [T des
s , Tmax

s ]. In order to
address this combinatorial problem we obtain the periods of
the security tasks by framing it as an optimization problem.

A. Formulation as an Optimization Problem

1) Objective Function and Bounds on Period: Let us con-
sider the vector X = [xm

s ]
T
∀τs∈ΓS ,∀πm∈M where xm

s = 1 if τs
is assigned to πm and 0 otherwise. Recall that our goal is to
find a task assignment that minimizes the difference between
achievable and desired periods (e.g., maximize the tightness)
for all the security tasks. Hence we define the following
objective function:

max
X,T

∑
πm∈M

∑
τs∈ΓS

xm
s ωsηs =

∑
πm∈M

∑
τs∈ΓS

xm
s ωs

T des
s

Ts
(3)

where T = [Ts]
T
∀τs∈Γs

is the (unknown) period vector that
needs to be determined and ωs reflects the priority (higher
priority tasks would have large ωs). Besides, in order to satisfy
the frequency of periodic monitoring, the security task needs
to satisfy the following constraint:

T des
s ≤ Ts ≤ Tmax

s , ∀τs ∈ Γs. (4)

Finally, each security task must be assigned to exactly one
core:

∑
πm∈M

xm
s = 1, ∀τs ∈ Γs.

4For instance, when M = 8 cores and NS = 10 tasks there is a total of
3.518437208883× 1013 possible assignments.

2) Schedulability Constraint: Since the security tasks are
executed with a priority lower that all real-time tasks, they
will suffer interference from all real-time and high priority
security tasks executing in the same core. Let hpS(τs) ⊂ ΓS

denote the set of security tasks with a higher priority than
τs. The worst-case release pattern of τs occurs when τs and
all high-priority tasks are released simultaneously [16]. Using
response time analysis [17] we can determine an upper bound
to the interference experienced by τs for a given core πm as
follows:

Ims =
∑

τr∈ΓR

I
m
r

(
1 +

Ts

Tr

)
Cr+

∑
τh∈hpS(τs)

xm
h

(
1 +

Ts

Th

)
Ch (5)

where I
m
r = 1 if the real-time task τr is partitioned to core

πm and 0 otherwise.
The first and second term in Eq. (5) represent the amount

of interference from real-time and high-priority security tasks,
respectively. Note that the assignment of real-time tasks to
cores is known by assumption. In order to ensure that each
security task τs will complete its execution before its deadline
on its assigned core, the following constraint needs to be
satisfied:

Cs + Ims ≤ Ts, ∀τs ∈ Γs, ∀πm ∈ M : xm
s = 1. (6)

The variables X and T in the above formulation turn the
problem into a non-linear combinatorial optimization problem
that is NP-hard. We therefore propose an iterative algorithm
HYDRA that jointly finds the security tasks’ period and core
assignment.

B. Algorithm Development

As mentioned earlier, jointly finding the security task as-
signment and periods is an NP-hard problem. Even for fixed
periods, finding the assignment for security tasks turns the
problem to a bin-packing problem that is known to be NP-hard
[15]. Existing partitioning heuristics (e.g., first-fit, best-fit, etc.)
[13] are not directly applicable in our context since the real-
time requirements (e.g., minimize the number of cores so that
all real-time tasks can meet deadlines) are often different from
the security requirements (e.g., execute security tasks more
often to improve intrusion detection rate without violating real-
time constraints).

For a given task τs and allocation vector X, let us rewrite
the optimization problem as follows:

max
Ts

ηs, Subject to: T des
s ≤ Ts ≤ Tmax

s , Cs+Ims ≤ Ts. (7)

Notice that for a given assignment X (see Algorithm 1), the
period Ts is the only variable (when the Th, ∀τh ∈ hpS(τs) is
known) in Ims (see Eq. (5)). Although the period adaptation
problem in Eq. (7) is a constraint optimization problem it can
be transformed into a convex optimization problem (that is
solvable in polynomial time). For details of this reformulation
we refer the readers to the Appendix.

The proposed HYDRA algorithm (summarized in Algo-
rithm 1) works as follows. We start with the highest priority
security task τs and try to obtain the best period for each
available core πm ∈ M by solving the period adaptation
problem introduced in Eq. (7) (Line 4). If there exists a set
of cores M′

s ⊆ M for which the optimization problem is
feasible (e.g., an optimal period is obtained satisfying the real-
time constraints) we pick the core πm∗ ∈ M′

s that gives the
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Algorithm 1 HYDRA: Task Allocation and Period Adaptation

Input: Input taskset Γ = {ΓR ∪ ΓS} and the partition of real-time tasks
I = [Imr ]T∀τr∈ΓR,∀πm∈M

Output: The security task allocation X = [xm
s ]T∀τs∈ΓS ,∀πm∈M and

periods T = [Ts]T∀τs∈ΓS
, if the taskset is schedulable, Unschedulable

otherwise.

1: Initialize xm
s := 0, ∀τs ∈ ΓS , ∀πm ∈ M

2: for each security task τs ∈ ΓS (from higher to lower priority) do
3: for each core πm ∈ M do
4: Solve the optimization problem in Eq. (7)
5: end for
6: Let M′

s ⊆ M is the set of core(s) for which the optimization
problem is feasible

7: if M′
s = ∅ then

8: /* Unable to find suitable period for τs */
9: return Unschedulable

10: end if
11: Find the core πm∗ = argmax

πm∈M′
s

ηms where ηms is the tightness of τs

obtained for πm

12: Set xm∗
s := 1 /* Assign τs to πm∗ */

13: Update period Ts := Tm∗
s where Tm∗

s is the period obtained by
solving optimization for πm∗

14: end for
15: return (X,T) /* Return the allocation vector and periods */

maximum tightness (Line 11) and allocate the security task
to core πm∗ (Line 12). This will ensure that the more critical
security tasks will get a period close to the desired one. We
repeat this process for all security tasks to jointly obtain the
assignment and periods. If for any security task τj the set of
available cores M′

j is empty (e.g., the optimization problem
is infeasible) we return the taskset as unschedulable (Line 9)
since it is not possible to find any suitable core with given
taskset parameters. This unschedulability result will provide
hints to the designers to update the parameters of security tasks
(and/or the real-time tasks, if possible) in order to integrate
security for the target system.

IV. EVALUATION

We evaluated HYDRA along two fronts: (i) on parameters
derived from a real UAV control system (Section IV-A) and
(ii) synthetically generated tasksets to explore the design space
(Section IV-B). Recall from Section I that our goal is to
explore the possible ways in which security could be inte-
grated in multicore-based real-time platforms. The HYDRA
mechanism presented in this paper assumes that the real
time tasks are distributed across all available cores. Another
design choice available is to allocate a dedicated core for
security while the real-time tasks are assigned to the remaining
cores. In this Section, we compare HYDRA to this alternate
mechanism for security task allocation – that we refer to
henceforth as the “SingleCore” allocation mechanism. Given
the taskset is schedulable, one of the benefits of the SingleCore
scheme is that there is no requirement for assigning security
tasks. While evaluating SingleCore, all the real-time tasks are
partitioned into M−1 cores leaving the other core for security
tasks. Notice that in the SingleCore scheme security tasks do
not suffer any interference from real-time tasks (e.g., the first
term in Eq. (5) is zero). For a given assigned core πm, the
decision variable xm

s is known for all τs and the optimization
problem can be solved using an approach similar to the one
described in the Appendix.

Fig. 1. HYDRA vs. SingleCore: empirical CDF of intrusion detection time.

The empirical CDF is defined as F̂α(j) = 1
α

α∑
i=1

I[ζi≤j], where α is the

total number of experimental observations, ζi is time to detect the attack in
at the i-th experimental observation and j represents the x-axis values (e.g.,
detection time). The indicator function I[·] outputs 1 if the condition [·] is
satisfied and 0 otherwise.

A. Case-study with a UAV Control System and Security Ap-
plications

The goal of this experiment was to observe the runtime
behavior of HYDRA. For a real-time application, we con-
sidered a UAV control system [18]. It includes following
real-time tasks (refer to earlier work [18, Tab. 1] for the
task parameters): Guidance (selects the reference trajectory),
Slow and Fast navigation (read sensor values according to the
required update frequency), Controller (executes the closed-
loop control functions), Missile control (fires missile) and Re-
connaissance (collects sensitive information and send data to
the control center). For the security application, we considered
Tripwire [4] and Bro [5] that detects integrity violations in
the system both at host and network level, respectively (refer
to Table I). For this experiment we considered a quad-core
system (e.g., M = 4). We executed the security tasks on
an 1 GHz ARM Cortex-A8 processor with Xenomai 2.6 [19]
patched real-time Linux kernel (version 3.8.13-r72) and used
ARM cycle counter registers (e.g., CCNT) to obtain the timing
parameters (e.g., WCET). We used GPkit [20] library and
CVXOPT [21] solver to obtain the periods.

The work-flow of our experiment was as follows. For each
of the trials, we observed the schedule for 500s and during any
random time of execution we triggered synthetic attacks5 (e.g.,
that corrupts the file system and network packets). We assumed
that the intrusions were correctly detected by the security tasks
(e.g., there is no false positive/negative errors) and measured
the empirical CDF of worst-case detection time. From Fig. 1
we can observe that paralleling security tasks across cores
leads to faster intrusion detection time for HYDRA (e.g.,
higher empirical CDF). From our experiment we found that
on average HYDRA can provide 27.23% faster detection rate
for a quad-core system. While SingleCore scheme does not
experience any interference from real-time tasks, however,
low priority security tasks can still suffer inference from high
priority security tasks. Therefore running security tasks in a
single core leads to higher periods and consequently poorer
detection time.

B. Experiment with Synthetic Tasksets

We used parameters similar to those in related work [10],
[22]. We performed experiments for M = {2, 4, 8} cores. Each
taskset instance contained [3M, 10M ] real-time and [2M, 5M ]

5Our goal here is to analyze the security from the scheduling perspective.
Thus instead of assuming any specific intrusion (or detection capabilities of
security tasks), HYDRA allows designer to integrate any security mechanism
required to defend targeted attack surfaces.
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Fig. 2. The improvement in acceptance ratio for 2, 4, and 8 core system.

The improvement is given by
δSingleCore−δHYDRA

δSingleCore
× 100% where δ(·) is

the acceptance ratio of scheme (·).
security tasks. Each real-time task had periods between
[10 ms, 1000 ms]. The desired periods for the security tasks
were selected from [1000 ms, 3000 ms] and the maximum
allowable period was assumed to be Tmax

s = 10T des
s , ∀τs.

The real-time tasks were partitioned across multiple cores
using a best-fit [13] strategy.

In each experiment, the total taskset utilization was varied
from 0.025M to 0.975M with step size 0.025M . For a given
number of tasks and total system utilization, the utilization
of individual tasks were generated from an unbiased set of
utilization values using the Randfixedsum algorithm [23]. Total
utilization of the security tasks were set to be no more than
30% of the real-time tasks. For each utilization value, we
randomly generated 250 tasksets. In other words, for each
core configuration a total of 39 × 250 = 9750 tasksets were
tested. We only considered tasksets that satisfied the necessary
condition in Eq. (1), as any taskset that fails the condition is
trivially unschedulable.

1. Experiment with Core Assignment Schemes: We compared
HYDRA with SingleCore in terms of acceptance ratio. The
acceptance ratio is given by the number of schedulable tasksets
(e.g., that satisfy all real-time constraints) over the generated
ones. The x-axis in Fig. 2 represents the total system utilization
(e.g., utilization of both real-time and security tasks). The y-
axis represents improvement in acceptance ratio comparing
HYDRA with SingleCore for different values of M . For lower
utilization values both schemes have similar performance (e.g.,
improvement is zero) since the system has enough slack to
execute security tasks. However as we see from the figure, for
higher utilization values HYDRA outperforms SingleCore –
when all security tasks share a core, it causes more interference
and reduces the overall schedulability (e.g., unable to find any
solution that respects all the real-time constraints6).

2. Comparing with Optimal Multicore Assignment: The result
of an empirical comparison of HYDRA with an optimal solu-
tion (e.g., a solution of the formulation described in Section
III-A that finds the variables X and T) is presented in Fig. 3
where we exhaustively searched for all possible combinations
for a small setup with M = 2 cores and up to NS = 6

6Note that security tasks also have real-time constraints.

Fig. 3. Comparing HYDRA with optimal solution: we consider M = 2 and
NS ∈ [2, 6] with other parameters similar to that mentioned in Section IV-B.

security tasks. To find the optimal solution, we examined each
of the MNS possible assignments of security tasks to cores.
For each assignment, we then determined the value of the
period vector T that maximized the cumulative tightness by
solving a convex optimization problem (see Appendix).

The x-axis of Fig. 3 represents total system utilization
and y-axis is the difference in cumulative tightness (e.g.,
Δη = ηOPT−ηHYDRA

ηOPT
× 100%) for HYDRA and the optimal

solutions. As shown in the figure, for low to medium utilization
cases, HYDRA’s performance is similar to the optimal solution
(e.g., the difference is zero). However for higher utilizations
performance degrades. This is because HYDRA follows an
iterative best-fit strategy to find the periods (and assignment).
Hence for higher utilization values the lower priority tasks may
not get periods close to the desired values (and the cumulative
tightness degrades). As we see from the figure, the degradation
(in cumulative tightness) is no more than 22% and that may
be acceptable given the exponential computational complexity
of finding an optimal solution.

V. DISCUSSION

While we take a step towards developing a model for
integrating security mechanisms into multicore RTS, our initial
attempt can be extended into several directions. HYDRA
statically partition the tasks to the cores. However in practice
security tasks can also move across multiple cores if there
is available slack at runtime (for faster detection and better
schedulability). While there exists methods for global schedul-
ing policy [13] where tasks can migrate across cores, casting
real-time scheduling problems into RTS security domain re-
quires further research.

In this work we consider security tasks are independent
and preemptive. However some critical security task may
require non-preemptive execution to perform desired checking.
In addition, depending on the actual implementations of the
security routines, the scheduling framework may need to
follow certain precedence constraints. For example, in order
to ensure that the security application itself has not been
compromised, the security application’s own binary may need
to be examined first before checking the system binary files.
These aspects will be explored in our future work.

VI. RELATED WORK

There has been some work [6]–[9] on reconciling the
addition of security mechanisms into RTS that considered
periodic task scheduling where each task requires a security
service whose overhead varies according to the quantifiable
level of the service. The issues regarding information leakage
through storage channels also addressed in prior research [11].
All of the aforementioned work, however, only consider single
core system and require modification of system parameters. In
early work [10] we used the concept of hierarchical scheduling
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and proposed to execute the security mechanisms with a lower
priority than the real-time tasks for a single core system.
Unlike prior work here we focus on integrating security in
multicore platforms.

Although not in the context of security in RTS, there exists
other work [24], [25] in which the authors statically assign the
periods for control tasks. While this previous work focused on
single core systems and optimizing period of all the tasks, our
goal is to ensure security without violating timing constraints
of the real-time tasks in a multicore setup.

In contrast to proposed scheduler-level solution, recent work
[12], [26], [27] on hardware/software architectural frameworks
aim to protect multicore RTS against security vulnerabilities.
Compared to our scheme that works for any m-core system,
these preceding frameworks mainly focus on dual core archi-
tecture and require architectural modifications that may not be
suitable for existing RTS.

VII. CONCLUSION

This paper presents an evaluation of a good heuristic mech-
anism (HYDRA) for assigning security tasks into a multicore
RTS. Engineers can now evaluate the design choices of such
assignments to improve the overall security (and hence, safety)
of systems with real-time requirements. Since we provide
comparisons of our solution with two extremes – an ‘optimal’
assignment strategy and isolating all security tasks to a single
core – we are able to provide valuable hints to designers on
how to build security into such systems.
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APPENDIX

SOLUTION TO THE PERIOD ADAPTATION PROBLEM

The period adaptation problem given in Section III-A is a
constrained optimization problem and not very straightforward
to solve. Therefore we reformulate the optimization problems
as a geometric program (GP) [28].

A nonlinear optimization problem can be solved by GP if
the problem is formulated as follows [28]:

min
Y

f0(y), Subject to: fi(y) ≤ 1, i = 1, · · · , zp, and

gi(y) = 1, i = 1, · · · , zm
where y = [y1, y2, · · · , yz]T denotes the vector of z op-
timization variables. The functions f0(x), f1(y), · · · , fzp(y)
are posynomial and g1(y), · · · , gzm(y) are monomial func-
tions, respectively. A monomial function is expressed as

gi(y) = ci
Li∏
l=1

yal

l , where ci ∈ R
+ and al ∈ R. A posynomial

function (i.e., the sum of the monomials) can be represented

as fi(y) =
Li∑
l=1

cly
a1l
1 ya2l

2 · · · ya1l
z , where cl ∈ R

+ and ajl ∈ R.

We can maximize a non-zero posynomial objective function
by minimizing its inverse. In addition, we can express the

constraint f(·) < g(·) as
f(·)
g(·) ≤ 1.

Based on above discussion we can rearrange the objec-

tive function as min
Ts

(T des
s )

−1
. Likewise period bound con-

straint in Eq. (4) can be represented as T des
s Ts

−1 ≤ 1 and

(Tmax
s )

−1
Ts ≤ 1, respectively. In addition, the schedulability

constraint in Eq. (6) can be rewritten as: (Cs + Ims )T
−1
s ≤ 1

where Ims =
∑

τr∈ΓR

I
m
r (Tr + Ts)T

−1
r Cr +

∑
τh∈hpS(τs)

xm
h (Th +

Ts)T
−1
h Ch.

The above GP reformulation is not a convex optimization
problem since the posynomials are not convex functions [28].
However, by using logarithmic transformations (e.g., repre-

senting T̃s = log Ts and hence Ts = eT̃s , and replacing
inequality constraints of the form fi(·) ≤ 1 with log fi(·) ≤ 0),
we can convert the above formulation into a convex optimiza-
tion problem that can be solved using standard algorithms,
such as interior-point method in polynomial time [29, Ch.
11].
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