
Advancing Source-Level Timing Simulation using
Loop Acceleration

Joscha Benz, Christoph Gerum and Oliver Bringmann
Embedded Systems Department, University of Tübingen

{benz,gerum,bringmann}@informatik.uni-tuebingen.de

Abstract—Source-level timing simulation (STLS) is an impor-
tant technique for early examination of timing behavior, as it
is very fast and accurate. A factor occasionally more important
than precision is simulation speed, especially in design space
exploration or very early phases of development. Addition-
ally, practices like rapid prototyping also benefit from high-
performance timing simulation. Therefore, we propose to further
reduce simulation run-time by utilizing a method called loop
acceleration. Accelerating a loop in the context of SLTS means
deriving the timing of a loop prior to simulation to increase
simulation speed of that loop. We integrated this technique in our
SLTS framework and conducted an comprehensive evaluation
using the Mälardalen benchmark suite. We were able to reduce
simulation time by up to 43% of the original time, while the
introduced accuracy loss did not exceed 8 percentage points.

Index Terms—timing simulation, SLTS, loop acceleration

I. INTRODUCTION

There is a constantly increasing need for speed and flexi-

bility during development of embedded software. In addition,

systems and software become more complex. Therefore, de-

velopers need powerful tools to be able to create products that

comply with functional and non-functional requirements such

as timing constraints. Source-level timing simulation (SLTS),

also called host-compiled simulation, serves these needs, as it

allows very fast and accurate simulation of timing behavior.

The high speed of SLTS is achieved by compiling and running

the software to analyze on a different and much faster machine

than the target. For that purpose, it is necessary to be able to

reconstruct execution paths through the target binary during

simulation. The prerequisites of SLTS are therefore twofold:

1) create a matching between binary- and source-level control-

flow and 2) instrument the original source-code according to

that matching with timing information. This instrumentation is

called path simulation code, as it is used to simulate control-

flow of the target binary during host-compiled simulation.

Early approaches to SLTS have instrumented every basic block

at the cost of a large overhead. Thus, recent source-level

simulations (SLS) use optimizations to reduce the number of

instrumented BBs and, consequently, the run-time of the in-

strumented program without significant impact to preciseness

[1]. Figure 1b shows example source code with a minimum

number of instrumented basic blocks. Regarding loops, another

This contribution is funded as part of the CONFIRM project (project label
16ES0564-70) within the research program ICT 2020 by the German Federal
Ministry of Education and Research (BMBF) and is supported by the industrial
partners Infineon Technologies AG, Robert Bosch GmbH, Intel Deutschland
AG, and Mentor Graphics GmbH.

opportunity to increase simulation performance arises: remov-

ing instrumentation points that are part of a loop. For example,

Figure 1b shows source code of a loop, which contains mul-

tiple instrumentation points. Considering the iteration count

(loop bound) of this loop, simulate_bb_2 is called 400
times during simulation. Thus, assuming statically available

bounds, one can expect to further reduce simulation run-

time by removing simulate_bb_2 and simulate_bb_3.

Moreover, we expect a compiler to be able to optimize loops

more aggressively once instrumentation points are removed.

The latter can additionally improve simulation speed. In the

scope of this paper we denote statically deriving the execution

time of a loop and annotating the results back to source-code

prior to simulation as loop acceleration.
Based on this idea, we make the following contributions as

part of this work

• An algorithm to accelerate loops and remove obsolete

instrumentation points

• A heuristic for accelerating loops while containing the

introduced loss of accuracy

• An experimental evaluation of our approach based on a

widely used benchmark suite

The rest of this paper is structured as follows. Related work

is presented in Section II. Fundamental concepts are covered

in Section III. Section IV discusses the contributions of this

work in detail. Experimental evaluation and the corresponding

results are accounted for in Section V. Section VI concludes

this work and briefly discusses future research.

II. RELATED WORK

Much work on source-level timing simulation exists with

emphasis on different problems. Several approaches to control-

flow mapping have been proposed, for example [6], [8]. Both

techniques focus on creating a matching that is as accurate as

possible, rather than reducing instrumentation. Other research

has been conducted with attention to increasing accuracy,

speed or both [4], [5]. The work presented in [4] focuses

on integrating cache simulation into SLTS, while keeping

performance as high as possible and achieving high accuracy.

Simulation of power and timing with instrumentation on IR-

rather than source-level was proposed in [5]. A more recent

work utilizes machine learning for power and performance

estimation [9] achieving quite high simulation performance

and accuracy. On the other hand, this approach requires avail-

ability to a, not necessarily physical, model of the hardware

1399978-3-9819263-0-9/DATE18/ c©2018 EDAA

(a) An example matching (b) Example path simulation code

Fig. 1. Two steps of SLTS: matching and path simulation code generation

with access to performance counters to obtain training data.

In contrast, SLTS as introduced in the previous section does

not suffer this restriction. The publications mentioned so far

did not focus on lowering the amount of instrumentations to

increase simulation speed. In [1] an algorithm to reduce the

number of instrumented source-level basic blocks is proposed.

More specifically, the suggested technique allows to find a

minimum set of instrumentation points necessary to recreate

binary control-flow during simulation. The work presented in

this paper aims at improving the simulation speed of state of

the art approaches, which already use instrumentation point

reduction, such as [1].

III. FUNDAMENTALS

A. Source-Level Timing Simulation

Source-level timing simulation requires several analysis

steps to be run prior to the actual execution. Three of these

are of interest in the scope of this work. First, matching

of binary- and source-level control-flow, as shown in Figure

1a. Second, path analysis enumerates all paths between pairs

of matched binary basic blocks. Note that a path may have

multiple possible successors. To identify which of these is

executed during simulation, it is sufficient to record the

execution of the last basic block in a path [1], which is

the main purpose of path simulation code. Figure 1b shows

an example of the latter. When simulate_bb_2 is called

during simulation, the number of overall cycles is increased

depending on the last instrumented basic block encountered.

In this example, BB 2 may be preceded by itself or by BB 3. It

also may be preceded by any number of basic blocks outside

of count_positive. As shown in Figure 1b, the generated

code contains information about the execution time of each

path, that is accumulated throughout simulation. Next, the

original source code is instrumented according to the matching

created in the first phase. Thus, each matched source-level

basic block is an instrumentation point.

B. Loop Acceleration

Abstract loop acceleration is used in WCET analysis to

statically derive an abstract state that represents values of

variables after the execution of a loop. In contrast, loop

acceleration is applied during path analysis in this work. More

specifically, a loop L is accelerated by first enumerating all

Fig. 2. Exemplary Call and Loop Dependencies

possible paths from loop-header to a loop-latch. Such a path

consists of all basic blocks in-between, including those part

of other loops or functions as well. We denote these paths

as full loop-paths for the reminder of this paper. Next, one

of these paths is chosen, for example the longest w.r.t the

number of basic blocks. Then, this path is appended to itself

L.upper bound− 1 times. Finally, the timing of L is derived

by calculating the execution time of the unrolled path. As a

result, all instrumentation points part of an accelerated loop

can be removed.

On the other hand, accelerating loops may decrease the

accuracy of SLTS, as loop bounds usually are conservative.

Moreover, there may be multiple paths connecting the same

pair of matched basic blocks as a result of loop unrolling. For

example, in Figure 2 a full loop-path of main.L1 may either

contain main.L2 or not, while one expects the execution

time of the latter to be much lower. Therefore, additional

loss of accuracy is introduced by choosing one of these

paths to be part of path simulation code. In consequence,

we heuristically choose loops for acceleration, such that the

decrease of accuracy can be controlled.

C. Execution Contexts

In general the execution time of an instruction depends on

the state of the microarchitecture, for example caches or the

pipeline. Therefore, it depends on the execution history leading

to an instruction. In timing simulation context-sensitivity of

execution times is exploited to greatly improve the precision

of timing predictions [2], [3].

IV. METHODOLOGY

In the following, we first give a short overview of our

method and then describe each step in detail. Loop accel-

eration, as realized in this work, consists of three phases:

1) choosing loops suitable for acceleration, 2) actual loop

acceleration and 3) adjusting instrumentation points. The last

step is necessary to make sure that control-flow reconstruction

is complete and correct after loops have been accelerated.

1400 Design, Automation And Test in Europe (DATE 2018)

Following this, we present a heuristic to prevent large accuracy

loss due to acceleration.

A. Loop Selection

A loop has to satisfy several requirements to be suitable for

acceleration. First, statically derivable upper bounds of a loop

and its sub-loops are mandatory. Additionally, unrolling may

also depend on a loop that is not a sub-loop. For example,

Figure 2 shows such a dependency, as main.L2 depends on

foo.L1 due to a call made from the body of main.L2. We

denote this kind of dependency as loop dependency for the

rest of this paper. Note that we duplicated the CFG of foo
for the sake of clarity. In general, it is possible for foo.L1
to depend on additional loops. For instance, bar.L1, being

a dependency of main.L1, has one of its own. Thereby,

loop dependency is a transitive relation. Thus, loop selection

consists of: 1) analyzing loop dependencies and 2) filtering

loops by availability of upper bounds.

1) Loop-Dependency Analysis: As loop dependencies can

result from calls to other functions, we use a call-graph (CG)

for analysis. More specifically, the CG is iterated depth-first,

while each node is associated with a list of loops. If a loop L
is mapped to a node N , there exists a call from the body of

L to the function represented by N . On visiting a CG node,

each call-site (CS) is checked to be part of a loop. If that is the

case, the inner-most loop containing a CS is associated with

the CG node of the called function. For example, Figure 3b

shows the list of loops associated with each node of the CG in

Figure 3a. As bar is only called from the body of main.L1,

the corresponding list solely consists of the latter. Moreover,

foo is called from main.L2 as well as bar.L1. Thus,

the associated list contains both loops. Note that we expect

loop dependency to be anti-symmetric. Thus, we currently

do not support accelerating loops with cyclic dependencies.

When visiting a CG node N that is associated to a loop L, all

loops part of the function corresponding to N are marked as

a dependency of L. In addition, each caller of N is marked as

depending on these loops. Finally, this algorithm yields two

dependency maps. One relates a loop to a list of all its direct

loop dependencies. The other associates a function F to all

loops contained by callees of F .

Next, we create a list lst accel of all loops ordered such that

all dependencies of a loop L appear before L. To that end, we

first collect all loops that are not depended-on by other loops.

We denote these as free loops. Given that loop dependency is

a transitive relation, we may regard a dependency map dep
as a tree. More specifically, each free loop can be considered

as a root of such a tree. Additionally, the children of a node

N in a dependency-tree are defined by the list dep(N). See

Figure 3c for the loop-dependency tree of main.L1. As the

first step in creating lst accel, we iterate the dependency-

tree of each free loop in post-order. To be more precise, for

each dependency-tree, we create a list of loops in the same

order they are visited during iteration. The list resulting from

iterating the tree in Figure 3c is: [foo.L1, main.L2, bar.L1].
Note that foo.L1 is added once, since adding it twice would

(a) Example CG (b) Example CG with loop lists

(c) Loop-dependency
tree of main.L1

Fig. 3. Example Call Graph, annotated CG and Loop-dependency Tree

be redundant. Finally, each list contains loops ordered such

that a loop L appears after all its loop dependencies. We create

lst accel by applying k-ways merge, while each loop is added

at most once.

Lastly, the derived list is filtered by removing all loops that

can not be accelerated. There are several reasons for a loop

to be removed: no upper bound available or removal of a

dependency. Additionally, assume multiple loops containing

a call to the same function and one of these is filtered. In that

case, all other loops have to be removed as well. Otherwise,

control-flow reconstruction fails during simulation of one of

the accelerated loops. In summary, the result of loop selection

and loop-dependency analysis is a list of all loops ordered for

acceleration.

B. Loop Acceleration

As mentioned earlier, accelerating a loop includes explicitly

enumerating all full loop-paths and unrolling these afterwards.

Explicitly enumerating all possible paths in a directed graph

is undecidable in general, as paths may be infinitely long due

cycles. Since we can detect loops and know the bounds of

those we are accelerating, the problem to be solved can be

reduced to enumerating all paths in a directed acyclic graph

(DAG). This problem still has exponential complexity. In ad-

dition, overhead can be reduced by enumerating the CFG of a

function that is called by multiple accelerated loops only once.

To that end, call dependencies between function need to be

known, as callees need to be enumerated before their callers.

Figure 2 shows exemplary call dependencies where the CFG

of foo needs to be enumerated before bar and consequently

before main. In summary, three steps are necessary to realize

loop acceleration: 1) call dependency analysis, 2) explicit path

enumeration and 3) loop-path unrolling.

1) Call-Dependency Analysis: Call-dependency analysis is

straight-forward based on the information provided by a call-

Design, Automation And Test in Europe (DATE 2018) 1401

graph, whereas transitivity of call dependency has to be

considered as well. The CG is traversed depth-first to derive

a mapping of direct dependencies, which associates a caller

with its callees. Next, similar to loop-dependency analysis,

a list of CFGs is generated based on direct dependencies.

Consequently, this list is ordered such that a caller appears

after all its callees. Hence, it can be used to hierarchically

enumerate all paths needed during loop acceleration.

2) Hierarchical Path Enumeration: As mentioned in Sec-

tion III, context-sensitivity of execution times can be used to

greatly improve the accuracy of timing simulation. Thus, our

approach supports both simulation modes: with and without

context-sensitivity. All of the algorithms presented in the

following work on a context-sensitive ICFG. Such a graph

allows to track the current context during iteration and to

context-sensitively retrieve information such as successors of a

basic block or bounds of a loop. However, we currently do not

have sophisticated context-sensitive analyses. Thus, we focus

on context-insensitive simulation in the scope of this work.

Figure 2 shows three functions, namely: main, foo and

bar. It further shows four loops, as well as all loop and

call dependencies in this example. Loop dependencies are not

visualized plainly but implicitly. In this example, hierarchical

path enumeration is first applied to foo.L1 and foo, fol-

lowed by enumerating all paths of main.L2. Next, all paths

of bar.L1 and bar are enumerated. Finally, all full loop-

paths of main.L1 can be created. This way, it is possible to

reuse paths during enumeration of CFGs at a lower level.

Based on these observations, we implement hierarchical

path enumeration as follows. We start by iterating over the

list of loops yielded by loop selection. For each loop L,

we use the results from call-dependency analysis to get a

correctly ordered list of CFGs that have to be enumerated

before L. Subsequent to handling this list, all paths of L
are enumerated. Other loop dependencies do not need to be

explicitly considered during this process, as the list of loops

returned by loop selection is ordered accordingly.

Going back to the example in Figure 2 our algorithm

proceeds as follows, assuming statically available bounds.

As main.L1 is the only free-loop in this example, the

list returned by loop selection immediately results from the

dependency-tree in Figure 3c. Thus, foo.L1 is handled first.

Processing a loop consists of two steps: first each CFG called

from that loop is enumerated if necessary. Next, the loop itself

is taken care of. Enumerating all paths of a loop L starts

with its header, denoted as L.head, while intermediate paths

are memorized using a stack. To create new paths, the one

currently on top is popped off. For each successor of that

paths’ last basic block a new path can be created and pushed on

the stack. However, not all successors can be simply appended

for path creation. More specifically, there are three cases in

which new paths are created differently. First, a successor

may be part of an already enumerated sub-loop L
′
. In that

event, new paths are created by appending all unrolled paths

from L
′
. Alternatively, the next basic block may be part of a

different function due to a call. Thus, path creation is done

analogously to the previous case. Finally, a successor may

already be part of the current path. In that case, no path is

created, as multiple occurrences of a basic block indicate a

loop that was not selected for acceleration. Enumerating all

paths through a CFG is executed analogously. However, a full

CFG-path starts with an entry-block and ends with an exit-
block, shown as rectangles in Figure 2.

3) Loop-Path Unrolling: Following enumeration, loop-

paths are unrolled heuristically to account for the entire

execution of a loop. To this end, each enumerated path is

concatenated to itself as often as the corresponding loop

bound requires. Therefore, it is mandatory for all paths to end

with a loop-latch. These unrolled paths do not represent all

possible paths through a loop, as different iterations may have

alternating paths from header to a latch. However, creating all

unrolled paths w.r.t control-flow across different iterations is

computationally very expensive. Thus, just concatenating full

loop-paths to themselves is a heuristic to contain that complex-

ity. Subsequent to unrolling, a path is extended to end with

a loop-exit if necessary. This is required for instrumentation-

point adjustment, which is discussed next.

C. Instrumentation-Point Adjustment

Following enumeration and unrolling, the derived paths

need to be integrated into the results of path analysis to

be utilizable during path simulation code generation. To that

end, a path must start and end with a matched basic block.

Hence, we realize integration using already existing simula-

tion paths as created during path analysis. More precisely,

we are interested in original simulation paths that enter or

leave an accelerated loop. For example, in Figure 1a path

(0x8028, 0x802c, 0x8034) leaves the corresponding loop in

Figure 1a, while path (0x8000, 0x8010) enters it. Thus, we

first collect all paths leaving or entering an accelerated loop.

Next, each path is split at a boundary of the corresponding

loop, being either the loop-header or a loop-exit. This pro-

cess yields all paths entering/leaving a loop, ending with a

loop header or starting with a loop-exit respectively. In the

following we denote these as loop-entry or loop-exit paths.

These paths can now simply be concatenated/appended to the

existing acceleration paths to create valid simulation paths.

Note that this procedure is guaranteed to result in valid and

complete path simulation code, assuming the latter possessed

these properties prior to acceleration. Validity in terms of

correct control-flow is assured, since concatenating paths is

conducted w.r.t the successors of a basic block. As mentioned

earlier, loop-paths are not complete, but only w.r.t control-flow

inside a loop. Two properties of the accelerated paths allow

derivation of completeness. First, all loop paths start with the

loop-header and any loop-entry path must enter a loop via

the loop-header. Hence, any such path can be concatenated

with any accelerated path. Secondly, there is a path from loop-

header to each loop exit and as any loop-exit path must contain

one of these exits blocks, it is possible to find an accelerated

path for each possible loop-exit path. Therefore, all original

1402 Design, Automation And Test in Europe (DATE 2018)

simulation path entering and leaving an accelerated loop are

part of path simulation code after acceleration as well.

D. Acceleration Heuristic

Our acceleration heuristic consists of two simple formulas.

First, the difference between upper and lower bound of a loop

L is considered during loop selection:

L.upper − L.lower

L.upper
· 100 ≤ maxloss,

while maxloss is a user-provided ratio. Second, the latter is

used to restrict the allowed distance between the longest and

shortest unrolled loop-path:

max(len(path))−min(len(path))

max(len(path))
· 100 ≤ maxloss.

Note that len(path) denotes the number of BBs in a path. In

addition, we track the sum of these distances, which must not

exceed the user-provided percentage as well. Thus, any loop

causing the accumulated and estimated inaccuracy to exceed

the threshold is not accelerated. In the following, we denote

this user-supplied number as expected inaccuracy.

V. EXPERIMENTAL EVALUATION

In this section we present and discuss the evaluation of our

proposed approach. We first examine setup and parameters

of the experimental evaluation. Afterwards, we review our

findings and their implications regarding our work.

To assess the loss of accuracy introduced by loop ac-

celeration, we first ran a selection of benchmarks from the

Mälardalen benchmark suite [7] on a Cortex-M0+ board from

Freescale. More specifically, we used a FRDM-KL25Z devel-

opment board, with a main clock speed of 20971520 Hz. Using

this frequency, the microcontroller does not have to wait during

communication with the on-board flash. This is necessary, as

our static timing model for the Cortex-M0+ is rather simple.

We made some changes to the selected benchmarks, which

we lay out after providing rationale for that decision. One

of two issues regarding the original sources is missing HW

support for floating-point (FP) arithmetic and integer division.

The handwritten assembly emulating this functionality results

in highly optimized and irregular binary-level control-flow.

Therefore, we replaced any integer division with manually

written C-code, while we discarded any benchmark with FP

arithmetic. In consequence cnt, compress, jfdctint and

matmult were changed regarding this issue. Next, some of

the benchmarks consist of initialization routines, the effects of

which are persistent across consecutive executions. Therefore,

the corresponding execution times differ between initialized

and non-initialized runs. As our framework always simulates

a benchmark entirely, we changed crc such that initialization

is non-persistent. In addition, all benchmarks were annotated

with best- and worst-case loop bounds w.r.t the given input at

source-level. These bounds were extracted by our framework

to be used for loop acceleration. To be able to apply loop

acceleration to a larger benchmark we combined adpcm_enc

and adpcm_dec from the TACLE benchmark suite [10]. The

resulting application consist of about 2000 lines of code.
All benchmarks were compiled using GCC ARM Embedded

6 update 2 for the target and GCC 6.3 for the host-machine.

The latter consists of an Intel Core i5-6500 CPU and 16

GB RAM. As host operating system Scientific Linux 7 was

used, while the target ran benchmarks directly (bare-metal).

Furthermore, interrupts were disabled during execution.
We conducted two different experiments on the host. First,

we simulated each benchmark to get execution time predic-

tions. Next, we ran benchmarks to measure run-time of sim-

ulation with and without loop acceleration. We used the tool

time to measure the entire execution time of a simulation run,

including the time a process was preempted. The following

simulation modes were used for both experiments: normal,

loop acceleration (accel) and loop acceleration with heuristic

(accel+heu). Note that the corresponding abbreviations are

used in all figures in this section. Further note that we used an

allowed expected inaccuracy of 10% for heuristic acceleration.
To get execution time predictions we executed our sim-

ulation once for each benchmark and simulation mode. In

contrast, to collect simulation run-times, we ran 10 simulations

for all modes and benchmarks. We derived a single value

for each benchmark by calculating the median of these run-

times. As our host-machine is very powerful compared to an

embedded system, an individual execution of any benchmark

only took a fraction of a second. Moreover, noise is caused

by the operating system and multi-tasking. Thus, a single

simulation run consisted of multiple consecutive executions

of a benchmark to account for said noise. As a result, the

execution times of benchmarks on our host-machine ranged

from 1-23 seconds.
To measure the execution time of a benchmark on real

hardware, we used the MCUs general purpose IO and a logic

analyzer. More specifically, a certain pin was set to HIGH
immediately before and to LOW directly after execution of

a benchmark. As bare-metal execution is subject to noise as

well, we ran each benchmark at least 750 times. The reference

time used for all comparisons is the average of these execution

times.

A. Results

Figure 4 shows the relative error of different simulation

modes w.r.t the execution times measured on hardware. We

calculated this inaccuracy as follows:

error =
tpred − texec

texec
· 100,

while tpred denotes the execution time predicted by our

simulation and texec the measured execution time on hardware.

On the other hand, Figure 5 shows achieved reduction of

simulation time by using loop acceleration compared to normal

simulation. We calculated this performance gain as follows:

reduction =
tsim − tacc

tsim
· 100.

Note that tacc may denote any of the used simulation modes.

Design, Automation And Test in Europe (DATE 2018) 1403

adpcm bs bsort100 cnt compresscrc edn fdct insertsort jfdctint lcdnum matmult

−
27
.6
5

−
8
.2
7

10
.8
2

3.
80

−
0.
15

5
.5
1

3
.6
8

10
.9
3

−
0
.0
4

−
0.
03

−
23
.3
7

11
.1
9

−
27
.5
1

11
.7
9

11
8
.7
7

−
0
.8
6

−
0.
06

98
.3
3

10
.5
8

18
.4
3

17
.8
9

0.
04

58
.3
6

11
.1
9

−
27
.5
6

−
8.
27

10
.8
4

−
0.
86

−
0
.0
6

6
.0
7

10
.5
8

18
.4
3

−
0.
04

0
.0
4

−
23
.3
7

11
.1
9

E
rr

o
r

[%
]

Sim Accel Accel+Heu

Fig. 4. Loss of Accuracy w.r.t Execution on Hardware

adpcm bs bsort100 cnt compresscrc edn fdct insertsort jfdctint lcdnum matmult

−
0
.1
1

16
.5
7

5.
30

−
1.
55

8
.3
2

55
.0
5

43
.0
3

0.
00

−
0.
08

−
1.
44

44
.9
0

10
.7
0

2.
39

−
0.
44

0
.6
6

2
.6
1

5.
72

6
.9
3

43
.7
4

0.
00

0.
08

−
2.
16

0
.2
9

11
.2
3

R
ed

u
ct

io
n

[%
]

Accel Accel+Heu

Fig. 5. Simulation-Time Reduction w.r.t Simulation without Loop Acceleration

First of all, our results indicate 2 things: 1) loop acceleration

is generally capable of achieving quite large simulation time

reduction, while 2) increasing the inaccuracy of the prediction

considerably in some cases. The letter is to be expected, which

is why we implemented a simple heuristic to choose loops

for acceleration. Figure 4 shows that this heuristic effectively

prevents large simulation errors, as for example in case of

bsort100, crc, insertsort or lcdnum. However, the

gain in simulation speed is reduced as well. Nonetheless,

loop acceleration is capable of decreasing the simulation time

between 5% and 43% for some benchmarks, while keeping

the introduced inaccuracy in acceptable bounds.

For example, crc, compress, edn and matmult expe-

rienced accuracy loss in the range of about 1 to 8 percentage

points, while achieving decreasing simulation time between

5% and 43%. Especially mamult, which did not encounter

any accuracy loss but a simulation time reduction of 11%.

In addition, it is to be noted that acceleration may lead to

negligible slowdown of overall simulation in some cases. In

these cases, the accelerated loops accommodated just for a

very small part of the entire execution of a benchmark. Ad-

ditionally, removing simulate_bb procedures from loops

can cause an increase of L1 instruction cache misses. Further-

more, we expect these effects to cause the behavior shown

by jfdctint. Moreover, variations in execution time of a

process running on linux in the range of less than 3% can be

attributed to different states of the microarchitecture or noise

produced by the operating system.

VI. CONCLUSION

We presented a way to use loop acceleration to further

accelerate SLTS along with a heuristic capable of containing

the corresponding loss of accuracy. In addition, our evaluation

indicates that next steps to further accelerate simulation need

to incorporate the effects of instrumentation on microar-

chitectural state. More specifically, choosing instrumentation

points and ordering bodies of corresponding functions w.r.t

instruction cache behavior is left as future work.

REFERENCES

[1] S. Schulz, O. Bringmann, Accelerating Source-Level Timing Simulation,
Proceedings of the 2016 Conference on Design, Automation & Test in
Europe, pp.1574–1579, 2016.

[2] S. Ottlik, C. Gerum, A. Viehl, O. Bringmann, Context-Sensitive Timing
Automata for Fast Source Level Simulation, Proceedings of the 2017
Conference on Design, Automation & Test in Europe, pp.512–517, 2017.

[3] S. Ottlik, S. Stattelmann, A. Viehl, W.Rosenstiel, O. Bringmann,
Context-Sensitive Timing Simulation of Binary Embedded Software,
Proceedings of the 2014 International Conference on Compilers, Ar-
chitecture and Synthesis for Embedded Systems, pp.512–517, 2014.

[4] Z. Wang, J. Henkel, Fast and Accurate Cache Modeling in Source-Level
Simulation of Embedded Software, Proceedings of the 2013 Conference
on Design, Automation and Test in Europe, pp.587–592, 2013.

[5] S. Chakravar, Z. Zhao, A. Gerstlauer, Automated, Retargetable Back-
Annotation for Host Compiled Performance and Power Mode, Pro-
ceedings of the Nineth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2013.

[6] Z. Wang, J. Henkel, Accurate Source-Level Simulation of Embedded
Software with Respect to Compiler Optimizations, Proceedings of the
2012 Conference on Design, Automation and Test in Europe, pp.382–
387, 2012.

[7] J. Gustafsson, A. Betts, A. Ermedahl, B. Lisper, The Mälardalen WCET
Benchmarks: Past, Present And Future, 10th International Workshop on
Worst-Case Execution Time Analysis (WCET 2010), pp.136–146, 2010.

[8] S. Stattelmann, O. Bringmann, W. Rosenstiel, Fast and Accurate Source-
Level Simulation of Software Timing Considering Complex Code Op-
timizations, Proceedings of the 48th Design Automation Conference,
pp.486–491, 2010.

[9] X. Zheng, L. K. John, A. Gerstlauer, Accurate Phase-Level Cross-
Platform Power and Performance Estimation, Proceedings of the 53rd
Annual Design Automation Conference , Article No. 4, 2016.

[10] H. Falk et al., TACLeBench: A Benchmark Collection to Support Worst-
Case Execution Time Research, Proceedings of the 16th International
Workshop on Worst-Case Execution Time Analysis (WCET 2016), pp.1–
10, 2016.

1404 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

