Cell-based Update Algorithm for Occupancy Grid Maps
and Hybrid Map for ADAS on Embedded GPUs

Jorg Fickenscher, Jens Schlumberger, Frank Hannig, Jiirgen Teich
Hardware/Software Co-Design, Department of Computer Science,
Friedrich-Alexander University Erlangen-Niirnberg (FAU), Germany

Abstract—Advanced Driver Assistance Systems (ADASs), such
as autonomous driving, require the continuous computation and
update of detailed environment maps. Today’s standard processors
in automotive Electronic Control Units (ECUs) struggle to provide
enough computing power for those tasks. Here, new architectures,
like Graphics Processing Units (GPUs) might be a promising accel-
erator candidate for ECUs. Current algorithms have to be adapted
to these new architectures when possible, or new algorithms have to
be designed to take advantage of these architectures. In this paper,
we propose a novel parallel update algorithm, called cell-based up-
date algorithm for occupancy grid maps, which exploits the highly
parallel architecture of GPUs and overcomes the shortcomings of
previous implementations based on the Bresenham algorithm on
such architectures. A second contribution is a new hybrid map,
which takes the advantages of the classic occupancy grid map
and reduces the computational effort of those. All algorithms are
parallelized and implemented on a discrete GPU as well as on an
embedded GPU (Nvidia Tegra K1 Jetson board). Compared with
the state-of-the-art Bresenham algorithm as used in the case of
occupancy grid maps, our parallelized cell-based update algorithm
and our proposed hybrid map approach achieve speedups of up to
2.5 and 4.5, respectively.

I. INTRODUCTION AND RELATED WORK

ADASs and autonomous driving are becoming more and
more important the car makers. Besides electrical vehicles, most
innovations in the automotive sector arise in the area of ADASs
at the moment, and customers are looking for the best driving
experience not only in the premium segment. To realize such
functionality, for example, an adaptive cruise control or in the
future autonomous driving, a detailed knowledge of the vehicle’s
environment is necessary any time. Such information is stored
in environment maps, like the occupancy grid map [4]. Various
sensors, such as radar and lidar are used for creating detailed
environment maps. These sensors produce an enormous amount
of data, which has to be processed and fused. At this moment, the
challenge is that most of the ECUs in nowadays cars have only a
single core Central Processing Unit (CPU), which fails to provide
the required computing power for those tasks. Another hitch is that
today’s performance gains are achieved mostly by more cores and
not by a higher single core performance. Here, new architectures,
like embedded GPUs emerge, which have hundreds of cores.
Yet to successfully employ such architectures, the predominant
single-threaded programming model in the automotive industry
has to be switched to a multithreaded programming model. Thus,
existing sequential algorithms have to be either adapted to the
multithreaded programming model or new parallel algorithms
have to be developed from scratch. In this realm, we propose in
this paper a new update algorithm for the occupancy grid map,
which takes advantage of the highly parallel architecture of a GPU.
Our algorithm overcomes the disadvantages of current state-of-the-
art update algorithms, such as the Bresenham algorithm [2] when
executed on many-core architectures. Another difficult task when

978-3-9819263-0-9/DATE18/€)2018 EDAA

Mohamed Essayed Bouzouraa
Concept Development Automated Driving,
Audi AG, Ingolstadt, Germany

creating occupancy grid maps is their granularity. Fine-grained
grids, like the occupancy grid map, require a high computational
effort, because regions farther away from the own vehicle have
the same resolution as areas close to the car, but usually do not
need that level of detail. Maps that entirely consist of coarse-
grained grid cells instead may miss relevant information in the
environment. Thus, a perfect solution would be to combine both
approaches into a hybrid map, which has a higher resolution close
to the vehicle and a smaller resolution for areas farther away from
the vehicle. The unique selling point of our proposed hybrid map
is that it is particularly designed for the characteristics of GPUs.

The remainder of the paper is structured as follows: In the next
paragraph, we discuss the differences of our approach compared
to related work. In Section II, an overview of our novel update
algorithm and the new hybrid map is given as well as a brief
introduction to programming embedded GPUs. In Section III,
experimental results are presented and discussed. Finally, we
conclude the paper in Section I'V.

The research for environment maps started nearly three decades
ago for mobile robots. In 1989, Elfes introduced the occupancy
grid map [4] for robotics and his approach is now one of
the standards in environment mapping [16]. It is also used by
Simultaneous Localization and Mapping (SLAM) algorithms
[8] and for motion planning of robots [10]. Elfes 2D approach
was extended to a third dimension in [13]. Besides robotics,
environment maps are also used in the automotive sector, e.g.,
for lane detection [11], to compute the free space [1] of the
environment for path planning or to avoid dynamic obstacles
[7]. Homm et al. [9] parallelized an occupancy grid map for
automotive use for the first time on a desktop GPU. Instead, we do
evaluate our algorithms also on an embedded GPU, which comes
close to those used later in vehicles. To update the occupancy grid
map, the authors in [9] used a Bresenham algorithm [2]. All other
works, like, e.g., [5], [21], [18], which are dealing with updating
an occupancy grid map, used also a Bresenham algorithm. The
work in [15] introduced an improved Bresenham algorithm to
update the occupancy grid map. Our approach presented in the
following rather updates every cell by looking back to the laser
scanner. A disadvantage of the occupancy grid map is that it
has the same resolution over the whole environment map. A few
works dealt with this problem. In [3], an occupancy grid map
was introduced, whose cell sizes are not determined before the
creation of the map. Instead, the cell size is determined on the
fly depending on the sensor measurements. Normally, all grid
cells have the same length in all directions of a 3D occupancy
grid, but in [17], a concept was introduced, where the dimension
in height can have different sizes, depending on the probability
if there is an obstacle or not. Some works also tried to reduce
the memory consumption of 3D grid maps. In [20] and [12], an

449

octree and a quadtree were used, respectively. Some works also
changed nearly the concept of an occupancy grid map. In [19],
the environment is discretized in the longitudinal direction like by
occupancy grid maps. Instead, a continuous value is stored in the
lateral direction. This approach was used for highway scenarios
and was parallelized for an embedded GPU by [5]. Yet, a big
disadvantage of all the works above is that all objects have to be
separately compensated by the ego-motion of the vehicle. Contrary,
in our proposed hybrid map, we can compensate the ego-motion
by a 2D ring buffer such as in traditional occupancy grid maps,
which is shown to be much faster.

II. METHODS

A. Occupancy Grid Mapping

An occupancy grid map represents the environment around
a vehicle through a fine-grained grid. For this purpose, the
environment is rasterized in squares, so-called grid cells. For every
grid cell, a probability is calculated, whether the cell is occupied
or free, based on sensor measurements. Typically, the posterior
probability is used in the occupancy grid map algorithm [16]

p(m|Zl:t7x1:1) (1

where m is the map, zi, ...,z are the measurements from the first
to the measurement at time 7, and x denotes the corresponding
known poses of the vehicle also from the first to the measurement
at time 7. Due to the high-dimensional space, the posterior cannot
be determined easily. Thus, the problem is reduced to calculate
the posterior of each grid cell separately:

p(milzi.,x1:))

Due to numerical instabilities close to probabilities near zero or
one, the so-called log-odds form is applied:

- p(mi|zlzt7x1:t)
In addition, to eliminate some terms that are hard to compute, the

Bayes’ rule is applied to the posterior p(m;|z,,x1). Finally, we
get:

3)

p(mi|z14,x1.) = log

P(zlzi—1,my) - p(milz14-1)
p(zlzia-1)

An occupied grid cell has the probability p(m;) = 1.0 and an
empty grid cell p(m;) = 0.0.

“)

p(mi|21:t»x1:t) =

B. Programming Embedded GPUs

GPUs are most efficiently used for solving problems with a
high arithmetic density and where data parallel computing is
possible. In former times, this meant mostly image processing.
But nowadays, GPUs can be used for a broad variety of compute-
intensive problems, such as artificial intelligence or numerical flow
simulation. The difference between a parallelized algorithm for a
CPU and a GPU is that on CPUs, different tasks on different
data are executed in parallel. Instead, on a GPU, the same
instruction is executed in parallel, but on different data. GPU
architectures are quite different from CPU architectures. GPUs
consist on the hardware level of several streaming processors,
which further contain multiple processing units. A streaming
processor spawns, manages, and executes threads in groups of
32, so-called warps. In a warp, every thread executes the same
instruction at the same time but on different data. This execution

450

model is called Single Instruction, Multiple Thread (SIMT), which
is close to Single Instruction, Multiple Data (SIMD). As general-
purpose programming paradigm for GPUs, Nvidia introduced the
CUDA framework [14] in 2006. Program blocks, which should
be executed in parallel on a GPU, are called kernels. Kernels in
CUDA are similar to functions defined over an iteration space in
the programming language C. Every kernel has its own grid. They
are executed N times in parallel by N CUDA threads. Multiple
threads are combined to logical blocks and blocks are combined to
a logical grid. One important difference between an embedded and
a desktop GPU is the memory architecture. On a desktop GPU,
the memory for the GPU is separated from the system memory,
and the data has to be explicitly copied to the GPU and back
(e.g., over PCI Express). Instead, in an MPSoC with an embedded
GPU (such as Nvidia Tegra, ARM Mali, or Qualcomm Adreno),
the processor system and the GPU share the same memory (also
known as unified memory architecture, see, e.g., [6] for further
details). Thus, no explicit data transfers to the GPU and back are
necessary. Consequently, memory transfer times can be saved.

C. Cell-based Update Algorithm

The state-of-the-art algorithm for updating occupancy grid
maps is the Bresenham line drawing algorithm [2]. The algorithm
selects the cells which have to be updated in the occupancy grid
map based on the sensor measurements. For each laser beam of
the sensor, a line is drawn in the occupancy grid map. The line is
drawn between the origin of the laser beam, the sensor, and the
measured obstacle, indicated by the black arrows in Fig. 1.

The reason for the wide usage is because the algorithm uses
only integer arithmetics and is quite efficient. Another advantage
is that also rounding errors are quite small. However, on GPUs,
the algorithm does not perform well due to several reasons. One is
the non-coalesced memory access. The grid cells of the occupancy
grid map are stored in the memory as indicated by the yellow
arrows in Fig. 1. In our example, one object was recognized by a
sensor. For updating the occupancy grid map, a CUDA thread is
started for every laser beam of the sensor. If there is no obstacle in
the grid cell, the cell is marked in green. If there is an obstacle in
the grid cell, the cell is marked in red. To indicate no measurement,
i.e., the occupancy is unknown, the cell is marked in brown. For
every grid cell which has to be updated, a new line (corresponding

pa
/
/
v
-

/V

k\ \\

\
_\\\\
1

Figure 1: Schematic figure of the non-coalesced memory access on a
GPU, using a Bresenham algorithm to update an occupancy grid map.
The black arrows show which cells need to be accessed and updated
in case a Bresenham algorithm is used. The yellow arrows indicate the
storage of the cells in the memory.

Design, Automation And Test in Europe (DATE 2018)

Algorithm 1 Overview over the cell-based update algorithm.

1: Input: Vector vel // velocity vector

LaserDataArray laserData // Array with the laser measurements
float* matrixOld // Occupancy grid map before updated with the new laser measurement
2: Output: float* matrixNew // Occupancy grid map updated with the new laser measurement
3: function PUTLASERDATAINTOMATRIX(Vector vel, LaserDataArray laserData, float* matrixNew, float* matrixOld)

4: for (y=verticalMin; y < verticalMax; y++) do

5: for (x=horizontalMin; x < horizontalMax.x; x++) do
6: float new Value = getCellState(laserData, x, y, vel)
7: int indexOldValue = getGridCoordsIndex(x-vel.x, y-vel.y)
8: float oldValue = matrixOld[indexOldValue]
9: float updatedValue = 1/(1+ exp(log((1 — newValue) /newValue) +log((1 — oldValue) /old Value)))
10: int gridCurlndex = getGridCoordsIndex(x, y)
11: matrixNew|[gridCurIndex] = updated Value
12: end for
13: end for

14: end function

Algorithm 2 The core function of the cell-based update algorithm. It determines the laser ray which goes through a given grid cell.

1: Input: Vector vel, LaserDataArray laserData, float* matrixOld
2: QOutput: LaserDataArray laserData

3: function GETRAYFORCOORDINATES(LaserDataArray laserData, float x, float y, Vector vel)
. float angleBetweenVectorsye, = convToDegree(arccos((x - vel.x+y-vel.y) /(v/x2 +y2 - \/vel.x2 + vel.y?)))

float rotationDirection = y - vel.x —x - vel.y
if (rotationDirection < 0) then

end if

int rayIndex = angleBetween Vectorsge, / resolutionOfRays + (numberOfRays-1)/2

return laserData[rayIndex]

4
5
6:
7: angleBetweenVectorsge, = angleBetweenVectorsgeg - (-1)
8.
9
0
1: end function

10:
1

to the beam/ray of the laser, see Fig. 1) has to be loaded from
memory. Because of the irregular memory access for different
laser beams, the data is hardly cacheable. If the sensor would
be on the entire left side (parallel projection), the Bresenham
update would be executed over the yellow arrows, and for the
whole update, only one memory line would have to be loaded
into the cache to draw one line. Our algorithm instead updates
the occupancy grid map by determining for each occupancy grid
cell if a sensor measurement hits it or not. For every grid cell,
a CUDA thread is started that calculates by which laser beam
the occupancy grid cell was hit. Another challenge is the warp
efficiency of the Bresenham algorithm. Let n threads in a warp
draw the lines respective update the cells of the occupancy grid
map between the n beams of a laser sensor measurement z; and
the origin of the beams at the sensor. Every thread in that warp has
to wait until the thread has finished updating the grid map with
the measurement farthest away from the sensor. This means in
the worst case 31 threads of the warp are idle because they have
a laser measurement close to the sensor and have to wait until
the thread with the measurement farthest away has finished. A
further advantage of our algorithm is that it always has the same
execution time, for the same grid size, no matter how many and
how far the measured objects are away from the vehicle. Instead,
the Bresenham algorithm suffers from varying execution times,
due to the different number of grid cells that have to be updated.
If the measured object is farther away from the own vehicle, more
cells have to be updated as if the object would be closer to the
own vehicle.

In Algorithm 1, our new cell-based update algorithm 1is

described. It iterates over all grid cells of the occupancy grid map.

The important part of our algorithm is the function gerCellState.

Design, Automation And Test in Europe (DATE 2018)

In this function, the ray for a given cell coordinate is retrieved and
checked if, based on the laser beam, the cell state is free, taken, or
unknown. This is achieved by taking the current velocity vector of
the car and computing the corresponding ray for every coordinate
with the help of the getRayForCoordinates function, described
in Algorithm 2, which is called in getCellState. The first step in
getRayForCoordinates is to compute the angle between the given
coordinate and the velocity vector. After the angle is calculated,
the rotation direction can be determined if the cell is clockwise or
counterclockwise turned from the velocity vector. The information
is used to compute the correct index in the LaserDataArray.
This array contains the laser measurements. After the index is
computed, the correct laser ray can be returned, i. e., which hits
the chosen cell in the environment map. Afterwards, the length of
this ray can be compared, in the Cartesian coordinate system, with
the distance of the grid cell to the origin of the laser beam, the
lidar sensor. If the length of the ray is longer than the Euclidean
distance of the grid cell to the sensor, the grid cell is free. If it
is shorter, the occupancy of the grid cell is unknown, and if it is
equal, there is an obstacle at exactly this grid cell. Finally, in line
nine of the algorithm, the previous probability value in the map
is merged (updated) with the corresponding new measurement,
using Eq. (4).

The accuracy of our cell-based update algorithm and the
Bresenham update algorithm, which is used, e.g., in [9], [5],
[21], remains the same. In the Bresenham algorithm, a laser beam
[b from the sensor measurement z; is drawn from the sensor to the
measured objects. As a result of this, the probability of all cells
p(m;), which are between the sensor origin S and the measured
object T with coordinates (x;,y;), is updated p(m;|z.,x1). In
our algorithm, we look back to the sensor and check which laser

451

beam is relevant for the cell and update the probability of cell
p(m;) accordingly. Therefore, our parallelized implementation
can be considered as a kind of inverted Bresenham algorithm.

For comparison, to update the environment map, one thread is
created per cell in CUDA, and each thread independently executes
the above cell-based update algorithm. To update these maps using
the Bresenham algorithm, we created for every laser beam a thread
on the GPU, similar as in the work by Homm et al. [9].

D. Hybrid Map

A disadvantage of the classic occupancy grid map is its uniform
resolution over the whole map. This motivates us to propose
a new hybrid map hm in the following. Surely, the occupancy
grid map has also some advantages, e.g., the ego-motion of the
own vehicle can be easily compensated using a 2D ring buffer,
which corresponds to shifting two pointers in software. One for
the movement in the lateral and one for the movement in the
longitudinal direction. Rotations of the vehicle are compensated
by rotating the own vehicle on the map and not the other vehicles
in the surroundings. Normally, in hybrid maps, other objects in
the environment map have to be rotated by the rotation of the
own vehicle, like in the interval map [19]. But this requires a
considerable amount of computing power, which results in long
update cycles of such types of environment maps, maybe longer
than the sensor’s sampling rate.

The grid cells of the hybrid map are also squares, like in the
occupancy grid map. Grid cells close to the sensor are smaller
than cells farther from the sensor (see Fig. 2). The edge length
between two cell sizes always doubles, e.g., 0.2m, 0.4m and 0.8m
for a hybrid map with three different grid cell sizes. Therefore, the
area of one grid cell between two different grid cell sizes gets four
times bigger. Our hybrid map hm is defined as:

hm = {Uie(1 yhmi j|Vi: 3j € [1,m]})

The index i indicates the section of the hybrid map and index j
the cell in the corresponding section i. The sections are ordered
by the cell size, starting with ij, which is the section with the
smallest cells and ending with i,,, which is the section with the
biggest cell size. The smallest size of the hybrid map has a size
of 16 x 16 grid cells, also called unit hybrid map due to the
doubling of the cells’ edge length. In the following example, we
assume that m = 16. The smallest index for the hybrid map, with
three sections, is eight, like shown in Fig. 2. For three different
cell sizes, a corresponding hybrid map is depicted in Fig. 2. For
programming a GPU, it is important to store the data efficiently,
especially to have coalesced memory access. Storing the whole
map in a 2D array is not efficient because neither every row nor
every column has an equal number of values. For example, as seen
in Fig. 2, row eight has only four cells, and row eight has eight
cells. Thus, for every different cell size, a separate array is created,
which has the same size. So every cell size in the hybrid map has
the same number of grid cells. Finally, on the GPU, all 2D arrays
are combined into one 3D array. If there are three different sizes of
cells, we have one array with the size of 16 x 16 x 3. If the chosen
size of a hybrid map is, for example, 1024 x 1024, and therefore
different from the unit hybrid map, it is necessary to calculate the
cell distribution and index for the different sections of a hybrid
map. Hence, it is necessary to scale the unit hybrid map to bigger
grid sizes. It is desired that the hybrid map always covers the

452

PINlw B o N o

—
|-

Figure 2: Hybrid map with a granularity of the different grid cell sizes
and the used indices to calculate the size of each section.

same area as a comparable occupancy grid map. Similarly, the
number of grid cells in each section of the hybrid map should
be the same. Therefore, the number of grid cells in each section
has to be known. /; indicates the last index in section i, and it is
calculated from the origin in the map, i. e., the vehicle’s position.
To calculate /;, a scale factor s is introduced. For the unit hybrid
map, we have for the section with the smallest cells /; = 2, for the
mid-sized cells [, = 4, and finally for the section with the biggest
cells /3 = 8. For a hybrid map that has equal size as an occupancy
grid map, for example, 1024 x 1024, we have to resize the unit
map. The scale s is computed out of the maximal size of the map
maxSize and the number of sections #S:

o (max;fﬁe/Z) ©)

To calculate /;, its corresponding section has to be considered:
l,' =5- Zi (7)

For example, for a hybrid map equal to 1024 x 1024, we get
[y = 128 for the section with the smallest cells, I, = 256 for the
section with the mid-sized cells, and /3 = 512 for the section with
the biggest cells. For example, as shown in Fig. 3, the single
maps cover the same area up to three times, although only one
time would be necessary. The areas covered more than one time
are relatively small compared to the conventional occupancy
grid map. Always a quarter of the cells of the bigger size is
computed needlessly. If we take a hybrid map with a size of
1024 x 1024, it has actually 256 x 256 x 3 = 196,608 grid cells.
2 x 256 x256/4 = 32,768 grid cells are calculated unnecessary,
which is 16.7% of the cells. Compared to the original number of
cells 1024 x 1024 = 1,048,576 of the occupancy grid map, the
hybrid map reduces the number of grid cells by 82%. Then, only
3.75% of the grid cells are calculated multiple times compared to
the original occupancy grid map.

Since there are fewer cells as in a classic occupancy grid map,
the accuracy in some regions of the hybrid map also decreases. In
the important area, close to the vehicle environment, the resolution
of the environment map remains the same, as in the conventional
occupancy grid map. Cells further away have less resolution,
which leads to a certain inaccuracy. Let im be a hybrid map with
two different cell sizes &y ; and hy ;. If there is no object or an
object which has the size of a cell in h; ; the accuracy of the
occupancy grid map and a classic hybrid map remains the same.
The worst case would be that a current measured object would

Design, Automation And Test in Europe (DATE 2018)

Figure 3: The upper hybrid map (a) shows the final stage of the
environment map. The maps with the finest granularity (b), with the
medium granularity (c) and coarsest granularity (d) are calculated and
combined to a hybrid map on the GPU. As shown in the figure, the
individual maps cover some areas of the final hybrid map up to three
times, for computational reasons, as described in the text.

have the size of a cell in & j, but is located in &, ;. Then, the
object would have the size of the cell in A ;, which leads to a
maximum error of 75%. However, for the rough planning of a
vehicle’s route, this error is not critical because routes are only
planned in free areas. If the route of the vehicle is planned in
detail, the object is in the area with the high resolution.

III. EXPERIMENTS
A. Evaluation Environment

To evaluate our algorithms we used a lidar scanner, which has
a 360° horizontal field of view. It has a 0.08° angular resolution,
which results in 4,500 laser beams. For the experiments, two GPU
platforms where used. A desktop computer, equipped with an
Intel Core 15-4670K processor at 3.4 GHz and an Nvidia GTX970
GPU with 1,664 CUDA Cores at 1,114 MHz. The experimental
embedded platform was a Jetson K1 board. It embodies a quad-
core ARM Cortex-A15 CPU with 2.3 GHz and Nvidia Tegra K1
GPU with 192 CUDA Cores and 850 MHz. Our experiments have
been performed for several sizes for environment maps to evaluate
the scalability of our algorithms. The shown measured times were
the average times over several cycles.

B. Evaluation

In the first experiment, we compared our new update algorithm,
the cell-based update algorithm, with the state-of-the-art Bresen-
ham algorithm on an occupancy grid map, as well as using our
hybrid map approach. The experiments were executed on the GPU
of an Nvidia Jetson board, and the results are illustrated in Table 1.
All algorithms were real-time capable, except one. For a grid size
of 2048 x 2048, the cell-based update algorithm slightly missed
the update rate of 25 Hz and reached only an update rate of 22.5 Hz.
But such a high number of grid cells is usually not used in practice.
In Fig. 4, the experiments given in Table I are normalized to the
Bresenham algorithm on the occupancy grid map for each grid
size for the sake of better comparability. This means, only values
for the same grid size are comparable. For small and medium
occupancy grid sizes, like the widely used 512 x 512 occupancy
grid size in the automotive sector [9], the cell-based algorithm is

Design, Automation And Test in Europe (DATE 2018)

5 | |

o0 [B Bresenham Grid Map
£ 4t [0 Cell-Based Grid Map |
S [0 Bresenham Hybrid Map
% 30 [B Cell-Based Hybrid Map
g
E 2 N
S
=
o 1

il il

i

1 1
256x256

512x512 1024x1024
Grid map sizes in cell x cell

2048x2048

Figure 4: Performance scaling of the algorithms in Table I. The values
were normalized to the Bresenham algorithm on the grid map for each
size of the grip map, executed on the GPU of the Jetson board.

faster than the state-of-the-art Bresenham algorithm. For big grid
sizes, it is slower because for every grid cell, a thread is created,
which calculates the occupancy of the grid cell. Instead, in case
of the Bresenham algorithm, for every laser beam, one thread is
created, which updates the probability in the map. For the grids
in our examples, the number of grid cells grows exponentially,
but the sensor resolution stays the same. Thus, the computational
effort of our method also nearly becomes exponential, while in
the Bresenham algorithm it only grows linear.

The computation of the hybrid map with the cell-based update
algorithm is faster than the computation of the standard occupancy
grid. For a grid size of 1024 x 1024, the hybrid map has only
about 20% of the grid cells as the occupancy grid map with of
the same size; thus, considerably fewer calculations have to be
performed. The Bresenham algorithm on the hybrid map was
always slower, even on maps with a significant number of cells
than the cell-based update algorithm. If the Bresenham algorithm
updates the cell with a measurement, it always has to be checked,
which size the current cell has, due to the different grid cell sizes
in the hybrid map. This adds an extra overhead to the algorithm,
which slows it down in comparison to the others.

We also performed the same experiments on a desktop computer
equipped with the discrete Nvidia GTX970 GPU. The results are
shown in Table II. The settings were the same as in the first
experiments (Table I). The execution times on the desktop GPU
were only marginally higher as on the embedded GPU. This is
mainly caused by the fact that data has to be explicitly copied
to the discrete GPU and back, while this is not the case for the
embedded GPU. Obviously, these data transfers add additional
time to the total execution time of the algorithm. Also, the desktop
GPU cannot make full use of its much higher computing power
due to a larger amount of CUDA cores than the embedded GPU,

Table I: Execution times in ms of the update of the occupancy grid (Gr.
M.) and hybrid map (H. M.) using the Bresenham (Br.) and the cell-based
update algorithm (Cell B.) on the GPU of the Jetson board.

grid size
algorithm 256 512 1024 2048
Br. Gr. M. 2.06 3.81 7.24 17.47
Cell B. Gr. M. 0.87 2.92 11.20 44.49
Br. H. M. 5.50 6.72 9.40 13.66
Cell B. H. M. 0.45 1.13 3.61 12.01
453

Table II: Execution times in ms of the occupancy grid (Gr. M) and hybrid
map (H. M.) with the Bresenham (Br.) and the cell-based update algorithm
(Cell B.) on the desktop PC. The experiment was executed on an Nvidia
GTX970 GPU.

grid size
algorithm 256 512 1024 2048
Br. Gr. M. 2.26 4.78 8.99 17.98
Cell B. Gr. M. 0.73 2.78 10.86 43.05
Br. H. M. 10.11 20.32 41.54 80.92
Cell B. H. M. 0.62 1.36 4.12 13.79
80 | |
[l 0 Bresenham Grid Map on CPU M
o [0 cell-Based Grid Map on CPU
é 60 (- [0 Bresenham Grid Map on GPU B
US; 0 B Cell-Based Grid Map on GPU
o
2 40| -
:
£
S 20|
oW
0 = = =
256x256 512x512 1024x1024 2048x2048

Grid map sizes in cell x cell

Figure 5: Speedup measured on the Nvidia Jetson board between the
CPU and GPU versions of the algorithm. The values are normalized for
each size of the grid map to the Bresenham algorithm.

but the algorithm has no intense arithmetic calculations. Thus, the
desktop GPU cannot benefit from it.

In our last experiment, we executed the cell-based update
algorithm on the CPU of the Nvidia Jetson board and compared it
to the parallel version of that algorithm. The results are normalized
to the CPU version of the Bresenham algorithm on the occupancy
grid map. They are normalized for each grid size for a better
comparison and shown in Fig. 5. The CPU version is a sequential
algorithm. The speedup of the GPU version, compared to the
CPU version, increases with bigger grid sizes for the Bresenham
algorithm. The individual threads have a higher workload for
larger grid sizes because one thread has to update more cells in
average. The cell-based update algorithm has nearly a constant
speedup. Finally, the Bresenham algorithm is faster on the CPU as
our cell-based update algorithm on the CPU. This is not surprising,
as the Bresenham algorithm has lesser arithmetic operations than
our algorithm, which is advantageous on the CPU.

IV. CONCLUSION

In this paper, we introduced a new parallel update algorithm for
the occupancy grid map, which serves as the basis for automated
driving. We showed that this algorithm could outperform state-
of-the-art GPU implementations of the Bresenham algorithm
used to update the occupancy grid map by 2.5 for small and
mid-sized occupancy grids. Further, our proposed algorithm has
always a constant execution time for updating the environment
map, whereas the Bresenham algorithm has a varying latency
depending on the laser measurement. Only on single core CPU
is the standard Bresenham algorithm to update the environment
maps faster than our single-core cell-based algorithm due to fewer

454

arithmetic operations. As a second contribution, the introduced
hybrid map cuts down execution times up to a factor of 4.5 while
having an accuracy as high as in the case of an occupancy grid
map, in close proximity of to the own vehicle. In the future,
we want to investigate power tradeoffs between CPU and GPU
implementations.

REFERENCES

[1] H. Badino, U. Franke, R. Mester, and F. A. Main, “Free space computation
using stochastic occupancy grids and dynamic programming”, in Proc. of
the Intl. Workshop on Dynamical Vision at Eleventh IEEE Intl. Conference
on Computer Vision (ICCV), (Rio de Janeiro, Brazil), Oct. 20, 2007.

[2] J. E. Bresenham, “Algorithm for computer control of a digital plotter”,
IBM Systems Journal, vol. 4, no. 1, pp. 25-30, 1965.

[3] E.Einhorn, C. Schréter, and H. M. Gross, “Finding the adequate resolution
for grid mapping — Cell sizes locally adapting on-the-fly”, in Proc. of the
IEEE Intl. Conference on Robotics and Automation (ICRA), (Shanghai,
China), May 9-13, 2011, pp. 1843-1848.

[4] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation”, Computer, vol. 22, no. 6, pp. 46-57, Jun. 1989.

[S] J. Fickenscher, O. Reiche, J. Schlumberger, F. Hannig, and J. Teich, “Mod-
eling, programming and performance analysis of automotive environment
map representations on embedded GPUs”, in Proc. of the IEEE Intl. High-
Level Design Validation and Test Workshop (HLDVT), (Santa Cruz, CA,
USA), IEEE, Oct. 7-8, 2016, pp. 70-77.

[6] J.Fickenscher, S. Reinhart, M. Bouzouraa, F. Hannig, and J. Teich, “Convoy
tracking for ADAS on embedded GPUs”, in Proc. of the IEEE Intelligent
Vehicles Symposium (IV), (Redondo Beach, CA, USA), IEEE, Jun. 11-14,
2017, pp. 959-965.

[7]1 C.Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle avoidance
in uncertain environment combining PVOs and occupancy grid”, in Proc.
IEEE IntlConference on Robotics and Automation (ICRA), (Roma, Italy),
Apr. 10-14, 2007, pp. 1610-1616.

[8] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based SLAM
with Rao-Blackwellized particle filters by adaptive proposals and selective
resampling”, in Proc. of the IEEE Intl. Conference on Robotics and
Automation (ICRA), (Barcelona, Spain), Apr. 18-22, 2005, pp. 2432-2437.

[9] F.Homm, N. Kaempchen, J. Ota, and D. Burschka, “Efficient occupancy

grid computation on the GPU with lidar and radar for road boundary

detection”, in Proc. of the IEEE Intelligent Vehicles Symposium (IV), (La

Jolla, CA, USA), Jun. 2010, pp. 1006-1013.

X.-J. Jing, Ed., Motion Planning. InTech, Jun. 2008. [Online]. Available:

https://www.intechopen.com/books/motion_planning.

S. Kammel and B. Pitzer, “Lidar-based lane marker detection and mapping”,

in Proc. of the IEEE Intelligent Vehicles Symposium (1V), (Eindhoven, The

Netherlands), Jun. 4-6, 2008, pp. 1137-1142.

G. K. Kraetzschmar, G. P. Gassull, and K. Uhl, “Probabilistic quadtrees

for variable-resolution mapping of large environments”, in Proc. of the

IFAC/EURON Symposium on Intelligent Autonomous Vehicle (IAV), (Lisboa,

Portugal), Jul. 5-7, 2004.

H. Moravec, “Robot spatial perception by stereoscopic vision and 3d

evidence grids”, Carnegie Mellon University, Pittsburgh, PA, USA, Tech.

Rep. CMU-RI-TR-96-34, Sep. 1996.

NVIDIA Corp., Programming guide — CUDA toolkit documentation, https:

//docs.nvidia.com/cuda/cuda-c-programming- guide/, 2016.

T. Rakotovao, J. Mottin, D. Puschini, and C. Laugier, “Integration of

multi-sensor occupancy grids into automotive ECUs”, in Proc. of the

ACM/EDAC/IEEE Design Automation Conference (DAC), (Austin, TX,

USA), Jun. 5-9, 2016, 27:1-27:6.

D. E. Sebastian Thrun Wolfram Burgard, Probabilistic Robotics. Cambridge,

Massachusetts and London, England: The MIT Press, 2005.

A. Souza, R. S. Maia, R. V. Aroca, and L. M. G. Gongalves, “Probabilistic

robotic grid mapping based on occupancy and elevation information”, in

Proc. of the Intl. Conference on Advanced Robotics (ICAR), (Montevideo,

Uruguay), Nov. 25-29, 2013, pp. 1-6.

A. Souza and L. Gongalves, “Occupancy-elevation grid: An alternative

approach for robotic mapping and navigation”, vol. 1, p. 18, Apr. 2015.

T. Weiherer, S. Bouzouraa, and U. Hofmann, “An interval based represen-

tation of occupancy information for driver assistance systems”, in Proc. of

the Intl. IEEE Conference on Intelligent Transportation Systems (ITSC),

Oct. 2013, pp. 21-27.

K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard,

“OctoMap: A probabilistic, flexible, and compact 3d map representation for

robotic systems”, in Proc. of the ICRA 2010 Workshop on Best Practice in

3D Perception and Modeling for Mobile Manipulation, (Anchorage, AK,

USA), 2010.

M. Yguel, O. Aycard, and C. Laugier, “Efficient GPU-based construction

of occupancy grids using several laser range-finders”, in International

Journal of Vehicle Autonomous Systems, vol. 6, Oct. 2006, pp. 105-110.

[10]
[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]

[21]

Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

