
HePREM: Enabling Predictable GPU Execution
on Heterogeneous SoC

Björn Forsberg1 Luca Benini1, 2 Andrea Marongiu1, 2

1 Swiss Federal Institute of Technology Zürich 2 University of Bologna
{bjoernf, lbenini, a.marongiu}@iis.ee.ethz.ch

Abstract—Heterogeneous systems-on-a-chip are increasingly
embracing shared memory designs, in which a single DRAM
is used for both the main CPU and an integrated GPU. This
architectural paradigm reduces the overheads associated with
data movements and simplifies programmability. However, the
deployment of real-time workloads on such architectures is trou-
blesome, as memory contention significantly increases execution
time of tasks and the pessimism in worst-case execution time
(WCET) estimates. The Predictable Execution Model (PREM)
separates memory and computation phases in real-time codes,
then arbitrates memory phases from different tasks such that
only one core at a time can access the DRAM. This paper revisits
the original PREM proposal in the context of heterogeneous
SoCs, proposing a compiler-based approach to make GPU codes
PREM-compliant. Starting from high-level specifications of com-
putation offloading, suitable program regions are selected and
separated into memory and compute phases. Our experimental
results show that the proposed technique is able to reduce the
sensitivity of GPU kernels to memory interference to near zero,
and achieves up to a 20× reduction in the measured WCET.

I. INTRODUCTION AND RELATED WORK

Heterogeneous systems-on-a-chip (SoC) are been increas-
ingly adopted to satisfy the high performance and energy
efficiency demands of sophisticated applications, e.g., from the
automotive and avionics domains. The most common archi-
tectural template consists of a general-purpose host processor
and an integrated GPU (iGPU), physically sharing a single
main memory (usually DRAM). This reduces the overhead of
data transfers and greatly simplifies the programming model,
at the cost of making the execution time of the deployed
workloads sensitive to memory contention and interference.
When executing several benchmarks from the PolyBench-
ACC suite1 [1] on an NVIDIA Tegra TX1 under memory
interference, we observed order-of-magnitude slowdowns for
GPU kernel execution. Such a heavy perturbation makes the
adoption of commercial off-the-shelf (COTS) devices difficult
for the construction of real-time systems, where correct timing
behavior must be ensured under all conditions. Given the com-
plexity of such designs, deriving worst-case execution time
(WCET) estimates based on analytical approaches requires
overly pessimistic assumptions to account for access time
variability, causing poor utilization.

As architectural support to mitigate the effect of memory
contention [2] [3] is typically not available in COTS het-
erogeneous platforms, the real-time community is actively
exploring several software techniques to enable predictable
execution (i.e., freedom from interference in CPU-GPU co-
runs). Focusing on host CPU management, memory arbitra-
tion mechanisms have been recently proposed to co-schedule
memory and processing bandwidth by multiple cores, such
as MEMGUARD [4], BWLOCK [5] and the predictable

1More information about the experimental setup is provided in Section IV.

execution model (PREM) [6] [7]. Software techniques for het-
erogeneous SoC management have started appearing only very
recently, and include scheduling of DMA memory transfers
and kernel executions independently at offload time [8], [9]
and preliminary explorations related to the suitability of the
PREM in this context [10] [11].

PREM lowers the pessimism in WCET estimates by first
separating memory and compute phases in real-time appli-
cations, and then scheduling the memory phases such that
only one core at a time accesses the shared resource. The
key difficulties in implementing this model are thus related to
i) providing compiler techniques to restructure applications
written with standard programming models; ii) designing
centralized memory arbitration methods.

Concerning the first point, guidelines for compiler support
for PREM were discussed in the original publication [6]
(assuming a programmer-aided approach relying on direc-
tives), and a fully automatic approach has been proposed
for scratchpad-based, general-purpose CPUs [12]. Techniques
such as decoupled access-execute (DAE) [13] and Clairvoy-
ance [14] also target the separation of memory and compute
phases, but not in the context of real-time systems, and as such
do not provide enforcement of the separation of the phases,
nor require the data to reside locally to the processor. No work
has been done so far on PREM compilation for GPUs.

Concerning the second point, the previously cited works
that target real-time execution provide mechanisms to ar-
bitrate memory requests between multiple CPUs, typically
implemented as an extension to the operating system. In the
context of heterogeneous SoCs, GPUguard [11] was recently
proposed as a proof-of-concept synchronization scheme to
support PREM for iGPUs, further described in Sec. III-A.

In this paper, we present HePREM, which revisits and
extends the original concepts for predictable execution on
heterogeneous SoCs. With HePREM we make thefollowing
contributions: 1) we present a compiler-based technique
for PREM compilation for iGPU kernels on heterogeneous
SoCs; 2) we describe the first complete implementation of an
integrated framework for PREM execution on heterogeneous
SoCs; 3) we discuss an extensive set of experimental results
aimed at showing the benefits of PREM in this context as
well as at identifying the key bottlenecks. In particular the
experiments demonstrate that the proposed approach limits
the effect of memory interference on the WCET to near-
zero, offering on average an order of magnitude reduction in
performance loss compared to the unmodified GPU program.

II. HEPREM DESIGN

PREM assumes a program execution model with three main
features: (i) applications are divided into a sequence of non-
preemptive scheduling intervals; (ii) these scheduling intervals

545978-3-9819263-0-9/DATE18/ c©2018 EDAA

Fig. 1: A logical view of different GPU execution schemes
enabling mutually-exclusive access to the system DRAM with
the CPU executing in background.

(named predictable intervals) are executed predictably without
OS calls and cache-misses by prefetching all required data at
the beginning of the interval itself; (iii) the execution time of
predictable intervals is kept constant by monitoring CPU time
counters at run-time.

To implement predictable intervals, application code is
re-arranged into memory phases, during which all the data
required for the computation is moved to a local memory,
and compute phases, which operate on local data. The model
also considers compatible intervals, which are parts of the
program that are compiled and executed without any special
provisions (i.e., they are backwards compatible with legacy
code). In these intervals, all required OS calls can be grouped
and cache misses can happen at any time, provided that
bounds on execution time can be computed based on static
analysis techniques. Ideally, there should be a small number
of compatible intervals which are kept as short as possible.

To provide freedom from interference, PREM enforces a
coscheduling mechanism that serializes memory access re-
quests from various actors (e.g., memory phases or compatible
intervals from programs/tasks running on different cores).
Since PREM only allows a single task to have its memory
requests serviced at a time, other tasks might have to wait
for their memory phase to begin, introducing idling. This also
happens when a task finishes computation on its local data
earlier than budgeted for the associated predictable interval
(see point (iii) above).

A. HePREM Overview

HePREM extends the ideas of the original PREM proposal
to GPU execution and compilation. In this context, a revisited
notion of compatible intervals is the simplest form of GPU
code transformation for predictable execution (freedom from
interference). HePREM compatible intervals consist of parts
of offloaded GPU kernels, at the boundaries of which syn-
chronization with a central system arbiter is inserted. Since
GPU code is loop-centric, techniques such as loop tiling [15]
can be applied to effectively control granularity of scheduling
intervals. Similar to the original idea of compatible intervals,
the code within scheduling intervals (i.e., the content of a
tiling loop) is unmodified, and cache misses can happen at
any time. While HePREM compatible intervals imply minimal
modifications to kernel code, which in turn implies minimal
overhead, they are subject to performance drop due to high
idleness, as the task comes to a complete stall while the

program does not have access to main memory. This is shown
in Figure 1a.

HePREM implements predictable intervals by first applying
loop tiling to tune the granularity of scheduling intervals
and then separating the code within scheduling intervals
into specialized load, execute and store (LES) code. While
intuitively LES-specialized predictable intervals imply higher
code transformation overheads, they reduce the idleness in the
system, as shown in Figure 1b.

HePREM also allows to specialize GPU kernel code to
implement a combined execution, where half of the threads
executes one compatible interval tile (directly accessing main
memory via cache misses) and the other half executes a LES-
specialized tile (moving data from main memory to local
storage in the memory phase, then computing locally in the
compute phase). This is shown in Figure 1c.

In the following, we discuss i) where, in the internal
memory hierarchy, HePREM implements the buffering of the
data for LES-specialized predictable intervals; ii) at which
granularity, at the system level, HePREM implements syn-
chronization points between the iGPU and the CPU; iii) how
HePREM compilation is seamlessly integrated within standard
programming models.

1) Staging through the scratchpad: Most existing heteroge-
neous SoCs offer two options for local storage: the scratchpad
memory and the local cache hierarchy. The use of caches
simplifies the addressing scheme, as the placement of data is
handled in hardware, which requires less restructuring of the
code for PREM compliance. In addition, the local L2 cache
is generally larger than the size of the scratchpad memory.
On the other hand, caches are inherently less predictable, as
they are subject to self-eviction, which could cause cache
misses during the PREM compute phase. This breaks the
isolation property of PREM and would require additional
mechanisms to prevent/control undesired evictions2. For these
reasons HePREM targets the scratchpad memory as local
storage.

2) Host-to-GPU synchronization: To realize PREM on
a heterogeneous SoC, the memory phases need to be co-
scheduled between the CPU and the GPU, which implies
synchronization. To this end, it might be tempting to leverage
the existing infrastructure for GPU offloading. At a low level,
the offloading mechanism is simply the submission of jobs to a
buffer, from which the GPU issues these to the hardware. It is
therefore possible to control the entering of GPU memory and
compute phases by instrumenting the submission of the jobs
to the buffer. However, this has significant drawbacks. First,
changes would be required to the GPU drivers to discipline
the execution of memory and compute phases on the GPU,
according to the global scheduler’s decision. GPU drivers are
generally not available as open-source components, and those
that are generally suffer from poor performance and low relia-
bility due to their experimental stage of development. Second,
the memory and compute phases of embedded real-time tasks
might be extremely small, which makes it questionable if the
execution of the offloading mechanism at such fine granularity
is even feasible due to the large overheads it would introduce.
Third, as the loading of data to the local storage can only
be done from the GPU itself, the memory/compute separation
cannot be done at kernel granularity, as local memories are
cleared at kernel boundaries.

2It is worth noting that the required harware to implement, e.g., cache
locking, is often not available on such platforms.

546 Design, Automation And Test in Europe (DATE 2018)

For this reason, HePREM encodes the phase switches
directly in the GPU code. This is subject to much smaller
overheads, as only a single interaction via the GPU driver is
required, and provides much higher degree of control.

3) High-level language compilation: In recent years, pro-
gramming models have evolved to support offloading compu-
tations to data-parallel accelerators such as GPUs. Those that
were explicitly created for modern GPUs (e.g., CUDA and
OpenCL) are often too low-level and require significant pro-
grammer involvement to restructure the data-parallel computa-
tion in a way that maps efficiently to the GPU hardware. Other
approaches (e.g., OpenMP and OpenACC) try to abstract this
process by relying on higher-level constructs – typically in the
form of compiler directives – to offload the execution entire
loop nests to the GPU.

Besides the increased ease of programming, this approach
has an additional benefit when it comes to implementing
PREM. As the OpenMP compiler itself is tasked with work-
load distribution, data movements, and the generation of
parallel code from high level loop description, the visibility of
the complete iteration space gives the compiler full freedom in
distributing and reorganizing computations to identify suitable
PREM regions. The same is not possible, e.g., in OpenCL,
without having to undo decisions made by the programmer in
terms of iteration space partitioning and distribution.

Because of this, HePREM compilation is implemented as
part of high-level loop offloading mechanisms.

III. HEPREM IMPLEMENTATION

HePREM is based on a i) synchronization middleware and
ii) compiler support, which we describe in the following
subsections.

A. Synchronization middleware
The CPU/GPU synchronization mechanism of HePREM is

inspired to GPUguard [11]. Since COTS heterogeneous SoCs
lack mechanisms to trigger CPU-side software interrupts from

Fig. 2: Hierarchical memory footprint and scheduling interval
selection algorithm.

GPU code, the enforcement of the length of the system-
level memory and compute phases are managed from the
CPU, which has access to hardware timer interrupts. These
are used for triggering the CPU-side synchronization handler,
implemented in a Linux Loadable Kernel Module (LKM).

For the communication between the devices, messages are
passed through a per-cluster3 synchronization channel in the
DRAM, which is visible from both the CPU and the GPU. The
synchronization timer handler will ensure that the channels of
all active clusters contains the relevant synchronization flag,
and at that point it will correcly configure the CPU system for
the next phase, whereafter it writes an ACKNOWLEDGEMENT

flag to each active channel. For entering the PREM memory
phase, the ENTERMEM synchronization command is encoded
at the beginning of the GPU memory phase, and likewise, the
ENTERCOMP at the beginning of the GPU compute phase.
The GPU execution is then stalled through polling until the
CPU has acknowledged the synchronization, signifying that
the memory access token has been passed in accordance with
the synchronization request. As the GPU cannot continue
into the next phase until the synchronization request has
been acknowledged by the CPU, this provides system-wide
enforcement of the PREM isolation property.

As the focus of this work is on the transformation of GPU
programs to conform to the PREM standard, using high-level
programming models, the transformation of CPU programs
is out of the scope of this work. However, to ensure that
the memory isolation property of PREM holds, it has to be
ensured that the CPU does not initiate memory accesses during
the GPU memory phase. In place of PREM-compatible CPU
programs, the throttle thread mechanism of MemGuard [4]
is employed, which schedules a high-priority POSIX real-
time thread that pre-empts the currently executing threads. The
throttle thread performs busy waiting, and thus ensures that no
further memory requests are generated from the core, and can
thus be scheduled during the CPU compute phase to ensure
that no global memory requests are generated.

B. Compiler Support
HePREM compilation is divided into three major steps:

Analysis, Refactoring and Transformation, as shown in Figure
3. The steps are further described in this section.

1) Footprint Analysis and Scheduling Interval Selection:
The main structure that the compiler operates on is loop nests.
To identify scheduling intervals suitable for LES specializa-
tion, we rely on scalar evolution analysis to extract the range
of data elements accessed in loops. From there we calculate
the memory footprint for the current loop nest, knowing that i)
the computation contained within outer nesting levels is loop
invariant w.r.t. the footprint analysis; ii) it is guaranteed that
inner loop nests have smaller or equal footprint. Based on these
properties, we implement the algorithm described in Figure 2.

The recursive algorithm determines the memory footprint
of the current loop nest level. If the entire loop fits into
the scratchpad, then the full loop is simply selected as a
single scheduling interval. In the same manner, if exactly one
iteration fits in the scratchpad, the single iteration is selected as
a scheduling interval. If multiple iterations (but not the entire
loop) fit, loop tiling is applied to outline the exact number of
iterations that fit into the scratchpad, as shown in Figure 3b.
The tiled loop is selected as a scheduling interval. If a single

3A cluster is equivalent to a compute unit in the OpenCL terminology, or
a streaming multiprocessor in the CUDA terminology.

Design, Automation And Test in Europe (DATE 2018) 547

Fig. 3: The original loop (a), followed by the transformations performed during the compilation process: The loop is tiled (b),
followed by the insertion of synchronization points (c), and the specialization into Load, Execute, and Store phases (d). For
the transformation steps, the memory and compute phases are highlighted. Legend: B = Loop Body, PH = Pre-header, H = Header, L =

Latch, E = Exit, TH = Tile Header, TL = Tile Latch, L/E/S = Load/Execute/Store specialized version of loop body.

iteration does not fit and there are sub-loops, the algorithm is
called recursively on the sub-loops. Before the recursive call
the available scratchpad space is decreased in accordance with
the memory requirements of the current level (not considering
sub-loops), which is selected as an intermediate scheduling
interval. Thus, this interval becomes the parent of those of the
recursed upon loops. If there are multiple sub-loops they are
considered in isolation, as the memory use of sub-loops only
depends on their parents. If the recursion continues to the level
that the memory use is higher than the size of the scratchpad,
or if a single iteration in the innermost loop does not fit, the
loop cannot be staged through the scratchpad through tiling4.

2) Synchronization Stub Insertion: Once scheduling in-
tervals have been outlined, the synchronization stubs
(ENTERMEM and ENTERCOMP) to implement the protocol
described in Section III-A are inserted into the code, as shown
in as shown in Figure 3c.

According to PREM, every program region should first load
data from the global memory into local storage, corresponding
to a PREM memory phase, and thus, we insert a ENTER-
MEM synchronization upon entry into the scheduling interval.
Scheduling intervals will furthermore always be entered from
the compute phase of the parent interval, and to keep consistent
state a ENTERCOMP synchronization is inserted upon exit.
To encode the compute phase, another set of ENTERCOMP

and ENTERMEM synchronizations are inserted within the loop
body. With no further changes, this implements a compatible
interval, as shown in Figure 1a, where the original computa-
tion from the outlined scheduling interval is executed in the
memory phase, and the compute phase is completely empty.

3) LES Specialization: The final transformation step clones
the outlined scheduling interval code into three copies, each
of which is specialized to perform load, execute, and store,
as shown in Figure 3d. Here, load and store constitute the
PREM memory phase, and execute maps directly to the
PREM compute phase. For the load phase, all instructions
that are not related to the loading of data are removed, so
that only the loads themselves and instructions for address
calculations are preserved. Then, all loaded data is stored into

4Of course the loop nest could be implemented as a compatible interval,
as this scheme is not subject to the space limits of the scratchpad.

the scratchpad, using the same index calculation, modulo the
range of addresses accessed within the tile, as given by the
footprint analysis. In the same way, only the store instructions
and address calculations are preserved in the store phase, and
load instructions are inserted to load the data to be stored
from the scratchpad before the store occurs. Since all data is
therefore stored at the end of the LES region, all data must
also be loaded at the beginning of the region so that garbage
is not written back to memory. To ensure that all data within
the region is loaded and stored, both the load and store phases
disregard any tile-internal control flow. In writing back all data
at the end of the LES region, no additional storage space needs
to be spent on keeping track of which data has been changed,
e.g., “dirty bits” in caches.

Furthermore, if there are variables that are accessed in
parent scheduling intervals, these are already available in
the scratchpad, and must not be loaded again as this would
overwrite changes done in the scratchpad that have not been
written back yet. While it would not introduce any correctness
issues to write back these values in the Store phase, it is not
necessary as these values will be written back by the parent
scheduling interval that originally loaded them.

In the execute phase, all loads and stores are transformed
to access data from the scratchpad memory, as opposed to
the original data in the DRAM. Thus, only the Load and
Store phases will access the DRAM, and since these are
executed in the PREM Memory phase, the PREM isolation
property is respected. Lastly, as the Load and Store phases
have been cleared of all non-data movement, the entering of
child scheduling intervals, i.e., those of sub-loops, are always
performed from the PREM compute phase, thus matching the
synchronization stubs as presented in Section III-B2.

IV. EVALUATION

We implement HePREM as part of Clang-YKT [16], a
fork of the LLVM-based C/C++ frontend Clang supporting
OpenMP 4.x compilation for NVIDIA targets (PTX). As an
evaluation platform we use the NVIDIA Tegra TX1 SoC,
featuring ARM big.LITTLE A53/A57 executing NVIDIAs
Linux4Tegra without modifications. Each streaming multipro-
cessor in the GPU feature a 48 KB scratchpad, and all schedul-
ing intervals are selected to maximize the use of the scrachpad

548 Design, Automation And Test in Europe (DATE 2018)

Fig. 4: Overheads of code refactoring and
synchronization.

Fig. 5: Idle time introduced when budgeting for the worst case and average timer
latencies under two different system memory schedules.

memory. Benchmarks are extracted from PolyBench-ACC [1],
and all measurements are performed using CUDA events on
the kernel offloading only.

In the following, we first describe the overheads implied by
the HePREM compilation/synchronization and their implica-
tions on overall performance. Then, we discuss predictability
(freedom from interference) results. As outlined previously,
this paper focuses on GPU performance and predictability,
with the CPU only acting as an interfering part.

A. HePREM Overheads
Figure 4 shows execution time of PREM-transformed code,

normalized to the original program. We show a breakdown
of code transformation and synchronization overhead for both
compatible intervals and LES regions. It can be seen that tiling
often decreases the execution time compared to the baseline,
due to better cache locality. LES specialization adds around
25% overhead on average5. Synchronization with the CPU
adds up to 50% overhead, in both cases.

PREM memory and compute phase lengths must be bud-
geted such that their WCET fits within the allocated length,
as outlined in Section II. Due to the regular structure of GPU
benchmarks and to our choice to use the scratchpad as local
storage, the execution of the kernel itself has a low timing
variance (i.e., budgeting for its WCET does not add much
overhead). Linux timer interrupt latency, on the other hand, has
a much higher variance. In our experiments the average timer
interrupt latency is 5.6μs, which can in some cases increase
to 64× the average6. To avoid the increase of GPU idleness,
the periods for PREM memory and compute phases should be
in line with the time required to fill and drain the scratchpad.
Since the scratchpad is quite small (48KB), a high interrupt
latency becomes comparable to the time spent on useful work,
which ultimately implies inserting a lot of GPU idleness, when
budgeting for the worst-case delay.

To study this effect, the benchmarks are executed in two
configurations. First, we budget only for the average interrupt
latency, knowing that this will lead to budget overruns when
the interrupt latency is longer. Second, we budget for the worst

5And up to 65%. Note that applying standard transformations based on
polyhedral analysis [15] before our tiling could improve memory access
pattern in most cases.

6NVIDIA recently released a new Linux kernel compatible with PRE-
EMPT RT [17], which should reduce the maximum interrupt latencies.

case interrupt latency, thus ensuring that there will never be
any budget overruns, at the cost of a large amount of idling
in the common case.

Figure 5 shows the additional overheads on execution time
of compatible intervals due to idleness insertion. We show
two plots: to the left we consider giving the GPU the full
compute bandwidth by producing a system-level schedule that
optimizes the length of the GPU memory and compute phases
exactly to the budgeted times. This is of course not a realistic
schedule, as it would totally starve the CPU (compatible
intervals have empty compute phase), but it clearly shows
what can be achieved on the GPU side at best. To the right,
we enforce a fair 50-50 time division between the CPU and
GPU, which means that we introduce i) 50% idleness to the
execution of compatible intervals; ii) additional idling in the
shorter of PREM phases, as the memory and compute phase
are now enforced to the same length.

Focusing on the plot to the left, the compatible intervals
show a slowdown of nearly 2× when budgeting for the average
case and 2.5× when budgeting for the worst-case. On top of
that, when applying fair memory sharing (50-50) with the CPU
the overheads due to idleness are roughly doubled. This is, of
course, expected, as compatible intervals can perform no work
during the compute phase. In the next section we discuss how
execution of PREM LES code improves over that.

B. Co-scheduling CPU and GPU under interference
The main goal of HePREM is to ensure that the execution

time of GPU programs remains the same under memory
interference from other devices in the system. To evaluate
these effects, we execute the original unmodified program
as reference point, then we observe how the execution time
of various schemes increases when we execute an interfering
workload7 on the CPU, under the fair sharing 50-50 schedul-
ing. We compare results for the unmodified program and the
three variants of the PREM-ized program introduces in Section
II-A. For comparison we use the same tiling granularity, i.e.,
number of iterations per tile, for all versions. Furthermore,
as strict predictability guarantees can only be given when the
system is budgeted for the worst-case interrupt latencies, we
focus our evaluation on this configuration.

7We configure the stress test (people.seas.harvard.edu/∼apw/stress) to
generate large amounts of memory requests.

Design, Automation And Test in Europe (DATE 2018) 549

Fig. 6: Execution time of the four versions of the benchmarks
under memory interference, normalized to the unmodified
program executed in isolation.

Results are presented in Figure 6 (execution times normal-
ized to the unmodified baseline without interference). There
are three main take away points:

1) Performance of transformed programs: From Figure 4 it
was clear that LES specialization has higher code generation
overhead than compatible intervals. However, under 50-50
fair sharing system scheduling it is less susceptible to GPU
idleness overheads. This is because LES does useful work
during the compute phase on the data that has been pre-loaded
to the local scratchpad, and thus the idling is reduced. The
same is true for the combined schedule, with even higher
improvements, as the amount of work per synchronization
point is doubled. For some kernels, the compatible interval
is better than LES, because the amount of work done within
the compute phase is too small to amortize the additional
cost of the specialization code. It has to be underlined that
all the benchmarks considered here are fairly memory-bound.
We expect the benefits of LES to be much higher for more
compute-bound workloads. On average, LES is 12% faster
than compatible intervals and combined is 35% faster than
LES (and 42% faster than compatible intervals).

2) Performance improvement vs. unmodified baseline: As
all PREM schemes provide freedom from interference, they
all perform much better under memory interference than the
unmodified baseline. While the latter on average slows down
by more than 20× when run under interference (compared
to in isolation), the combined PREM schedule is only 2.5×
slower (due to the already discussed sources of overhead, not
to the effects of interference). This is on average an order of
magnitude improvement in the execution time under memory
interference, with peaks of 70× for fdtd-2d-99.

3) Freedom from interference: Figure 7 shows the sen-
sitivity to memory interference of the different versions of
the benchmarks. When budgeting for the worst case, all
PREM schemes achieve essentially zero variance as desired,
compared to up to 70× for the unmodified baseline.

V. CONCLUSION AND FUTURE WORK

PREM was first proposed as a method for executing real-
time workloads on shared-memory, CPU-based systems with
guaranteed freedom from memory interference. In this paper
we propose a revisitation of the technique for heterogeneous
on-chip systems. HePREM is composed of middleware for
lightweight CPU/GPU synchronization, and compiler sup-
port to analyze high-level source code and create PREM-
compatible regions that can be independently scheduled. We
show that the compiled programs can achieve zero sensitivity
to memory interference when the system schedule is properly
budgeted, at the price of a relatively low overhead (25% code

Fig. 7: Sensitivity to memory interference (the closer to one,
the better).

transform only, and 50% when synchronization is included,
compared to baseline). While on average with our scheme we
observe 2.5× slowdown compared to the unmodified program
executed in isolation, we achieve an order of magnitude
speedup when running programs under interference. We are
currently extending HePREM along several direction. First,
we are extensively characterizing several workloads, to fully
assess the benefits and limits of the technique. Second, while
in the current work the focus is entirely on GPU execution,
we are extending the compilation techniques to also transform
CPU code, and the scheduling policies to produce a realistic
system-wide distribution of target workloads. Finally, we are
looking into techniques of extending support for code PREM-
ization to library code in binary format.

VI. ACKNOWLEDGMENT

This work has been supported by the EU H2020 project
HERCULES (688860).

REFERENCES

[1] S. Grauer-Gray et al., “Auto-tuning a high-level language targeted to
gpu codes,” in 2012 Innovative Parallel Computing (InPar), 2012.

[2] M. D. Gomony et al., “A globally arbitrated memory tree for mixed-
time-criticality systems,” IEEE Trans. on Computers, vol. 66, no. 2, Feb
2017.

[3] D. Dasari et al., “A framework for memory contention analysis in multi-
core platforms,” Real-Time Systems, vol. 52, no. 3, May 2016.

[4] H. Yun et al., “Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms,” in Real-Time
and Embedded Techn. and Appl. Symp. (RTAS). IEEE, 2013.

[5] H. Yun et al., “Bwlock: A dynamic memory access control framework
for soft real-time applications on multicore platforms,” IEEE Trans. on
Computers, vol. 66, no. 7, 2017.

[6] R. Pellizzoni et al., “A predictable execution model for cots-based
embedded systems,” in RTAS’11. IEEE, 2011.

[7] A. Alhammad et al., “Time-predictable execution of multithreaded
applications on multicore systems,” in DATE’14. IEEE, 2014.

[8] G. A. Elliott et al., “Gpusync: A framework for real-time gpu manage-
ment,” in 2013 IEEE 34th Real-Time Systems Symp., 2013.

[9] Q. Chen et al., “Baymax: Qos awareness and increased utilization
for non-preemptive accelerators in warehouse scale computers,” in
ASPLOS’16. ACM, 2016.

[10] P. Burgio et al., “A memory-centric approach to enable timing-
predictability within embedded many-core accelerators,” in RTEST’15.
IEEE, 2015.

[11] B. Forsberg et al., “Gpuguard: Towards supporting a predictable execu-
tion model for heterogeneous soc,” in DATE’17, 2017.

[12] M. R. Soliman et al., “WCET-Driven Dynamic Data Scratchpad Man-
agement With Compiler-Directed Prefetching,” in ECRTS’17, 2017.

[13] K. Koukos et al., “Multiversioned decoupled access-execute: The key to
energy-efficient compilation of general-purpose programs,” in 25th Int.
Conf. on Compiler Construction. ACM, 2016, pp. 121–131.

[14] K.-A. Tran et al., “Clairvoyance: Look-ahead compile-time scheduling,”
in CGO’17. IEEE, 2017, pp. 171–184.

[15] T. Grosser et al., “Polly performing polyhedral optimizations on a low-
level intermediate representation,” Parallel Processing Letters, vol. 22,
no. 04, 2012.

[16] S. F. Antao et al., “Offloading support for openmp in clang and llvm,”
in LLVM-HPC’16, 2016.

[17] Real-time linux wiki. [Online]. Available: https://rt.wiki.kernel.org/
index.php/Main Page

550 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

