
CHASE: Contract-Based Requirement Engineering
for Cyber-Physical System Design

Pierluigi Nuzzo1, Michele Lora2, Yishai A. Feldman3, Alberto L. Sangiovanni-Vincentelli4

1 Department of Electrical Engineering, University of Southern California, Los Angeles. Email: nuzzo@usc.edu
2 Department of Computer Science, University of Verona, Italy. Email: michele.lora@univr.it

3 IBM Research, Haifa, Israel. Email: yishai@il.ibm.com
4 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley. Email: alberto@berkeley.edu

Abstract—This paper presents CHASE, a framework for
requirement capture, formalization, and validation for cyber-
physical systems. CHASE combines a practical front-end for-
mal specification language based on patterns with a rigorous
verification back-end based on assume-guarantee contracts. The
front-end language can express temporal properties of networks
using a declarative style, and supports automatic translation from
natural-language constructs to low-level mathematical languages.
The verification back-end leverages the mathematical formalism
of contracts to reason about system requirements and determine
inconsistencies and dependencies between them. CHASE features
a modular and extensible software infrastructure that can sup-
port different domain-specific languages, modeling formalisms,
and analysis tools. We illustrate its effectiveness on industrial
design examples, including control of aircraft power distribution
networks and arbitration of a mixed-criticality automotive bus.

I. INTRODUCTION

Safety-critical and time-critical cyber-physical systems
(CPSs) pose several design and verification challenges [1],
[2]. The design space is often too large and heterogeneous to
be efficiently explored with strong guarantees of correctness,
dependability, and compliance with regulations. While virtual
prototyping and model-based engineering tools are the de
facto standard for system development, the concept design
phase largely remains a manual process. Modern requirement-
management tools are still predominantly centered on text-
based languages, often not in the mother tongue of the
engineer, which creates opportunities for ambiguities, redun-
dancies, and potential conflicts [3]. Different design stages
tend to use domain-specific languages and tools that are
poorly inter-operable, which makes it hard to combine the
results of different analysis or synthesis methods. Assessing
system correctness is then left to lengthy simulations and
prototype tests later in the design process, which may yield
implementations that are inefficient and sometimes do not even
satisfy the requirements.

Contract-based design has recently emerged as a paradigm
to address the above challenges and provide formal support for
the design of complex systems [1], [4]. Contracts are mathe-
matical objects that model the interface between components
and levels of abstraction in a design and establish the founda-
tions for assume-guarantee (A/G) reasoning about composabil-
ity and abstraction/refinement relationships. Contracts enable
modular and hierarchical verification of global properties of
a system, whose satisfaction can be efficiently proven based
on the satisfaction of local properties of the components [5].
Contracts support rigorous stepwise refinement, where hierar-
chical specifications can be used to reason about component

This work was partially supported by TerraSwarm, one of six centers
of STARnet, a Semiconductor Research Corporation program sponsored by
MARCO and DARPA.

decompositions when the component implementations are not
yet available [6]. Contracts facilitate component reuse, as any
components satisfying a contract directly inherit its guarantees.
A few contract theories have been developed and demonstrated
over the years [4], [6]. However, the development of tools
that support contract-based design and enable its concrete
adoption by system engineers is still in its infancy. This paper
aims to bridge this gap by raising the level of abstraction
of design capture. We introduce CHASE1 (Contract-based
Heterogeneous Analysis and System Exploration), a contract-
based requirement engineering framework for system-level
design exploration. CHASE combines a new front-end formal
specification language based on patterns with a verification
back-end based on contracts. The front-end language is used
to capture requirements from natural-language constructs and
translate them into contracts. The verification back-end al-
lows assessing requirement correctness, completeness, and
consistency by solving contract compatibility, consistency, and
refinement checking problems. To the best of our knowledge,
CHASE is the first contract-based framework addressing the
end-to-end process from natural-language requirement capture
to their formalization and validation. Our contributions can be
articulated as follows:

• A framework that can reason about temporal requirements
on the behaviors of networks of dynamic components by
leveraging assume-guarantee contracts [4].

• A new, declarative-style, formal language based on pat-
terns, i.e., predefined primitives from which mathematical
specifications are automatically generated. While retaining
a rigorous semantics, our language is more accessible
to system engineers, and amenable to translations from
natural-language constructs.

• Two industrial case studies that demonstrate the use of
CHASE: the design of embedded controllers for aircraft
electric power distribution networks [6] and the arbitra-
tion of a mixed-criticality automotive bus. We show that
CHASE can substantially facilitate the orchestration of
formal, exhaustive analyses of certain temporal properties
of networks that would otherwise be lengthy, tedious, or
error-prone to even formulate, let alone check.

Related Work. CHASE differs from previous end-to-end re-
quirement engineering frameworks [7], [8], as it supports
contracts as a specification theory, as well as a richer set
of requirement constructs or analysis methods. A framework
using modal interfaces, an automata-based formalism related
to contracts, was also proposed [9]. Our approach is different
since it focuses on a declarative-style formalism. A declara-
tive style is often deemed better for high-level requirement
validation, as it retains the correspondence between changes

1CHASE is available open-source at https://chase-cps.github.io/chase.

845978-3-9819263-0-9/DATE18/ c©2018 EDAA

in the informal statements and their effect on the formal
constructs. A declarative language, HRELTL (Hybrid Linear-
time Temporal Logic with Regular Expressions), was proposed
for hybrid system requirement validation based on contract
refinement checking [5], [10]. CHASE instead proposes a
unifying interface and infrastructure for the development of
multiple contract-based reasoning tasks, including conflict de-
tection and the feasibility of downstream artifacts satisfying
the requirements, via the coordination of multiple decision
procedures. Moreover, this paper demonstrates an end-to-end
solution which raises the level of abstraction of requirement
capture. Finally, with respect to previous pattern-based ap-
proaches to requirement capture (see, e.g., [11]–[14]), CHASE
aims to introduce a higher-level language supporting behaviors
of generic networks of dynamic components, which is closer
to the abstractions used in system engineering [3].

II. PRELIMINARIES

A/G Contracts. We summarize the main concepts of the A/G
contract framework [4] by starting with a generic representa-
tion of a component, i.e., an element of a design, characterized
by a set of (input, output, or internal) variables and a set
of behaviors over them. Components can be connected under
constraints on the values of certain variables. A contract C
for a component M is a triple (V,A,G), where V is the set
of component variables, and A and G are sets of behaviors
over V . A represents the assumptions that M makes on its
environment, and G represents the guarantees provided by M
under the environment assumptions. A component M satisfies
a contract C whenever all the behaviors of M are contained
in the guarantees of C once they are composed with the
assumptions. We say that M is a (legal) implementation of C.
However, a component E can also be associated with a contract
C as an environment. We say that E is a (legal) environment
of C whenever all the behaviors of E are contained in the
assumptions of C. A contract is consistent when the set of
implementations satisfying it is not empty; it is compatible if
there exists a legal environment E for it.

To reason about replaceability between different abstraction
layers in a design, contracts can be ordered via a refinement
relation. We say that C refines C′ if and only if C has weaker
assumptions and stronger guarantees. We can then replace C′
with C. Contracts can be combined according to different rules.
Composition of contracts can be used to construct complex
global contracts out of simpler local ones. Reasoning on the
compatibility and consistency of a composite contract can then
be used to assess whether there exist components such that
their composition is valid, even if the full implementation of
the components is not available. Finally, the conjunction of
contracts can also be defined to combine multiple requirements
on the same component that need to be satisfied simultane-
ously. We refer the reader to the literature [4] for the formal
definitions and mathematical expressions for the operations
and relations summarized above.

Temporal Logic Contracts. The wealth of results in temporal
logic and model checking can provide a substantial basis for
requirement analysis for discrete-time (discrete-event) discrete-
state system abstractions [15]. Both assumptions A and guar-
antees G of a contract C can be specified as temporal logic
formulas [6]. In this case, a component M satisfies the contract
C if it satisfies the logical implication A → G, while it is a
legal environment for C if it satisfies the formula A. Contract
satisfaction can thus be reduced to two specific instances of
model checking [15]. Composition and conjunction of contracts
C1 and C2 can be represented by appropriate Boolean combi-
nations of the formulas A1, A2, G1, and G2. Refinement is

an instance of validity checking. Checking that C1 refines C2
can be translated into checking that A1 → A2 and G2 → G1
are valid formulas (i.e., tautologies for the language). Contract
compatibility and consistency checking are, instead, less imme-
diate, since they may either translate into checking satisfiability
or realizability of formulas, depending on the specific temporal
logic used and the semantics adopted for implementations and
environments. As an example, for consistency checking of
Linear Temporal Logic (LTL) contracts, we may be required to
check whether there exists a system trace (run) that satisfies the
contract or whether there exists a system (e.g., a state machine)
for which all traces (runs) satisfy the contract. The former
condition turns into testing whether A → G is satisfiable, while
the latter requires testing whether A → G is realizable.

When contracts are expressed using LTL, algorithmic
techniques from reactive synthesis [16], [17] can also be
used to generate a discrete abstraction of the design from
a consistent and compatible set of contracts. In this paper,
we illustrate the capabilities of CHASE using a subset of
LTL, namely Generalized Reactivity (1) (GR(1)) that generates
synthesis problems whose run time is polynomial in the
number of valuations of the contract variables [16]. Using LTL
contracts, CHASE can directly reason about synchronous or
asynchronous networks of components with discrete dynamics,
thus capturing the computation and communication parts of a
CPS. Moreover, it can support hierarchical approaches relying
on abstractions [17] to reason about high-level requirements
of hybrid dynamical systems. Finally, being centered on the
abstract notion of behavior, the contract manipulation primi-
tives in CHASE are flexible and can be customized to also
support requirement analysis methods for richer logics, such
as the ones recently proposed for HRELTL [10], STL (Signal
Temporal Logic) [18], and StSTL (Stochastic Signal Temporal
Logic) [19].

III. FORMAL SPECIFICATION LANGUAGE

We detail the components of the CHASE framework
starting with the front-end formal specification language. The
formal language of CHASE relies on a representation of
the design as a network of elements and interconnections.
Networks relate to different domains. For illustration purposes,
we consider the aircraft power distribution network design
problem and methodology [6], [20] which we also use as a case
study in Sec. V. The primary distribution network of an aircraft
Electric Power System (EPS) typically includes generators, AC
buses, rectifiers, and DC buses, all connected through switches
called contactors. A sample architecture is represented in
Fig. 1. The generators power the buses and their loads (not
shown in the figure). AC power is converted to DC power by
rectifier units. The controller (not shown in the figure) monitors
the availability of power sources and configures the contactors,
such that essential buses remain powered even in the presence
of failures. Given an EPS topology with fault sensors and a
set of requirements, we are interested in the design of the
controller, which runs a control strategy so that all the closed-
loop system behaviors satisfy the requirements. Fig. 2 shows
a description of the EPS architecture and system specification,
expressed in CHASE’s formal language. We use this example
to discuss the main language constructs.

Component Specification. A domain is a set of component
types (e.g., generator, load, AC bus) with arbitrary domain-
specific names; each type is an instance of one of the generic
types made available by the language (e.g., Source, Sink,
Switch). Elements have also domain-specific attributes (e.g.,
left, right) that allow partitioning them into sets (groups) (e.g.,
left load). A network architecture is specified by providing a
list of components, interconnections, and their descriptions.

846 Design, Automation And Test in Europe (DATE 2018)

Contactor 1

Contactor 3 Contactor 4

Contactor 0

Left
Gen

Left AC
Bus

Contactor 2

Right
Gen

Right
AC Bus

Left
Rectifier

Middle
Rectifier

Right
Rectifier

Left DC
Bus

Middle
DC Bus

Right
DC Bus

Middle
Gen

Middle
AC Bus

ECU
1

ECU
2

Communication Bus
Bus Arbiter

Rain
Detection

Smart
Lighting

Collision
Avoidance

Lane
Detection

Fig. 1. Simplified electric power system (left) and automotive system (right)
architecture examples used to illustrate the operation of CHASE.

1 TYPES
2 generator: Source(AC);
3 AC bus: Bus(AC);
4 DC bus: Bus(DC);
5 rectifier: Converter(AC, DC);
6 load: Sink(DC);
7 contactor: Switch;
8
9 COMPONENTS

10 left generator: 1;
11 left AC bus: 1;
12 left rectifier: 1;
13 contactor: *;
14 right generator: 1;
15 right AC bus: 1;
16 # etc.
17
18 ABBREVIATIONS
19 left generator: LG;
20 right generator: RG;
21 # etc.

22
23 CONNECTIONS
24 LG -(contactor 1)- LB;
25
26 SWITCHED(contactor)
27 RG -- RB;
28 AC bus -- AC bus;
29
30 UNSWITCHED
31 LB -- LR;
32 LR -- LD;
33 # etc.
34
35 REQUIREMENTS
36 must-disconnect-failed(generator);
37 # etc.
38
39 ASSUMPTIONS
40 max-failures(generator, 1);
41 # etc.

Fig. 2. Problem specification example using the CHASE formal language.

The CHASE generic types have special semantics, which
may be used by both the reasoning modules (back-end) and
the input module (front-end) for checking input consistency.
The annotations in parentheses are optional. For instance,
Source(X) is a source of the network and is characterized
by only one connection, treated as an output. If the optional
annotation X is supplied, it must be present on the connected
component. For example, an AC bus can be connected to
a generator of type Source(AC), but a DC bus may not.
Symmetrically, Sink(X) is a sink of the network and its
single connection is treated as an input. Bus(X) is a bus that
can be connected to multiple components. However, a bus of
type Bus(AC) can be connected to multiple loads of type
Sink(AC), but not to loads of type Sink(DC). Switch(X) is
a component that can dynamically close or open a connection
in the network, and it must be connected to exactly two other
components. If the optional annotation X is supplied, it must be
present on both connected components. Converter(X, Y) is a
component that can have exactly two connections of different
types. Finally, a generic type Component(X) is also provided,
which can have exactly two connections of type X.

Individual components have names composed of one or
more words, with one optional number. The rightmost word is
the type while other words and the number are attributes. For
example, left AC bus is a bus with attributes left and AC;
contactor 1 is a contactor with attribute 1. If two words
are used as a single concept (e.g., a type or an annotation)
they are hyphenated. For instance, it is possible to instantiate
an auxiliary-power generator, which is a generator with a
single attribute auxiliary-power. By convention, all compo-
nents’ names are singular, not plural, even if they may be used
to refer to sets of components in other sections of the prob-
lem specification (e.g., CONNECTIONS, UNSWITCHED,
REQUIREMENTS). Components are listed with their full
names, excluding numbers, and the number of components
under that name. For instance, it is possible to declare that three
left rectifiers are part of the network by listing left rectifier:
3. Each individual component can then be named by adding a
number between 1 and the given number, e.g., left rectifier 1,

left rectifier 2, left rectifier 3. The number will be missing
in the name if only one component is specified, as in Fig. 2.
An asterisk is used to denote a number that is unknown or it is
not required to be bounded, as for the contactor component
in Fig. 2; an arbitrary number, e.g., contactor 100, can then
be used in the component name.

Architecture Specification. The system architecture, i.e., in-
terconnection of components, is specified using the CON-
NECTIONS, SWITCHED, and UNSWITCHED sections.
Components in these sections can be specified using their
types, with any number of attributes. The connection specifi-
cation refers to all the components having the given attributes,
except that no self-connections are allowed. In the example
of Fig. 2, AC bus -- AC bus means that any two different
AC buses are connected. Connections can be switched or
unswitched. In the former case, it is necessary to specify the
type of switch or give an instance of that type. An instance can
be given in parentheses between dashes, e.g., LG -(contactor
1)- LB. It is also possible to use a default name for the
switch instances and specify the connection using two dashes,
e.g., in RG -- RB. All connection specifications following
a declaration SWITCHED(type) will use switches of the
given type, with automatically-generated names. All connec-
tion specifications following a declaration UNSWITCHED
will not contain switches.

Requirements Patterns. There can be many patterns for
a domain, all expressed as predicates relating to various
components. An excerpt of requirements and assumptions
of the EPS example appears in Fig. 3. Patterns refer to
sets of components (e.g., AC bus) rather than types. For
instance, never-connect(X, Y, Z) predicates that there shall
not be a closed connection between an element of X and
an element of Y that goes through an element of Z (which
is optional). The pattern must-disconnect-failed(X) predi-
cates that elements of set X must be disconnected when not
healthy. This assumes that a switch is available on every edge
connected to an element of X. If this assumption is relaxed,
additional parameters should be added. The pattern prefer-
active-connection(X, Y) states that, if possible, each element
of X should have at least one active path to at least one element
of Y, meaning that all the switches should be closed along the
path and all components, including switches, should be healthy
(operational). The pattern always-active-connection(X, Y)
requires that every element of X have at least one active path
to at least one element of Y. Requirements will be internally
translated into contract assumptions and guarantees. Several
assumptions, e.g., the ones that are inherently linked to the
network topology, are automatically added as a part of the
language interpretation and translation process. It is, indeed,
impractical to directly require the user to explicitly determine
these “hidden” assumptions which are implicitly taken during
the specification process. However, it is possible to define
additional ASSUMPTIONS, e.g., to force a desired scenario
or specify legal environments. For instance, no-recovery(X)
states that if an element of X becomes unhealthy, it never
becomes healthy again, while max-failures(X, N) says that
no more than N elements of X can fail simultaneously, N being
a non-negative integer.

Natural-Language Requirements. CHASE supports the
translation of natural-language requirements and assumptions
into the formal language presented above in order to make
contract-based reasoning more accessible to requirements en-
gineers. The natural-language statements from which the spec-
ification of Fig. 3 was generated appear in Fig. 4. We use the
English Slot Grammar (ESG) parser [21] with a set of parse-
tree patterns to convert the natural-language requirements into
a semantic representation, from which we generate the spec-

Design, Automation And Test in Europe (DATE 2018) 847

1 REQUIREMENTS
2 prefer-active-connection(left DC bus, left generator);
3 must-disconnect-failed(generator, 20, MS);
4 never-connect(generator, generator, AC bus);
5 always-active-connection(DC bus, generator, 30, MS);
6
7 ASSUMPTIONS
8 no-recovery(generator);
9 no-failures(AC bus);

10 no-failures(Rectifier);
11 no-failures(DC bus);
12 no-failures(load);
13 switch-on-time(contactor, 10, MS);
14 switch-off-time(contactor, 10, MS);
15 max-failures(generator, 1);

Fig. 3. Excerpt of the requirements for the aircraft power system example,
translated to the CHASE formal language.

1 REQUIREMENTS
2 If possible, left DC buses shall be powered by left generators.
3 If the left generator fails, the left AC bus shall be connected to another generator.
4 Failed generators must be disconnected in 20 ms or less.
5 Generators shall never be connected in parallel through AC buses.
6 When a contactor receives an open signal, it shall become open in 10 ms or less.
7 When a contactor receives a close signal, it shall become closed in 10 ms or less.
8 A DC bus shall never be disconnected from a generator for more than 30 ms.
9

10 ASSUMPTIONS
11 Generators do not recover from failures.
12 AC buses do not fail.
13 Rectifiers do not fail.
14 DC buses do not fail.
15 Loads do not fail.
16 At most 1 generator may fail.

Fig. 4. Excerpt of the natural-language requirements for the power system.

ifications in the formal language summarized in this section.
The same natural-language analysis technology was previously
used in a study about the use of cognitive technologies in
requirements analysis [3], where more details can be found.
While we leverage natural-language analysis as a design
aid to enable automatic generation of formal specifications,
requirement formalization does not exclusively rely on this
technology. The translation engine cannot cover all ways in
which the requirements can be expressed, and it is possible that
the tool’s understanding will be different from the engineer’s
intent. If there are ambiguities, the designer can change the text
until the interpretation is correct. Alternatively, he or she can
choose to bypass the natural-language translation and manually
specify the requirements in the CHASE formal language.

IV. ARCHITECTURE AND VERIFICATION BACK-END

A representation of the main CHASE components is shown
in Fig. 5. We provide details on the modular infrastructure and
some mechanisms used to reason about temporal properties of
networked discrete systems.

Software Architecture. The software infrastructure of
CHASE is based on three main components: a set of front-end
modules, the CHASE libraries, and a set of back-end modules.
The front-end modules allow parsing different specification
formats and domain-specific languages and build the CHASE
internal representation of a design problem. Current support
for the formal language described in Sec. III is based on the
ANTRL4 [22] parser generator. The CHASE libraries provide
a set of classes, data structures, and methods to represent and
manipulate system design problems in a contract framework.
The Architecture library allows specifying cyber-physical sys-
tem architectures and network topologies according to a graph-
based formalism previously introduced in the literature [6].
The Behaviors library provides constructs to represent the
behaviors of the system components: their variables, ports,
variable and port types, dynamics, and temporal properties. For
example, this library enables the specification of propositional
logic, first-order logic, and LTL formulas. The Contracts
library contains data structures to model design and verification
problems as compositions, conjunctions, and refinements of
contracts. The Specification library provides mechanisms to
specify the requirement validation problem, including libraries

Application Programming Interface (API)

CHASE C++ Library
Data structures to represent system
architectures, behaviors, and requirements:

Graphs (networks)
Pattern libraries
Syntax trees for logic formulas and
arithmetic expressions

Tool 1 Tool 2 Tool 3 Tool n…

Methodologies and Design Flows

Synthesis from
Temporal Logic

Model Checking

…
B

ack end

Front end

Fig. 5. The CHASE framework components and flow.

of standard requirements and patterns. The Manipulation li-
brary provides a set of methods for robust manipulation of the
classes and data structures used in the other libraries, e.g.,
methods to manipulate and analyze graphs, process timing
intervals in the specifications, visit the internal representation
of the system. Tool developers as well as system designers
can leverage the Application Programming Interface (API)
provided by the CHASE libraries to build customized tools
and methodologies for specific problems. Finally, a set of back-
end modules allows translating the CHASE representation into
appropriate languages supported by formal verification and
synthesis routines that are used to solve contract compatibility,
consistency, and refinement checking problems.

Reasoning about Temporal Properties. We illustrate the
capabilities of CHASE by referring to an internal requirement
representation based on LTL A/G contracts. CHASE can
formulate LTL satisfiability, validity, and synthesis problems
from requirements expressed in its formal language. We use the
TULIP [17] toolbox to solve realizability problems and provide
an implementation of the design in the form of a PYTHON

module, when the requirements are consistent. While LTL does
not directly support reasoning about time intervals, CHASE
supports timing specifications using counters. A counter is an
integer variable with fixed span that, at each instant, can only
be incremented by one unit or reset to zero. Given a set of
requirements including real time intervals, it is then possible
to select a discretization step τ as the greatest common divisor
(GCD) of all the lengths of the time intervals used in the
specification. The span N of a counter associated with an
interval (e.g., representing a delay) is then determined by the
ratio between the length T of the interval and the discretization
step, i.e., N = T/τ . All LTL formulas are then interpreted over
sequences of valuations (assignments) over system variables,
where the time interval between two consecutive valuations
has length τ . CHASE distinguishes between physical counters,
used to model physical properties of the system, such as
actuation or sensing delays, and counters that are used to mea-
sure the time elapsed between the occurrence of two events,
called monitor counters. Physical counters affect the contract
assumptions, and they allow expressing assumptions that may
depend on both input and output variables of components. For
example, a physical counter D modeling the delay between a
control action C and its expected change in state variable S
augments the contract assumptions with the conjunction of the
following LTL formulas, extended with arithmetic predicates
over integers:

A↔ (S ∧ C), B ↔ (¬S ∧ C), �(A→ �(D = 0)) (1)

d−2∧

n=0

�((B ∧D = n)→ �((B ∧D = n+ 1) ∨ (A ∧D = 0))) (2)

�((B ∧D = d− 1)→ �(A ∧D = 0)) (3)

848 Design, Automation And Test in Europe (DATE 2018)

where A, B, S, and C are Boolean variables, and � and �
correspond to the LTL temporal operators always and next.
The integer constant d is the maximum delay assumed, i.e.,
the value of D ranges from 0 to d−1. Overall, these formulas
express that S will be true whenever C is true after a delay
smaller than or equal to d. A similar conjunction of formulas is
used to express the delay after which S will be false whenever
C is false. Finally, a similar procedure can be used to model
monitor counters, appearing in the contract guarantees, e.g., to
model the fact that the state S must be true within an amount
of time t after C becomes true. Counters allow extending the
abstraction provided by LTL to also capture a model of the
dynamics of the components or the real-time constraints on
their operation. They are automatically instantiated by CHASE
in a way that is transparent to the user.

V. APPLICATION EXAMPLES

Aircraft Power Distribution System. In an aircraft EPS, a
supervisory controller must actuate a set of contactors to dis-
tribute power from generators to loads and satisfy the demand
for a set of predetermined flight conditions and faults [6]. We
require that essential loads and buses (such as flight-critical
actuators) never be unpowered for more than a specified time
tmax. Validation of the closed-loop system requirements to
determine the feasibility of a control algorithm cannot be
performed correctly unless we account for the sensing and
actuation delays in both the physical plant and the embedded
platform as well as the possible failure scenarios. This is made
possible by CHASE.

Fig. 1 illustrates a simplified version of the system includ-
ing three power sources (left, right, and middle generators),
three AC buses, three rectifiers, and three DC buses, all con-
nected through contactors. An excerpt of the natural-language
requirements examined in this case study is provided in Fig. 4,
while Fig. 3 shows an excerpt of their translation into the
CHASE language. To avoid generator damage, we proscribe
AC sources to be paralleled, i.e., no AC bus can be powered by
multiple generators at the same time (never-connect pattern).
A bus connected to an unhealthy source may cause a short-
circuit failure; therefore, we require that appropriate contactors
open when a generator becomes unhealthy to isolate it and
prevent its use (must-disconnect-failed pattern). We then test
the consistency of a contract for the EPS controller that can
accommodate a failure in one generator, by rerouting power
from another generator to the corresponding DC bus in a
time interval which is less than or equal to tmax = 30 ms
(always-active-connection). Both the plant topology and the
controller should be designed to be robust to certain combi-
nations of faults potentially causing the failure of an essential
component. To this effect, in the ASSUMPTIONS section,
we can explore different scenarios by enumerating the maxi-
mum number of components that are allowed to fail for each
type of component (max-failures and no-failures). These
assumptions directly translate into environment configurations
that may occur and must be counteracted by the controller
in due time. Finally, we assume that when a component fails
during the flight, it will not come back online (no-recovery).

To capture the physical dynamics of the plant and the
real-time constraints on the system operation, each contactor
requires two additional counter variables to model opening and
closing delays. Similarly, each generator requires one counter
variable to model the delay with which it is disconnected,
while one counter variable is needed per each essential bus,
to capture the requirement on the maximum time tmax al-
lowed for a bus to stay unpowered. These counter variables
are introduced by CHASE in a way that is transparent to

TABLE I. SYNTHESIS TIME (S) AS THE NUMBER OF COUNTERS

(VERTICAL AXIS) AND THEIR SPAN (HORIZONTAL AXIS) INCREASE.

3 4 6 8 10 15 30
6 0.03 0.01 0.05 0.1 0.1 0.21 0.37
8 0.03 0.02 0.1 0.11 0.27 1.05 18.94

10 0.06 0.03 0.16 0.24 2.58 64.52 27383.95
12 0.07 0.03 0.42 0.66 23.3 5694.8 > 24 h
14 0.12 0.11 1.75 2.83 439.71 > 24 h > 24 h
16 0.1 0.09 10.04 20.15 19775.75 > 24 h > 24 h

the user, when processing the parameters provided with the
must-disconnect-failed, switch-on-time, and switch-off-
time patterns. CHASE finds that the first six requirements in
Fig. 4 are always consistent, while the addition of the seventh
requirement (line 8) may create inconsistencies when the time
parameter tmax (set to 30 ms in Fig. 4) is less than 20 ms.
By simulation of a synthesized controller, it is possible to
infer some of the scenarios that expose this inconsistency. For
example, let us assume that all the generators are serviceable,
and each AC bus receives power from the corresponding
source (line 2 in Fig. 4) until the left AC generator becomes
unserviceable. Contactors 0 and 1 are not actuated at the same
time to avoid connecting two power sources (line 5); it is
then possible that a delay of 20 ms is reached until contactor
0 is open and contactor 1 is closed (lines 3, 4, 6, and 7).
This will cause a violation of the requirement in line 8 for
tmax < 20 ms.

Tab. I shows the synthesis time, i.e., the time required to
create a contract implementation, as a function of the number
of counters in the system (vertical axis) and their span N
(horizontal axis). The number of counters is incremented with
a step of 2 to model (opening or closing) delays for the five
contactors in Fig. 1. In all cases, we assume that, if a contactor
has no counter associated with it, it behaves as an “ideal”
switch and presents minimum delay, i.e., can be closed or
opened within the discretization step τ . For the experiments in
Tab. I, it was enough to change the timing parameters of the
same, compact specification template in Fig. 3. This should be
contrasted with the lengths of the generated LTL formulas,
ranging from 540 to 4, 670 literals, a challenging size to
handle manually. While the synthesis time grows exponentially
with both the number of counters and their span, checking
realizability, without generating an implementation, required
much less time, from 0.05 to 1.8 s on a 3.4-GHz Intel Core
i7 processor with 16-GB RAM, since it can be performed by
adopting symbolic algorithms to reason about sets of states
without enumerating all of them.

Automotive Communication System. Modern automotive
systems have evolved to cyber-physical systems, consisting of
heterogeneous electronic control units (ECUs), sensors, and
actuators, that communicate over a network of buses. Various
functions are realized by distributed tasks which communicate
by exchanging messages over the shared buses, leading to
mixed-criticality systems where multiple functions with dif-
ferent criticality levels can be supported by one ECU and one
function can be distributed over multiple ECUs [23].

We apply CHASE to a requirement validation problem for
an automotive communication system that provides assistance
to the driver by monitoring a set of functions located in the
front of a car. As shown in Fig. 1, the system consists of four
subsystems: a rain sensing system for automatic windscreen
wipers management, a collision avoidance system, a lane
departure warning system, and a smart light management
system. The sensors of each subsystem send data to two
ECUs. Data may be sent in the form of high-priority or low-
priority signals (messages) and are propagated to the ECUs
via a shared double-priority bus. We require that high-priority
signals are processed within 5 ms, while low-priority requests

Design, Automation And Test in Europe (DATE 2018) 849

1 TYPES
2 ECU: Sink(data);
3 communication bus: Bus(data);
4 peripheral: Bus(data);
5 low iface: Converter(low, data);
6 high iface: Converter(high, data);
7 high signal: Source(high);
8 low signal: Source(low);
9 nw switch: Switch;

10 cpu switch: Switch;
11
12 COMPONENTS
13 main ECU: 2;
14 main data bus: 1;
15 sensor peripheral: 4;
16 rain low iface: 1;

17 rain low signal: 1;
18 # etc.
19
20 ABBREVIATIONS
21 main ECU 1: ECU1;
22 main data bus 1: DBUS;
23 sensor peripheral 1: RAIN;
24 rain low iface 1: RLI;
25 # etc.
26
27 CONNECTIONS
28 DBUS -(cpu switch 1)- ECU1;
29 RAIN -(nw switch 1)- DBUS;
30 RLI -(nw switch 5)- RAIN;
31 # etc.

32
33 REQUIREMENTS
34 never-connect(ECU, ECU, communication bus);
35 never-connect(peripheral, peripheral, communication bus);
36 never-connect(high iface, low iface, peripheral);
37 always-active-connection(high signal, ECU, 5, MS);
38 always-active-connection(rain low signal, ECU, 14, MS);
39 always-active-connection(collision low signal, ECU, 12, MS);
40 always-active-connection(lane low signal, ECU, 12, MS);
41 always-active-connection(light low signal, ECU, 14, MS);
42
43 ASSUMPTIONS
44 initial-state(nw switch 1, 1);
45 initial-state(nw switch 6, 1);
46 initial-state(cpu switch 1, 1);
47 no-failures(*);
48 switch-on-time(Switch, 1, MS);
49 switch-off-time(Switch, 1, MS);
50 # etc.

Fig. 6. Excerpt of the requirements for the automotive system example.

may be accommodated at a slower pace. The ECUs are able
to guarantee a worst-case processing delay of 1 ms, i.e., any
request coming from the bus will be serviced within 1 ms.
We want to check whether the requirements are consistent and
whether there exists an arbitration strategy for the Bus Arbiter.

Fig. 6 shows an excerpt of the formal specification in
CHASE’s language. New component types define the new
application domain. For example, the ECUs are instances of
type Sink and must be connected to components that send
data, i.e., that are labelled with the data annotation. The main
Communication Bus and the four peripherals are instances
of type Bus and may also be only connected with sources
or sinks annotated with data. Two types of interfaces (high
iface and low iface) are used to convert high-priority and low-
priority signals of types high and low, respectively, generated
from a high and low signal source, into signals of type data,
accepted by a peripheral bus. Elements of type Switch are
used by the Arbiter to regulate the network traffic by allowing
or disallowing signal or data transfers between certain pairs
of system components. To assure that high-priority messages
are correctly transferred, there should be a link between each
ECU and each peripheral at least every 5 ms (always-active-
connection pattern in line 37), while low-priority messages
are subject to more relaxed deadlines (lines 38–41).

After developing the first case study in this section, it
took approximately 30 minutes to generate and validate the
specification in Fig. 6. CHASE generated and performed a
consistency check for a contract consisting of an LTL formula
with about 3, 000 literals in 22 s. The specification was found
to be inconsistent, and a possible way to resolve the conflict
was to increase the tolerance for the low-priority signals from
the lane departure detection system from 10 to 12 ms. In this
case, an arbitration algorithm was generated in about 1 minute
and the resulting finite state machine has 199 states and 396
transitions.

Overall, the design examples discussed in this section
show that both natural-language translation and pattern-based
specification language are useful to hide the details of the re-
quirement formalization, which can be massive, and therefore
reduce the chances of errors. CHASE’s formal language can be
reused across domains of applications, which is an indication
of its power to capture the essence of several problems of
interest in CPS design. Finally, the CHASE platform can
make it possible to perform extensive evaluation of different

requirement validation approaches.

VI. CONCLUSIONS

We introduced CHASE, a framework and approach to
enable validation of high-level system specifications including
complex behaviors. Future work includes extensions to sup-
port more formalisms, and developing mechanisms to convey
interpretable explanations for conflicting requirements.

REFERENCES

[1] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming
Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems,”
European Journal of Control, vol. 18, no. 3, pp. 217–238, 2012.

[2] J. Sifakis, “Rigorous system design,” Foundations and Trends in
Electronic Design Automation, vol. 6, no. 4, pp. 293–362, 2013.
[Online]. Available: http://dx.doi.org/10.1561/1000000034

[3] Y. A. Feldman and H. Broodney, “A cognitive journey for requirements
engineering,” in Ann. INCOSE Int. Symp. INCOSE, Jul. 2016.

[4] A. Benveniste et al., “Contracts for System Design,” INRIA, Rapport
de recherche RR-8147, Nov. 2012.

[5] A. Cimatti and S. Tonetta, “Contracts-refinement proof system for
component-based embedded systems,” Science of Computer Program-
ming, vol. 97, Part 3, pp. 333 – 348, 2015.

[6] P. Nuzzo et al., “A contract-based methodology for aircraft electric
power system design,” IEEE Access, vol. 2, pp. 1–25, 2014.

[7] S. Ghosh, D. Elenius, W. Li, P. Lincoln, N. Shankar, and W. Steiner,
“ARSENAL: automatic requirements specification extraction from nat-
ural language,” in NASA Formal Methods Symposium, 2016, pp. 41–46.

[8] J. Badger, D. Throop, and C. Claunch, “VARED: verification and anal-
ysis of requirements and early designs,” in Requirements Engineering
Conf., 2014, pp. 325–326.

[9] B. Caillaud, “Mica: A modal interface compositional analysis library,”
http://www.irisa.fr/s4/tools/mica, Oct. 2011.

[10] A. Cimatti, M. Roveri, and S. Tonetta, “Requirements validation for
hybrid systems,” in Proc. Int. Conf. Computer Aided Verification, 2009,
vol. 5643, pp. 188–203.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proc. Int. Conf. Software
Engineering, 1999, pp. 411–420.

[12] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand, “Using
contract-based component specifications for virtual integration testing
and architecture design,” 2011, pp. 1023–1028.

[13] K. C. Castillos, F. Dadeau, J. Julliand, B. Kanso, and S. Taha, “A
compositional automata-based semantics for property patterns,” in Int.
Conf. Integrated Formal Methods, 2013, pp. 316–330.

[14] K. Y. Rozier, “Specification: The biggest bottleneck in formal methods
and autonomy,” in Int. Conf. Verified Software: Theories, Tools, and
Experiments, 2016, pp. 8–26.

[15] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA: The MIT Press, 2008.

[16] N. Piterman and A. Pnueli, “Synthesis of reactive(1) designs,” in
In Proc. Verification, Model Checking, and Abstract Interpretation.
Springer, 2006, pp. 364–380.

[17] I. Filippidis, S. Dathathri, S. C. Livingston, N. Ozay, and R. M. Murray,
“Control design for hybrid systems with TuLiP: The temporal logic
planning toolbox,” in IEEE Conf. Control Applications, 2016.

[18] S. Ghosh et al., “Diagnosis and repair for synthesis from signal temporal
logic specifications,” in Proc. Int. Conf. Hybrid Systems: Computation
and Control, 2016.

[19] J. Li, P. Nuzzo, A. Sangiovanni-Vincentelli, Y. Xi, and D. Li, “Stochastic
contracts for cyber-physical system design under probabilistic require-
ments,” in Int. Conf. Formal Methods and Models for Co-Design, 2017.

[20] P. Nuzzo, A. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and
T. Villa, “A platform-based design methodology with contracts and
related tools for the design of cyber-physical systems,” Proc. IEEE,
vol. 103, no. 11, Nov. 2015.

[21] M. C. McCord, J. W. Murdock, and B. K. Boguraev, “Deep parsing in
Watson,” IBM J. Res. Dev., vol. 56, no. 3, pp. 264–278, May 2012.

[22] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[23] D. Goswami et al., “Challenges in automotive cyber-physical systems
design,” in Int. Conf. Embedded Computer Systems, 2012.

850 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

