
KVSSD: Close Integration of LSM Trees and Flash
Translation Layer for Write-Efficient KV Store

Sung-Ming Wu, Kai-Hsiang Lin, and Li-Pin Chang
Department of Computer Science, National Chiao-Tung University

Hsinchu, Taiwan, R.O.C.

tbches.cs03g@nctu.edu.tw, k99182003@gmail.com, lpchang@cs.nctu.edu.tw

Abstract—Log-Structured-Merge (LSM) trees are a write-
optimized data structure for lightweight, high-performance Key-
Value (KV) store. Solid State Disks (SSDs) provide acceleration
of KV operations on LSM trees. However, this hierarchical design
involves multiple software layers, including the LSM tree, host
file system, and Flash Translation Layer (FTL), causing cascading
write amplifications. We propose KVSSD, a close integration of
LSM trees and the FTL, to manage write amplifications from
different layers. KVSSD exploits the FTL mapping mechanism
to implement copy-free compaction of LSM trees, and it enables
direct data allocation in flash memory for efficient garbage
collection. In our experiments, compared to the hierarchical
design, our KVSSD reduced the write amplification by 88% and
improved the throughput by 347%.

I. INTRODUCTION

Relational database management systems (RDBMS) pro-

vide rich features such as transaction consistency and SQL

queries. However, these features add high complexity to data

processing and may degrade the performance of data-intensive

applications. Recently, persistent Key-Value (KV) store is

becoming an important component in the infrastructure of

large-scale data centers. Compared to RDBMS, KV store

offers a small set of operations for data store and retrieval.

Because KV store is highly efficient and scalable, it has been

widely used in in-line storage deduplication [1], e-commerce

[2], and social networks [3].

KV store contains a large set of KV pairs, which are indexed

by their key field. It can be implemented using hash tables [4],

[5], [6], B-tree variants [7], or Log-Structured Merge (LSM)

trees [8], [9], [10]. Among these options, LSM trees are highly

write-optimized: They flush buffered KV pairs to the storage

in terms of large Sorted-String Tables (SSTables) through out-

of-place sequential logging. To further boost the throughput of

KV operations, recent studies suggest to replace hard drives

with NAND-flash-based SSDs [1], [9]. By this design, KV

store involves multiple software layers, including the LSM

tree, the host file system, and the firmware inside of SSDs.

The layered design offers excellent modularity, but it risks

cascading write amplifications, which negatively impact on

the KV performance and seriously degrade the SSD lifespan.

Specifically, the write amplification of a software layer is how

much write traffic the layer produces in order to process a unit

of incoming data.

This work is supported by research grant MOST 104-2221-E-009-011-MY3
from Ministry of Science and Technology, Taiwan, R.O.C.

LSM trees employ compaction of SSTables to propagate

new KV pairs from higher levels down to lower levels. The

compaction process is responsible for the first-stage write

amplification. LSM trees store SSTables in files, which are

allocated in terms of file-system blocks. However, flash pages

are much larger than file system blocks (typically, 32 KB

vs. 4 KB). Writing SSTable files may partially update a

flash page, introducing the second-stage write amplification

through page read-modify-write. The underlying SSDs employ

a firmware layer, called FTL, to interact with the host as if they

were ordinary hard drives. Because NAND flash is a kind of

erase-before-write non-volatile memory, the FTL must timely

perform garbage collection, which involves a series of data

copying and flash erasure, to reclaim free space for writing.

The FTL creates the third-stage write amplification through

garbage collection. The final write traffic arriving at flash

memory is the total size of the written KV pairs multiplied
by all these three write amplifications.

For example, suppose that the write amplifications of the

LSM tree layer, the block layer, and the FTL layer are 10,

1.5, and 3, respectively. Because of the compaction overhead,

to handle one unit of application data, on average the LSM

tree writes ten units of data to the block layer. Next, for each

one of the ten units of data arriving at the block layer, on

average the block layer writes 1.5 units of data to the FTL

due to the read-modify-write overhead. For each one of the

1.5 units of data to the FTL, on average the FTL writes 3

units of data to flash memory due to the garbage collection

overhead. Summing up, on average the software stack writes

10×1.5×3=45 units of data to flash to handle one unit of data

from applications.

In this study, we propose the design of KVSSD, which is

based on a close integration of LSM trees and the FTL. A

KVSSD employs a flash-native implementation of LSM trees,

and it interacts with the host through KV operations rather than

block I/O commands. The primary design goal is to eliminate

or to reduce the write amplifications from different software

layers: Firstly, we upgrade the existing logical-to-physical

(L2P) mapping of the FTL to key-to-physical (K2P) mapping

for efficient indexing. Because the K2P mapping decouples the

logical order from the physical order of KV pairs, it is then a

nature extension to implement copy-less SSTable compaction

through remapping of KV pairs. Secondly, by allocating

SSTables in terms of flash pages, the overhead of read-modify-

569978-3-9819263-0-9/DATE18/ c©2018 EDAA



Fig. 1. (a) An LSM tree and SSTable compaction. (b) The software stack
of the conventional LSM-on-SSD design. The LSM tree, the block layer, and
the FTL induce cascading write amplifications.

write for flash pages can be completely eliminated. Thirdly,

LSM tree levels have different capacity limits, and SSTables

at higher levels undergo compaction more frequently than

those at lower levels do. Exploiting this property, we propose

to write pages of SSTables from different levels to different

flash blocks. This write strategy actually implements hot-cold

separation, which is an essential technique to reduce the write

amplification of garbage collection [11].

Our experimental results show that, compared to conven-

tional LSM-on-SSD methods, our LSM-SSD integrated ap-

proach improved the write amplifications caused by SSTable

compaction, page read-modify-write, and flash garbage collec-

tion by 38%, 31%, and 72%, respectively, reducing the overall

write amplification by 88% and improving the KV operation

throughput by 347%.
II. BACKGROUND

A. KV-Store Software Stack
LSM Trees. Figure 1(a) shows an LSM tree. The LSM

tree collects application-generated KV pairs in main-memory

using Memtables, and it flushes Immutable (full) Memtables

to the storage as SSTables at proper timing. The LSM tree

organizes SSTables in a hierarchical structure, and it always

adds new SSTables to the top level (level 0). The key range of

an SSTable is the interval between the largest and the smallest

key of the SSTable. The capacity of the current level is ten

times as small as that of the next lower level. Now, when

a level is full, the LSM tree selects an SSTable from this

level as a victim and performs compaction on the victim and

the SSTables in the next level that overlap with the victim

in terms of key range. The compaction process is essentially

merge sorting on the involved SSTables. It writes new disjoint

SSTables with sorted KV pairs to the next level and then

deletes the old SSTables. Invalidated or deleted KV pairs are

discarded during compaction.

FTL. NAND flash is erase-before-write. It reads and writes

in terms of 32 KB pages, and an erasure unit typically has 128

pages. To avoid block erasure on every in-place page update,

the FTL updates page in an out-of-place manner and uses L2P

mapping to redirect I/O requests to the newest versions of

data. Page updates consume free space, and the FTL reclaims

pages occupied by stale data through migration of valid data

followed by block erasure. This reclaiming process is called

garbage collection.

Cascading Write Amplifications. Figure 1(b) shows the

software stack of the conventional LSM-on-SSD approach.

Applications call the LSM tree through get(), put(), and

delete(). The LSM tree runs on top of a file system and

produces block I/O writes. The LSM tree amplifies the block

write traffic through SSTable compaction. When block I/O

requests arrive at the FTL, many of them partially update

flash pages because file-system blocks are smaller than pages.

To handle a partial update to a page, the FTL first reads

the old page, merges the old page with new data, and then

writes a new page. This read-modify-write step amplifies

the page write traffic. Next, the FTL writes new pages to

garbage-collected free space. The garbage collection procedure

involves migration of valid data and erasure of blocks, and it

amplifies the total number of page writes. The overall write

amplification is the product of the three write amplifications.

B. Related Work
LSM trees are a write-optimized index structure thanks to

their sequential-logging behavior. However, the out-of-place

logging design necessitates compaction, which noticeably am-

plifies the write traffic. Several approaches have been intro-

duced to reduce the write amplification due to compaction: Wu

et al. [10] and Yao et al. [12] proposed to divide the victim

SSTable into small pieces and append the pieces to the lower-

level SSTables that overlap the victim in terms of key range.

Pan et al. proposed to delay SSTable compaction by writing

virtual SSTables, which are an extra indirection to SSTables,

instead of writing new SSTables [13]. These techniques, how-

ever, consider neither write amplifications from other software

layers nor the existing flash management facilities like L2P

mapping.

Recent KV store designs started to exploit SSD internal

architectures. Marmol et al. proposed NVMKV, which up-

grades the one-to-one L2P mapping to a sparse L2P map-

ping [6]. KV pairs are first hashed to a huge logical space,

which is then sparsely mapped to flash memory. However,

hash tables inherently generate small, random writes to flash

memory, causing high read-modify-write and garbage col-

lection overheads. Wang et al. [14] proposed LOCS, which

aims at exploiting the chip parallelism of the Open-Channel

SSD platform to parallelize the compaction process. However,

LOCS does not attempt to optimize the write amplification

of SSTable compaction. Shen et al. proposed DIDA, which is

also based on the Open-Channel SSD platform. DIDA stores

a hash table in the host memory for K2P mapping and uses

slab allocation to reduce internal fragmentation of flash blocks

[4]. However, the L2P hash table can be extremely large and

does not fit in the embedded RAM of SSDs. Chen et al. aims

at eliminating internal fragmentation of flash blocks [5]. They

proposed to use multiple slab caches of different allocation

sizes (all powers of 2) and partition a KV pair among these

slab caches. However, this approach significantly increases the

read overhead because a KV pair is scattered over multiple

570 Design, Automation And Test in Europe (DATE 2018)



Fig. 2. A design overview of a KVSSD based on the proposed nSLM tree.

pages. These prior approaches exploit architectural supports

of SSDs, but they do not consider the synergy between the

management of KV data structure and that of flash memory.

III. A CLOSE INTEGRATION OF LSM TREES AND FTL

A. Overview
Figure 2 is an overview of the proposed KVSSD. The

KVSSD interacts with the host through KV operations. It

employs a flash-native implementation of LSM trees, called

the NAND-flash-LSM (nLSM) tree. The nLSM tree replaces

the FTL L2P mapping table with a key-range tree, and each

tree node represents the key range of an SSTable. A tree node

contains a pointer to a flash page that stores the metadata of

an SSTable, called a metadata page. The nLSM tree partitions

the entire flash into a KV zone and a metadata zone. A page

in the KV zone (a KV page) stores sorted KV pairs, and a

page in the metadata zone (a metadata page) contains only

pointers to KV pages and their key ranges. The nLSM tree

optimizes write amplifications using different techniques: 1)

It allocates flash pages to SSTables to eliminate read-modify-

write operations, 2) it remaps metadata pages to KV pages for

copy-free SSTable compaction, and 3) it separates KV pages

from different tree levels to improve the garbage collection

efficiency. These techniques will be explained in the following

sections.

B. K2P Mapping and SSTable Allocation
K2P mapping finds the exact physical flash address of a

target KV pair. The resolution of K2P mapping is much higher

than that of L2P mapping, so it is nearly impossible to store the

entire K2P mapping information in the SSD embedded RAM.

We propose to store only the SSTable-level K2P mapping

information in the embedded RAM using a key-range tree.

The key-range tree represents the structure of an LSM tree,

and a key-range node contains nothing but the key range of an

SSTable and the physical page address (PPA) of the metadata

page of the SSTable. An SSTable stores sorted KV pairs in

KV pages, whose key ranges are all disjoint. The metadata

page of an SSTable contains PPAs and key ranges of the KV

pages of the SSTable. Now, to locate a KV pair, the nLSM

Fig. 3. Demonstrations of (b) conventional compaction, which produces
new SSTables Tp, Tq , and Tr by writing 12 KV pages and (c) remapping
compaction, which produces Tx, Ty , and Tz by remapping existing KV pages.

tree finds a metadata page using the key-range tree, locates

a KV page using the key-range information in the metadata

page, and then retrieves the target KV pair from the KV page.

nLSM trees exclusively allocate a flash block to an SSTable.

In our current design, the flash block size is 4 MB, which is as

large as the SSTable size. By this design, nLSM trees eliminate

the overhead of page read-modify-write because SSTables are

always physically contiguous and aligned to page boundaries.

nLSM trees inherit the compaction procedure from LSM trees,

and thus during compaction, they always write in terms of

SSTables. When an nLSM tree compacts a set of old SSTables,

it performs multi-way merge sorting on these old SSTables and

writes new SSTables of sorted KV pairs. After compaction,

the old SSTables are discarded and their flash blocks contain

all invalid data (garbage). Later on, flash garbage collection

simply erases these blocks without any data copying.

C. Remapping Compaction

An LSM tree manages tree level sizes through compaction.

Figure 3(a) shows that SSTable Ta at level i is a victim of

compaction. The two SSTables Tb and Tc at level i+1 overlap

Ta in terms of key range. Figure 3(b) shows that the LSM tree

performs three-way merge sorting on Ta, Tb, and Tc, writes

three new SSTables Tp, Tq , and Tr to level i+ 1, and deletes

the old SSTables Ta, Tb, and Tc. There is no key-range overlap

among the new SSTables Tp, Tq , and Tr. This conventional

compaction process rewrites 12 KV pages plus 3 metadata

pages of the three new SSTables.

With our K2P mapping, the logical order of KV pages is

decoupled from their physical order in flash. It is therefore

a nature extension to implement SSTable compaction through

K2P remapping. We propose remapping compaction, and Fig-

ure 3(c) shows how it works: Remapping compaction writes

three metadata pages to create three new SSTables Tx, Ty ,

and Tz and then deletes the metadata pages of Ta, Tb, and Tc.

The new metadata pages contain new pointers to the existing
KV pages. By this design, remapping compaction writes only

3 pages instead of 15 pages.

Design, Automation And Test in Europe (DATE 2018) 571



Fig. 4. Metadata pages after remapping compaction. Old metadata pages
mTa, mTb, and mTc will be deleted. Underlined mapping entries in new
metadata pages mTx, mTy , and mTz point to overlap pages (shaded ones).

Because remapping compaction does not rewrite KV pairs,

it may create limited key-range overlaps among pages within

an SSTable. For example, two among the pages in Tx are

previously from different levels, and they both cover key range

C. If two pages in an SSTable overlap each other in terms of

key range, then the page previously from an upper level is

an overlap page. In Figure 3(c), overlap pages are marked in

gray. It is also possible that an overlap page is shared between

two SSTables if the key boundary between the two SSTables

is within the shared overlap page. For example, Ty and Tz

share the same overlap page that covers key ranges E and

F. A shared overlap page is included in the capacity of the

leftmost involving SSTable, Ty in this case. Figure 4 shows the

metadata pages and KV pages after the remapping compaction.

The new metadata page mTx contains four entries, one for the

overlap page at PPA 4, which was previously associated with

Ta, and the other three for disjoint KV pages at PPAs 40, 41,

and 42, which were previously associated with Tb.
Let an rLSM tree be an nLSM tree enhanced by remapping

compaction. An rLSM tree writes fewer pages on compaction

than an nLSM tree does, but it may amplify page reads on

query. This is because if the target key is within the key range

of an overlap page, then the overlap page must be examined

before the other pages in the same SSTable. To manage read

amplification, an SSTable maintains a counter that indicates

how many different levels its pages are from. For example,

the counter of Ta is 1 and that of Tx is 2. Now, during

compaction, if the counter of a new SSTable is less than or

equal to a predefined threshold TH , then the new SSTable will

be produced by remapping compaction. Otherwise, the new

SSTable will be produced using conventional compaction, and

the counter of the new SSTable will be reset to 1.

D. Hot-Cold Separation and Garbage Collection
Because conventional compaction writes in terms of SSTa-

bles, it produces all-invalid blocks for erasure. However, if

remapping compaction is employed, the KV pages in the same

block can be remapped to new SSTables at different levels.

These new SSTables will later be involved in conventional

compaction at different time points and leave some invalid

pages in the block. As a result, the block will contain both

valid and invalid pages, and garbage collection has to migrate

valid pages from the block before erasing it.

Efficient garbage collection relies on separating data of

different lifetimes among flash blocks [11]. This technique,

also called hot-cold separation, is an essential technique to

reduce the garbage collection write amplification. In LSM

trees, because upper levels are smaller than lower levels,

SSTables at upper levels are involved in compaction more

frequently. In other words, pages associated with different

levels have different lifetimes (or hotness). Based on this

property, when garbage collection is migrating valid pages

from a victim block, we propose to write KV pages mapped to

the same level to the same flash block. By this design, pages

of similar lifetimes are grouped in the same block for hot-cold

separation.

In rLSM trees, garbage collection always erases the block

of the fewest valid pages. Before erasing a block, garbage

collection migrates all valid pages from it. To reflect the new

PPAs of the migrated pages, garbage collection reversely traces

all the SSTables previously associated with the migrated pages,

rewrites the metadata pages of these SSTables, and updates the

key-range nodes of these SSTables. For the reversal tracing,

each block has a list of associated SSTables. We also add a

reference count to every page to safely delete a shared overlap

page created by remapping compaction. For example, Ty and

Tz share an overlap page whose reference count is 2. When

an SSTable is deleted, the reference counts of all its pages

are decremented by one. A page becomes invalid when its

reference count becomes zero.

E. Overhead Analysis
The embedded RAM space requirement of an rLSM tree

includes the key-range tree, the per-block SSTable lists, and

the per-page reference counters. The key-range tree size is

related to the total number of SSTables and is a block-level

overhead. The SSTable list length and the reference counter

size depend on the remapping-compaction threshold TH . The

larger the TH is, the longer an SSTable list is and the larger a

reference count is. To limit the space requirement of the lists

and the counters, in our current design, when an rLSM tree

tries to create a new SSTable through remapping compaction,

if any of the involved KV pages whose reference count is 7

(represented by 3 bits) or any of the involved block whose

SSTable list length is 5, then the rLSM tree uses conventional

compaction instead. By this design, the aforementioned data

structures of a 16GB KVSSD require only about 2MB of

embedded RAM.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup and Performance Metrics
For performance evaluation, we used Yahoo Cloud Serving

Benchmark (YCSB) [15] to synthesize our KV-store work-

loads. The workload generation involved a loading phase,

which inserted ten million unique KV pairs, and a write-

intensive transaction phase, which involved insertion, update,

and read (query) operations at rates of 25%, 65%, and 10%,

572 Design, Automation And Test in Europe (DATE 2018)



Fig. 5. (a) Overall write amplification. (b) Write amplifications contributed
by SSTable compaction, page read-modify-write, and flash garbage collection
under the Uniform key distribution. The numbers above arrows indicate the
absolute values of write amplification.

respectively. These parameters were selected to reflect write-

intensive workloads. Different workloads were generated using

the Latest, Zipfian, and Uniform key distributions. The key and

value size were 24 and 1000 bytes, respectively.

Our experiments involved two major components: the LSM

tree and FTL. We employed the LSM tree implementation

of LevelDB [3] and the FTL implementation in the SSD

Extension of DiskSim [16]. Our evaluation involved a family

of LSM-on-SSD approaches: LSM, which stands for regular

LSM trees. We replayed the KV workloads on LevelDB and

collected block I/O traces using blktrace, and then replayed

the traces on the SSD simulator to collect statistics of flash

operations. dLSM, which is LSM enhanced by delayed com-

paction [13]. lLSM, which is LSM enhanced by lightweight

compaction [12]. See Section II-B for the details of dLSM

and lLSM. We also evaluated a family of our LSM-SSD

integrated approaches: nLSM, which is equipped with the

proposed K2P mapping and block-based SSTable allocation.

We ported the core logic of LSM trees from LevelDB to the

SSD simulator and ran the KV workloads on the KVSSD

simulator to collect flash operation statistics. rLSM(-), which

enhances nLSM with remapping compaction. rLSM, which

adds hot-cold separation to rLSM(-). rLSM is the fully-fledged

version of our approach. In our experiments, the flash capacity

was 15 GB, of which 5% was reserved as over-provision. The

page and block size were 32 KB and 4 MB, respectively.

Our experiments employed three major performance met-

rics: 1) Write amplification, which was separately computed

for LSM tree compaction, page read-modify-write, and flash

garbage collection. 2) Throughput, which stands for the num-

ber of completed KV operations (including read and write) per

second. 3) Read amplification, which is the average number of

bytes read from flash to process one byte of KV read (query).

Read amplification involved KV read operations only. The

most efficient KV store design delivers the highest throughput

while incurring the smallest read and write amplification.

B. Write Amplification
Figure 5(a) shows the overall write amplification. Generally,

all the methods had a lower write amplification under the

Latest key distribution (Latest for short) than they did under

Uniform. This is because Latest exhibited better temporal

localities of KV updates and therefore SSTable compaction

removed many outdated KV pairs.

Fig. 6. (a) KV operation throughput. (b) Read amplification.

The LSM-SSD-integration family (nLSM, rLSM(-), rLSM)

significantly outperformed the original LSM. The performance

advantages are revealed in Figure 5(b), which separately shows

the write amplifications contributed by SSTable compaction,

page read-modify-write, and flash garbage collection under

Uniform. The product of the three is the overall write ampli-

fication. For example, the overall one of LSM under Uniform

is 93, which closely matches the product of the cascading

write amplifications of LSM 17.7×1.5×3.6=95.6. In Figure

5(b), nLSM and LSM performed nearly the same in terms

of compaction write amplification, because they employed

the same compaction design. nLSM exclusively allocated a

flash block to an SSTable, so it produced all-invalid blocks

by rewriting SSTables during compaction. Compared to LSM,

nLSM eliminated the write amplification of read-modify-write

(from 1.5 to 1) and that of garbage collection (from 3.6 to 1),

significantly reducing the overall write amplification by 81%.

rLSM(-) improved upon nLSM using remapping compaction,

further reducing the compaction write amplification by 38%.

This is because our remapping compaction writes a few meta-

data pages instead of rewriting SSTables. However, rLSM(-)

slightly increased the pressure on garbage collection because

it mixed KV pages that are mapped to different levels in the

same block. rLSM resolved this issue by hot-cold separation.

Compared to rLSM(-), rLSM reduced the write amplification

due to garbage collection by 14%, and this improvement was

reflected on the overall write amplifications of rLSM(-) and

rLSM (13.1 vs 11.4).

dLSM delays conventional compaction by writing virtual

SSTables, which contain extra indirection to existing SSTa-

bles. However, dLSM did not improve the compaction write

amplification as much as rLSM did. This is because, when

removing a virtual SSTable, dLSM must rewrite all the SSTa-

bles associated with the virtual SSTable. By contrast, every

remapping-compacted SSTable can be individually involved

in future compaction. lLSM achieved the best compaction

write amplification. This is because lLSM compaction always

appended KV pairs to existing SSTables instead of writing

new SSTables. However, the price paid for this design is the

poor space utilization. As reported in [12], the overall space
utilization of this compaction design is as low as 65%, because

SSTables reserve large space for appending new KV pairs. In

our experiments, lLSM could not complete the tests unless we

increased the SSD volume size by about 30%. LSM, dLSM,

and lLSM all suffered from a high write amplification of read-

modify-write, because they generated small requests to write

Design, Automation And Test in Europe (DATE 2018) 573



Fig. 7. (a) Normalized write amplifications under different remapping
thresholds. The numbers above arrows indicate the absolute values of write
amplification. (b) Write amplification of garbage collection under various flash
over-provisions.

SSTable metadata and fragmented SSTable files through the

file system layer. They also had a high write amplification

of garbage collection because they had no access to data

allocation in flash and therefore they mixed hot and cold data

in blocks.

C. Throughput and Read Amplification
Figure 6(a) shows the throughput of all methods. Basically,

each throughput is inversely proportional to its corresponding

overall write amplification. In particular, the throughput of

rLSM was up to 4.47 times as high as that of LSM. The

improvements in throughput were slightly lower than those in

overall write amplifications because the throughput includes

KV read operations. Figure 6(b) reports the read amplifications

of all methods. Read amplifications under Latest were lower

than those under Uniform. This is again because Latest exhib-

ited stronger temporal localities of KV operations, and popular

KV pairs can be found at higher LSM tree levels. Notice that

rLSM experienced an up to 11% increase in read amplification

compared to LSM, and the extra read traffic was contributed

by overlap pages in remapping-compacted SSTables. dLSM

had an even higher increase in read amplification compared

to LSM, reaching up to 19%. This is because, to search a

KV pair in a virtual SSTable, dLSM had to read the metadata

of all the associated real SSTables and the overlap segments

in these SSTables. This problem became the worst in lLSM,

because an SSTable may contain a large number of appended

segments of KV pairs, and many of their key ranges overlap

each other.

D. Remapping Threshold and Overprovision
We evaluated rLSM with various settings of the remapping-

compaction threshold TH . Figure 7(a) shows that, as TH in-

creased, the extra reduction in compaction write-amplification

diminished. This is because the frequency of conventional

compaction is inversely proportional to TH , and the change

in the compaction frequency becomes small among large TH
values. A large TH also damaged the efficiency of garbage

collection because KV pages in a block may be remapped

to new SSTables at many different levels, exaggerating the

mixture of hot and cold data in blocks. The results suggest

that 2 will be a good choice for TH .

We observed how flash over-provision size impacted on

write amplification of garbage collection. Notice that changing

the over-provision size will not affect the write amplifications

of compaction and read-modify-write. Figure 7(b) shows that

LSM, dLSM and lLSM demanded large flash over-provision

to relieve the negative impact caused by mixing hot and cold

data. By contrast, rLSM employed hot-cold separation, so its

garbage collection was very efficient even under the smallest

over-provision size.

V. CONCLUSIONS

The conventional LSM-on-SSD approach provides excellent

modularity, but it suffers from cascading write amplifications

contributed by SSTable compaction, page read-modify-write,

and flash garbage collection. Many of the existing studies

are focused on compaction overhead optimization, but they

pay little attention to the write amplifications from other

software layers. To manage the overall write amplification,

we propose a close integration of LSM trees and the FTL.

Specifically, we propose copy-free remapping compaction,

flash-aware data allocation, and hot-cold separation to op-

timize the write amplifications of compaction, read-modify-

write, and garbage collection, respectively. Results show that

our integrated approach significantly outperformed existing

work in terms of KV operation performance.

REFERENCES

[1] B. Debnath, S. Sengupta, and J. Li, “FlashStore: high throughput
persistent key-value store,” Proc. VLDB Endow., vol. 3, no. 1-2, 2010.

[2] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” ACM SIGOPS operating
systems review, vol. 41, no. 6, 2007.

[3] LevelDB., “https://github.com/google/leveldb,” 2017.
[4] Z. Shen, F. Chen, Y. Jia, and Z. Shao, “DIDACache: A deep integration

of device and application for flash based key-value caching,” in USENIX
FAST, 2017.

[5] Y.-T. Chen, M.-C. Yang, Y.-H. Chang, T.-Y. Chen, H.-W. Wei, and W.-K.
Shih, “KVFTL: Optimization of storage space utilization for key-value-
specific flash storage devices,” in IEEE ASP-DAC, 2017.

[6] L. Marmol, S. Sundararaman, N. Talagala, and R. Rangaswami,
“NVMKV: A scalable, lightweight, FTL-aware key-value store.” in
USENIX ATC, 2015.

[7] A. Papagiannis, G. Saloustros, P. González-Férez, and A. Bilas, “Tucana:
Design and implementation of a fast and efficient scale-up key-value
store.” in USENIX ATC, 2016.

[8] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, 1996.

[9] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “WiscKey: Separating keys from values in SSD-
conscious storage,” ACM TOS, vol. 13, no. 1, 2017.

[10] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: an LSM-tree-based
ultra-large key-value store for small data,” in USENIX ATC, 2015.

[11] L.-P. Chang, Y.-S. Liu, and W.-H. Lin, “Stable greedy: Adaptive garbage
collection for durable page-mapping multichannel SSDs,” ACM TECS,
vol. 15, no. 1, 2016.

[12] T. Yao, J. Wan, P. Huang, X. He, Q. Gui, F. Wu, and C. Xie, “A light-
weight compaction tree to reduce I/O amplification toward efficient key-
value stores,” in IEEE MSST, 2017.

[13] F. Pan, Y. Yue, and J. Xiong, “dCompaction: Delayed compaction for
the LSM-tree,” International Journal of Parallel Programming, 2016.

[14] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong,
“An efficient design and implementation of LSM-tree based key-value
store on open-channel SSD,” in ACM EuroSys, 2014.

[15] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in ACM SoCC,
2010.

[16] Microsoft Research. SSD extension for DiskSim simulation
environment. [Online]. Available: http://research.microsoft.com/en-
us/downloads/b41019e2-1d2b-44d8-b512-ba35ab814cd4/

574 Design, Automation And Test in Europe (DATE 2018)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


