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Abstract—With ever more complex and larger VLSI devices and
higher and higher reliability requirements, high quality test with
a large fault and defect coverage is becoming even more relevant.
At the same time, when unspecified or unknown input values (X
values) have to be considered in a pattern, commercial ATPG tools
are sometimes not capable of determining whether a fault can be
tested – but there is at least a chance to detect the fault, as 0/X
or 1/X could be propagated to at least one output. Consequently,
these faults are considered to be possibly detected and often counted
towards the overall fault coverage with a weighting factor. However,
as the actual probability to detect these faults with the considered
test pattern is not taken into account, this could lead to an over-
or underestimation of their real fault coverage, falsifying the test
results.

We introduce a #SAT-based characterization algorithm for this
class of faults. This new algorithm is, for the first time, able to
accurately compute the detection probability for faults marked as
possibly detected by state-of-the-art commercial tools.

Our experimental results for the largest ITC’99 benchmarks
as well as larger industrial-circuits show that our algorithm can
accurately determine the detection probability for most of the
possibly detected faults and also identify faults that are completely
untestable or found with a probability of 100 % irrespective of the
assignment of the inputs with an X value.

Furthermore, they show that the detection probability is circuit-
dependent and consequently should not just be estimated by a
simple weighting factor but requires a more in-depth evaluation.
Otherwise, there is a high risk that the achieved results could clearly
be to optimistic or pessimistic with regard to the real fault coverage.

Keywords-Circuit testing, Automatic test pattern generation, Pos-
sibly detected, #SAT, unknown values

I. INTRODUCTION

With the ever increasing size and complexity of modern VLSI
circuit designs the potential for defects resulting in yield loss
or even customer returns is growing. At the same time, there
are higher and higher reliability requirements in many fields –
e.g., in the automotive sector and in medical technology. The
trend in these industries can be described as aiming for 0 DPPM
(defective parts per million) shipped, down from the single or low
double digit DPPM range that is already achievable in today’s
world. Since it is basically impossible to create nanometer-scale
integrated circuits (IC) without any defects – which could be
caused by a single missing or misaligned atom – the quality of
the device test has to be improved instead.

For digital circuits, structural testing based on a fault model
is essential. Exhaustively testing the complete functionality of a
modern circuit is not possible because there are simply too many
input combinations and internal states. Instead, structural test is
used to prove the absence of the modeled faults in the device by
applying test patterns. These patterns are created by ever more
advanced automatic test pattern generation (ATPG) tools.

When the test patterns contain unknown or unspecified values
(X) – for example because some circuit inputs cannot be
controlled, or should not be specified because of compaction or
relaxation reasons– it might not be possible to show the testability
of some of the modeled faults by the generated patterns. However,
if at least one assignment to these circuit inputs (X-sources)
allows the detection of the fault, there is at least a chance to
detect this fault. Consequently the faults are also not definitely
untestable. In state-of-the-arte commercial and academic tools,
these faults are marked as possibly detected and often partially
counted towards the overall percentage of detected faults by a
weighting factor [1], [2].

However, without further investigation, it is impossible to tell
the probability to detect these faults and consequently to judge
the accuracy of the weighting factor. At this point our proposed
#SAT-based characterization algorithm comes into play. With it,
the possibly detected fault can be put into one of three groups:

1) Definitely detected: no matter how the X values are
assigned, the fault is always detected.

2) Definitely not detected: no matter how the X values are
assigned, the fault is never detected.

3) Potentially detected: the fault is detected for some assign-
ments of the X values.

While there are other approaches to determine whether a test
pattern with X values definitely detects a possibly detected
fault (e.g., accurate X-aware fault simulation [3], [4]), the
presented approach is the first that accurately calculates the
detection probability for faults that are neither always testable
nor completely untestable.

Hence, for all faults of group 3, the algorithm accurately
computes the probability that a potentially detected fault is
actually detected. With this knowledge, the weighting factor
does not have to be purely estimated anymore but could either
by specified more accurately or it is also possible to specify a
probability limit – and hence only all possibly detected faults with
a higher probability (e.g. over 90 %) are counted to the overall
fault coverage. Based on such an more accurate calculation of
the achieved fault coverage, the design for testability (DFT)
requirements can be more accurately determined (e.g., the
insertion of test points), resulting in a lower overhead or better
results in direction of 0 DPPM. In detail this paper presents:

• A #SAT-based characterization algorithm for possibly de-
tected stuck-at faults1.

• An accurate computation of the detection probability for
potentially detected faults.

• Three advanced SAT-based optimizations to reduce the
formula size and increase the solving speed.

• A thorough evaluation for different scenarios with test
patterns from a commercial tool on large benchmarks
including industrial circuits.

• An investigation into the scalability of the approach by
applying grid-scale computing to the solve process.

Our experimental results for large benchmark and industrial
circuits show that the real testability of faults that are considered
to be possibly detected by a state-of-the-art commercial tool is
highly circuit dependent. Furthermore, if X values originate from
unknown values, for example because of uninitialized flip-flops,
the detection probability is generally decreased and an accurate
characterization of these faults becomes all the more relevant.

The remainder of this paper is structured as follows: The sub-
sequent Section II introduces the basic concepts, e.g., automatic
test pattern generation and SAT- and #SAT-solving. These are
used for the proposed fault characterization approach described
in Section III. In Section IV the characterization is evaluated
on a wide range of different circuits. Section V concludes the
contribution with a short summary and outlook on future work.

1Note: While the presented approach focuses on possibly detected stuck-at
faults, it could easily be applied to other faults models as well.
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II. PRELIMINARIES

A. Automatic Test Pattern Generation
An IC can suffer from a myriad of different manufacturing

defects which can influence its behavior and result in a wide range
of errors, from all out complete failures to rare or intermittent
malfunctions. Since the number of possible defects is almost
endless, an abstraction, a so called fault model, is used to create
a finite set of faults which can be tested. This model is based
on faults with a clearly defined behavior which have some
correspondence to real world defects. One widely used model is
the stuck-at model [5], which assumes that a single gate input
or output within the circuit is either always ‘0’ or always ‘1’.
This fault model gives a finite and clearly defined set of potential
faults: For every line in the circuit there are only two possible
faults (the line is stuck-at-1 or stuck-at-0).

In addition, many other fault models exist and are often
used to augment the stuck-at model to cover additional defects.
These include the transition-delay [6], transistor stuck-off [7],
interconnect open [8] and cell-aware [9] model, to name just a
few.

To systematically test an IC after production, certain input
patterns (called test patterns) are applied to the circuit. These
patterns are designed to create a difference on at least one of
the outputs if one of the modeled faults is present. For example,
an output might have the value ‘0’ in the fault-free circuit (also
known as the good value) but the value ‘1’ if a certain fault is
present (the bad value); This is abbreviated as 0/1.

An automatic test pattern generation (ATPG) algorithm creates
these test patterns based on the circuit in question and a fault
list. A large number of different ATPG approaches have been
developed, which range from the basic D-algorithm [10] and its
improvements [11], [12] to SAT-based solutions which work on
a more abstract mathematical model [13], [14].

For many faults, it is sufficient to specify some of the circuit
inputs to generate a valid test. The remaining inputs can be set
to both ‘1’ or ‘0’ without changing the test outcome. In the test
pattern such inputs are given the value X as they are unspecified.
The value X is only used for the modeling of the unspecified
inputs. When the test pattern is applied to the actual physical
device, every X value is either ‘0’ or ‘1’.

B. Unknown Values
Basic ATPG algorithms assume that all of the inputs of the

circuit under test can be controlled and set to the required values.
However, in real circuits this is often not the case: for some
inputs it might not be possible to guarantee any value. These
inputs therefore have to be considered as unknown. Just like
an unspecified input, this is again modeled with the value X .
Although unspecified input value and unknown input value are
semantically different, in this specific context they mean the same
thing: No matter how the X-input is assigned, the test pattern
must still detect the fault. There are different reasons for the
occurrence of unknown values at the inputs:

• The input is connected to a flip-flop that is not part of a
scan-chain and the flip-flop’s value cannot be initialized (in
a reasonable time) through the combinational logic.

• The input is connected to another (on-chip) module or device
that cannot be controlled or is not yet completely specified
during the test generation.

Accurately handling X values (especially if there is more
than one X-input) within an ATPG algorithm is difficult because
reconverging X values might disappear and become ‘0’ or ‘1’
again [15].

Because it is so difficult to work with X-inputs accurately,
most ATPGs (including commercial tools) are pessimistic and
assume the worst case for X values or do not perform a full
analysis of the X-interdependencies.

C. Possibly Detected Faults
Often a single test pattern can detect multiple different faults.

In addition, some patterns might possibly detect a fault. A fault is
possibly detected if there is no output with a definitive good-bad
difference but there is at least one output where the good value
is well defined (0 or 1) and the bad value is unknown (X). This
case might occur because the fault changes the signal propagation
within the circuit and connects an X-input to an output.

As an example, consider the circuit in Figure 1. The pattern
“01X” definitely detects a stuck-at-1 fault at the first input of G1
(shown in yellow). In addition, it might also detect a stuck-at-0
fault in input 1 of G2 (shown in red).
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Figure 1. Faults detected by the pattern 01X in a circuit. The stuck-at-0 fault
is only possibly detected.

When the pattern is applied to a real circuit, input c would
be assigned to either ‘0’ or ‘1’. Hence, with the stuck-at-0 fault,
the output o2 would either have the value 1/0 or 1/1. In the first
case, the fault is detected (because the output does not have the
required good value), in the latter case it is not detected. Thus,
the fault is considered to be possibly detected and has a detection
probability of 50 %.

Clearly, the detectability of a possibly detected fault depends
on the final test pattern (without X values). However, this pattern
might not yet be available during the test generation and might be
out of the control of the test generator. When reporting the final
fault coverage of the set of generated test patterns, not considering
any possibly detected faults would result in a pessimistic estimate
of the final coverage since many of these faults might actually be
detected. Conversely, assuming that all possibly detected faults are
definitely detected would potentially overestimate the real fault
coverage. Thus, in commercial tools a user-definable percentage
of possibly detected fault (e.g., 50 %) is counted towards the
overall fault coverage. However, without further insight into
the nature of the possibly detected fault, such estimates are
without any guarantees and should be handled with caution.
As our experiments have shown, the real percentage is circuit
dependent and a more accurate analysis (like the one provided
by the presented approach) is therefore, strongly, advised.

D. #SAT-Solving
SAT solvers are used to find a single satisfying assignment to

a Boolean formula or to prove that no such assignment exists. If
there is more than one satisfying assignment, the solver stops as
soon as the first one is found.

Whereas a SAT problem is limited to determining whether
a satisfying assignment for a formula exists at all, the #SAT
problem ask a more general question:

“How many different assignments satisfy the formula?”
From the number of satisfying assignments it might be possible

to derive a probably for the modeled effect to occur. Solving a
formula with a SAT solver returns a single example of how a
problem can be solved. However, from the number of satisfying
solutions – computed by a #SAT solver – the likelihood that the
problem is solved can often be derived.

For more details on #SAT-solving, the reader is referred to
recent publications in this field [16]–[19].

Generally, solving the #SAT problem is difficult (the problem
is #P-complete), even more so than the SAT problem which is
only NP-complete. Hence, timeouts do occur and some formulas
are not solvable even with a large amount of time.
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We utilize the #SAT solver countAntom [18] which offers a
unique soft timeout mechanism. Once the solver reaches the
soft timeout, it only continues with the computation when the
predicted total solve time is below a second, hard timeout. This
way, formulas that are very difficult to solve can be aborted early,
after the soft timeout. At the same time, the solver is not too
restricted and can still spend a sufficiently large amount of time
on some of the formulas until the hard timeout is reached.

III. CHARACTERIZATION OF POSSIBLY DETECTED FAULTS

In this paper we introduce a #SAT-based approach for
the characterization of possibly detected faults. As input,
our algorithm takes a possibly detected fault, the set of test
patterns that possibly detect the fault as well as the gate level
circuit information. This information is readily available from
commercial ATPG tools. In this work we focus on possibly
detected stuck-at faults, but the same principle can be applied to
almost any fault model without any large modifications.

When a fault is possibly detected by different test patterns,
these patterns are characterized one after the other. The remainder
of this section describes the procedure to analyze a single fault-
test pattern tuple.

Recall, that a fault is possibly detected by a test pattern because
one of the circuit outputs becomes X when the fault is present.
This X at the output exists because the test pattern contains
X values. The goal of the presented algorithm is to compute
the probability that the fault is detected when all X values are
chosen freely. This probability can be anywhere in the range
of 0 % to 100 %. Notably, faults with a detection probably of
0 % are definitely not tested by the test pattern – no matter how
the X values are chosen – and should therefore, clearly, not be
considered for the overall fault coverage. Similarly, faults with a
detection probability of 100 % are always tested by the pattern
and can be added to the list of covered faults without hesitation.

The basic principle of the approach can be described as follows:
First, a Boolean formula is constructed in a way that every
satisfying assignment of the formula corresponds to one unique
assignment of the X-inputs of the circuit. Then, the number of
satisfying assignments of the formula is counted with a #SAT
solver. Finally, based on this number the detection probability of
the fault is computed.

A. Construction of the Boolean Formula
The Boolean formula is at the heart of the proposed approach.

It is constructed by analyzing the combinational core of the circuit
and is optimized to be as small as possible. To this end, the first
step is the computation of the so called cones of influence of the
fault (see Figure 2).
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Figure 2. The cones of influence of the fault affected gate (red cross).

Only the gates in the justification- (blue), support- (gray) or
propagation-cone (red) of the fault have any influence on the
testability of the fault in question. Hence, only these gates are
considered.

Next, a copy of the propagation cone is created. This copy
is used to model the behavior of the circuit when the fault is
present, whereas the original corresponds to the fault-free circuit.

Finally, the fault detection condition is added to the circuit.
A fault is detected at an output if, and only if, the value of the
output differs between the fault-free and fault affected version
of the circuit. This is modeled by adding an XOR-gate between
corresponding outputs of the two circuit versions. If the output
of the XOR-gate is ‘1’, the output shows a difference.

The final considered circuit consists of the gates in the
justification- and support-cone of the fault, two copies of the
propagation cone, and the difference-detecting XOR-gates. This
circuit is then transformed into a Boolean formula by applying
the Tseitin transformation [20] to each gate. This process
introduces a new variable for each signal within the circuit,
but results in a formula with a size that is only linear in the
number of transformed gates. The last step in the formula
generation is to ensure that any satisfying assignment to the
formula makes the fault effect visible at an output. To this end,
the variables (x1, . . . , xn) corresponding to the outputs of the
previously introduces XOR-gates are combined into a new clause
(x1 ∨ x2 ∨ · · · ∨ xn) that is added to the formula. Hence, the
formula is only satisfiable if at least one of the xi variables is
assigned to true. This – in turn – implies that at least one output
shows the difference.

To speed up the solve process, it is helpful to augment
the Boolean formula with additional information regarding the
propagation of the difference between the faulty and fault-free
version of the circuit. This difference must propagate from the
output of the fault-affected gate to at least one of the circuit
outputs. By analyzing the relationships between a difference
occurring at the inputs and output of a gate, a D-chain can be
encoded [13], [21]. Different variants of D-chains encode the
chain using implications from the fault site to the circuit outputs
(“forward”) or from the circuit outputs towards the fault size
(“backward”) as well as indirectly [22]. For the experiments an
indirect hybrid D-chain is used as this D-chain proved to be the
most beneficial in a SAT-based stuck-at ATPG [22].

B. Constraining the Inputs
The Boolean formula created in the previous step encodes

the propagation of input values through the fault-free and fault
affected circuit. Furthermore, it is ensured that the formula is
only satisfiable if at least one output differs between these two
versions.

Next, the variables of the formula that correspond to the inputs
of the circuit have to be restricted to match the considered test
pattern. If an input has to be ’1’ according to the test pattern, the
variable is forced to be true. And similarly, it is forced to be
false for a ’0’-input. For inputs with an X value, the variable
is not restricted to any value. Hence, the #SAT solver can freely
choose an assignment for these inputs.

C. Computing the Probability
The previously generated Boolean formula has very few truly

free variables: only the variables corresponding to X-inputs in
the test pattern. All other variables – that where introduced during
the Tseitin transformation – actually depend on the assignment
of these input variables. Nonetheless, the number of possible
assignments to the free variables is exponential to their number.
Therefore the number of satisfying assignments can not be
determined by simply trying all possibilities even for only a
few dozen X-inputs.

Hence, the number of satisfying assignments to the formula
is instead computed with the help of a #SAT solver. Since all
but the input variables are restricted (their value is implied by
another variable), the overall number of satisfying assignments
is equal to the number of different possible assignments of the
X values that make the fault visible at at least one output.

The final step in the characterization of the fault-test pattern
pair is the computation of the probability that a freely chosen
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assignment of the X values makes the fault effect visible. To this
end, the previously computed number of satisfying assignments
of the formula is divided by the total number of different possible
assignments to the X-inputs:

successful test probability =
#satisfying assignments

2#X inputs

For the calculation, only the number of X-inputs that are
actually part of the input cone of influence of the fault (see
Section III-A) must be considered. Only these inputs are actually
modeled in the circuit, and therefore only they are represented
by free variables in the formula.

D. Optimizations

The previously introduced algorithm contains all the parts that
are required to compute the detection probability for a possibly
detected fault. In addition, three different improvements were
developed. These improvements further increase the solving speed
by reducing the formula size and by supplying the solver with
additional information about the input assignments. Furthermore,
they sometimes allow for a quick and early determination that a
fault is always detected or never detected.

1) Propagation Cone Refinement: The propagation cone in
Section III-A is computed using structural information: When
a gate g is connected to the output of a gate in the cone, then
g is in the cone as well. However, it might not be possible to
propagate the fault effect to all of the outputs in the propagation
cone – some of them might simply never show a difference. Thus,
these outputs need not be included into the Boolean formula.

To calculate the set of outputs that are not required, an
incremental, SAT-based approach is utilized. First, a Boolean
formula just like before is created. This formula is then iteratively
extended with the assumption that the fault is definitely visible
at output i and solved by the SAT solver. If the formula is
unsatisfiable, the fault effect cannot be propagated to output i and
output i can be ignored. If the fault effect cannot be propagated
to any output at all, it is already determined that the fault is
definitely not detected by the test pattern at.

2) Input X Refinement: The considered test pattern usually
contains many X values. For some faults, it might be that some of
these X-inputs must have a fixed value all the time to successfully
test the fault. These inputs can than be forced to that fixed value
in the Boolean formula to simplify the computation.

The calculation to determine the fixed X-inputs works similar
to the previously discussed propagation cone refinement. Again,
the Boolean formula is created as before. Then, the formula is
iteratively extended with the assumption that input i is true and
then with the assumption that it is false. If the formula becomes
unsatisfiable for either option, the input must have the inverse
value. Should the formula become unsatisfiable for both cases,
the fault is not detected at all, again.

3) Always Satisfied Formulas: For some faults, it is irrelevant
how the X values in the test pattern is assigned: No matter the
assignment, the fault is simply always detected. To avoid having
to count all different assignments of the X-inputs, these faults
are filtered by the third improvement. To determine if the formula
is always satisfied, no matter how the X-inputs are assigned, it is
modified slightly: Instead of adding a clause that ensures that at
least one of the outputs shows a difference between the fault-free
and faulty circuit, the inverse condition – that none of the outputs
shows a difference – is encoded.

Thus, the generated formula is only satisfiable if there is at least
one assignment to the X-inputs that does not show a difference.
Conversely, if the formula is unsatisfiable, every possible X-
assignment will reveal the fault, and its detection probability is
100 %. The detection of faults that are always detected requires
only a single SAT-solver call.

IV. EVALUATION

The presented accurate characterization algorithm is evaluated
in two different scenarios: First we analyze the faults that
are only possibly detected by normal stuck-at ATPG patterns
(Section IV-A). Secondly, we force some of the circuit’s inputs
to always be X which simulates a lack of controllability during
the test application (Section IV-B). For each experiment, standard
stuck-at test patterns are generated with a commercial ATPG tool.
This gives a list of test patterns as well as a set of only possibly
detected faults. For these faults the ATPG tool did not create a
test pattern that definitely detects the fault.

The test pattern list and the set of possibly detected faults
is used as input for the proposed characterization algorithm.
Internally, we utilize the #SAT solver countAntom [18], [19] with
a soft timeout of 5 minutes and a hard timeout of 30 minutes.
For the input and output refinement optimizations the SAT solver
antom [23], [24] is used. All experiments are performed on a
single core of an Intel Xeon E5-2643 CPU clocked at 3.3 GHz.
In addition, at the end of the section we also provide information
on how our algorithm performs on a cluster with 256 cores to
indicate the scalability of the approach – as it also supports to
be run on a cluster.

The experiments were performed on the largest ITC’99 bench-
mark circuits [25] as well as large industrial circuits. The circuits
are assumed to be full-scan. Hence, all of the flip-flops are
both controllable and observable by the tester. The circuits are
synthesized using the 45 nm version of the NanGate library [26]
which contains many complex cells.

A. Default ATPG Patterns
For the first experiment we use a commercial ATPG tool

to generate test patterns with its default settings. In Table I
the result of the pattern generation is summarized. Here, basic
circuit information including the number of inputs (primary plus
secondary), the total number of test patterns, number of only
possibly detected (PD) faults as well as the average number of
test patterns that possibly detected each of these faults is shown.

Table I
THE RESULTS OF THE TEST PATTERN GENERATION.

Circuit # Cells # Inputs # Test
Patterns

# PD
Faults

Avg. # Pat.
per PD

b15 3 395 487 468 111 2.11
b17 11 345 1 452 745 566 2.97
b20 5 844 523 618 134 2.14
b21 5 899 523 644 139 2.05IT

C
’9

9

b22 8 144 736 525 83 2.48
p78k 2 977 3 151 139 7 6.43
p100k 25 633 5 565 2 057 157 9.84
p267k 47 986 15 435 926 210 13.54
p378k 125 824 15 705 258 268 9.35

In
du

st
ri

al

p388k 118 920 20 586 941 1 848 12.66

The possibly detected faults are then characterized by our
proposed approach and the results summarized in Figure 3.
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Figure 3. The results of the characterization of the possibly detected faults.

The vertical axis of the graph shows the percentage of possibly
detected faults. These are distributed into four groups (from
bottom to top): The dark blue bar represents faults that are
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definitely detected – which means that there is at least one
pattern which has a 100 % detection probability for each of
these faults. Faults that are counted towards the green bar are
potentially detected. Here, there is no pattern with a 100 %
detection probability but at least one pattern has a detection
probability of > 0%. The yellow bar stands for the faults which
are definitely not detected because all of the patterns which could
detect these faults have a detection probability of 0 %. Finally, the
light blue bar represents fault for which could not be characterized
due to timeouts.

Figure 4 shows the average overall detection probability of
all the possibly detected faults. If a fault is possibly detected
by different test patterns, the pattern with the largest detection
probability is used to compute the average across all faults.
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Figure 4. Average probability of detecting the possibly detected faults.

The results show the variability of the probability of detecting
a possibly detected fault, depending on the considered circuit. A
simple factor-based crediting of possibly detected faults towards
the overall fault coverage of the test set seems not advisable
given these observations. Without further information, like those
provided by our accurate characterization approach, the test
engineer cannot decide whether 50 % (standard value of our
considered ATPG tool), 77 % (p100k) or 99 % (b21) of the
possibly detected faults should be counted to the fault coverage.
Furthermore, when only considering the faults that are potentially
detected (without the definitely detected or not detected faults),
the average detection probability is only in the range of about
37 % to 50 %.

Here, our method provides the necessary information to
compute accurate fault coverage figures. With this information,
it can also be decided which faults require additional attention
to bring the overall fault coverage to the targeted coverage.

The average time to characterize a possibly detected fault
for a test pattern ranges from 25 ms (b20) to 33 s (p388k) with
an average runtime of 6.7 s per fault across all circuits. Our
fast characterization approach is supported by the advanced
optimizations presented in Section III-D which, amongst others,
reduces the number of outputs that are modeled in the Boolean
formula by 32 % on average. Furthermore, the number of X-
inputs where the X can be assigned freely is reduced by 6 %
on average. Of the considered formulas, 79 % are determined to
correspond to faults that are always detected.

B. ATPG Patterns with X-Inputs
For the second set of experiments, it is assumed that some

of the circuit inputs are always X . These X-inputs could, for
example, be flip-flops that are not part of any scan-chain and
therefore cannot be controlled by the tester. This is simulated in
two experiments, where a subset of inputs (1 % and 2 % of the
inputs, chosen at random) is forced to be X . For both experiments,
we use a commercial ATPG tool to generated a new set of test
patterns. The results are summarized in Table II.

Unlike the previous example, there is a much higher number
of possibly detected faults. Furthermore, many of these faults
are detected by a large number of different patterns. This creates
a very large number of different fault-pattern combinations that

Table II
THE RESULTS OF THE TEST PATTERN GENERATION WHEN SOME OF THE

INPUTS ARE FORCED TO X .
1 % X Probability 2 % X Probability

Circuit # PD Faults Avg. # Pat.
per PD

# PD Faults Avg. # Pat.
per PD

b15 58 8.24 390 5.94
b17 116 4.97 427 10.22
b20 77 25.52 128 20.27
b21 2 555 11.88 2 403 10.28IT

C
’9

9

b22 232 13.56 1 940 14.92
p78k 460 13.45 986 13.54
p100k 542 14.23 1 158 15.06
p267k 1 270 16.81 3 517 22.02
p378k 3 095 9.07 5 737 9.27

In
du

st
ri

al

p388k 5 823 16.09 8 090 21.59

have to be tested one after another. Therefore, the soft timeout
for the fault characterization is lowered to 30 seconds with a hard
timeout of 180 seconds. Figure 5 visualizes the characterization of
the possibly detected faults and Figure 6 the detection probability.
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Figure 5. Characterization of the possibly detected faults with 1 % and 2 % of
the circuit’s inputs always assigned to X .
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Figure 6. Detection probability of the possibly detected faults with 1 % and 2 %
of the circuit’s inputs assigned to X .

The lowered timeout length as well as a larger selection
of faults with a more varied difficulty slightly increases the
number of timeouts. Nonetheless, a large percentage of faults is
successfully characterized.

Unlike the first experiments, the number of faults that are
definitely detected or definitely not detected is much smaller.
This means that even more faults are possibly detected and an
accurate computation of the detection probability for these faults
becomes even more important. The detection probability of the
different faults is much more varied among the circuits and even
depending on the percentage of X-inputs. This highlights the
necessity of an accurate characterization.

In Figure 7 the distribution of the detection probabilities of
the possibly detected faults in circuit p378k with 2 % of inputs
assigned to X is shown in greater detail as a histogram. Generally,
the detection probabilities of the faults are well distributed.
However, detection probability peaks at 50 % and 100 % can be
observed. The faults with a 50 % detection probability might be
always testable if one of the X-inputs is set to a fixed value. The
faults with a detection probability of 100 % are always detected
and can be considered as tested without restrictions.
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Figure 7. Histogram of the fault detection probabilities for circuit p378k with
2 % of inputs assigned to X .

C. Scaling the Approach
Although the proposed approach is able to characterize a vast

majority of faults, even on larger industrial circuits, for some
faults timeouts do occur. These faults might have a particularly
large input cone of influence and, hence, a huge amount of
different possible input combinations that could reveal the fault.
Often, even in these cases, the #SAT solver is able to quickly
compute the number of valid input assignments – during the
experiments the largest number of satisfying assignment was
about 102216. This shows the power of #SAT solvers that
can provide accurate results for such formulas. Nonetheless,
some timeouts remain. These could either be considered as
possibly detected faults, not detected faults, or, if a complete
characterization is required, the timeout of the solver could be
increased. Furthermore, countAntom offers a distributed parallel
mode which utilizes more resources but gives faster solving times.

Since it is not the focus of this work (more information on the
scalability of #SAT can be found in [19]), we performed only
a small experiment with 4 faults which require a long solving
time with a single thread. The corresponding Boolean formulas
are solved with 256 CPU cores on a cluster. The solve-times
are compared in Table III. Clearly, given sufficient resources,
even very difficult formulas can be solved in an acceptable time
and the detection probability of the corresponding faults can be
accurately characterized.

The parallelization of the solver can, of course, also be used to
increase the overall characterization time for complex and large
circuits.

Table III
COMPARISON OF THE #SAT SOLVER SOLVE TIME WITH 1 AND 256 CORES.

Solve time (s)
Formula countAntom 1 core dCountAntom 256 cores
1 1 135.4 10.7
2 1 970.6 16.3
3 843.8 11.0
4 1 701.6 18.3

V. CONCLUSION

In this paper a novel characterization approach for possibly
detected faults was introduced. It is both accurate and scalable
to larger circuits. Our algorithm utilizes an abstract Boolean
model of the circuit and a #SAT solver to compute the number
of different assignments to the X values in a test pattern that
reveal the considered fault. Based on this number the probability
of a successful test is computed. To the best of our knowledge,
our algorithm is the first that allows for an accurate computation
of the probability to detect possibly detected faults

The evaluation shows that the testability of the possibly
detected faults is highly dependent on the circuit and distribution
of the X-inputs. For accurate results, the detection probability
should not be estimated through a simple weighting factor. With
the presented approach it was possibly to accurately compute the
detection probability for almost every fault and to generate the
information required for an optimal test outcome. Based on such
an exact calculation of the achieved fault coverage, the design
for testability requirements can be more accurately determined,
resulting in a lower overhead or better results in the direction of
0 DPPM. Furthermore, we showed that the presented approach

can be scaled to more difficult problems by utilizing the solver
in a distributed parallel manner.

In the future we plan on extending our characterizer into a two-
step approach which first applies a circuit simulator that is more
accurate with regard to X values than that within the commercial
tools. This might allow for a faster detection of faults that are
always or never detected. Furthermore, extending the analysis to
other, more advanced, fault models could yield further insights
into the importance of considering possibly detected faults.

Overall, this paper shows that the probability of detecting
a possibly detected fault depends on different factors and an
accurate characterization should be performed to avoid being
overly optimistic or pessimistic.
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