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Abstract—Enabling timing analysis in the presence of caches has been
pursued by the real-time embedded systems (RTES) community for years

due to cache’s huge potential to reduce software’s worst-case execution

time (WCET). However, caches heavily complicate timing analysis due
to hard-to-predict access patterns, with few works dealing with time

analyzability of multi-level cache hierarchies. For measurement-based

timing analysis (MBTA) techniques – widely used in domains such as
avionics, automotive, and rail – we propose several cache hierarchies

amenable to MBTA. We focus on a probabilistic variant of MBTA (or

MBPTA) that requires caches with time-randomized behavior whose
execution time variability can be captured in the measurements taken

during system’s test runs. For this type of caches, we explore and propose

different multi-level cache setups. From those, we choose a cost-effective
cache hierarchy that we implement and integrate in a 4-core LEON3 RTL

processor model and prototype in a FPGA. Our results show that our
proposed setup implemented in RTL results in better (reduced) WCET

estimates with similar implementation cost and no impact on average
performance w.r.t. other MBPTA-amenable setups.

I. INTRODUCTION

The complexity of on-board computing systems in domains such as

aerospace, automotive, and rail has steadily increased in recent years

due to the innovation in their electronics and software components.

Taking the automotive domain as an example, on-board software in

cars already comprises more than 100 millions lines of code [9],

with its performance requirements expected to rise by two orders of

magnitude [5] by 2024. It is widely accepted that timely executing

those software functionalities will rely on processors comprising

high-performance features. And, undoubtedly, caches are one of the

resources with highest impact on performance.

In the real-time domain, the challenge of using complex hardware

lies on providing increased performance guarantees (i.e. reduced

WCET estimates) – and not just increased average performance as

needed in the mainstream market – with hardware features like caches

complicating deriving performance guarantees [20]. Time compos-

ability, a desired property for WCET estimates, allows deriving those

estimates in early design stages with assurance that they remain valid

as different software components, which are developed independently,

are integrated. This is a fundamental property in increasingly-complex

multi-provider software projects in integrated systems like Integrated

Modular Avionics (IMA) [1] in the avionics domain and AUTOSAR

in the automotive domain [6].

In this paper we focus on the most extended timing analysis

practice, measurement-based timing analysis (MBTA) [25]. MBTA

relies on collecting task’s execution time measurements on the target

hardware during the system analysis (design) phase under different

stressing conditions with guarantees that those conditions capture the

worst scenarios that can arise during operation. MBTA can be used

for the timing analysis of the highest-criticality tasks, as it has been

shown for avionics software [18]. This requires that the user masters

all the sources of execution time variability (jitter) in the platform

and provides evidence that their operation-time impact on software

execution time has been captured in the test campaign carried out

during the analysis phase.

While this level of control can be reached with simple hardware,

it is hard to maintain in the presence of caches. This occurs because

with modulo placement, program’s data/code addresses in memory

(i.e. the memory mapping) determine the cache sets in which they

are mapped (i.e. the cache layout). Despite the system engineer

performs many runs during the test campaign, it is hard for him/her to

provide evidence of coverage (representativeness) of operation-time

cache layouts. Random placement caches make any given address be

randomly mapped to different cache sets every time a random seed

is changed, effectively breaking the dependence between memory

mapping and cache layout. This allows: (i) providing probabilistic

arguments on the coverage of those cache layouts that result in

high execution times; (ii) dealing with cache risk patterns, i.e. cache

layouts causing high execution times [20] – one of the main stumbling

blocks for the ubiquitous adoption of caches in RTES; and (iii)

providing time composable WCET estimates in early design stages

that remain valid upon integration of other software components.

The current landscape of random caches covers hash-based

random-placement caches (hRP) [16] and Random Modulo

(RM) [14]. The former hashes a given random seed and the address

so that it can be mapped to any set. RM improves the spatial-locality

of hRP by generating a permutation of the addresses in the same

memory page, so that addresses in the same page can be mapped to

any random set, though they cannot conflict with each other in cache.

However, despite these efforts, it is not yet well understood how to

design efficient multi-level time-randomized cache hierarchies and

how different randomization policies in each level impact average

performance and WCET. Our contributions are as follows:

� We perform a design space exploration of multi-level random cache

designs in a cycle-accurate simulator. We explore monolithic designs

by applying existing L1 placement policies to both L1 and L2. We

show that these policies are not designed for L2 caches and have

performance (average/worst-case) or time composability issues.

� To tackle the observed deficiencies, we introduce, for the first

time, hierarchical placement designs that solve L2 related issues

while still being MBPTA (Probabilistic) compliant. Our results show

that the proposed hierarchical designs have no negative impact on

average performance, improve worst-case results with respect to the

monolithic designs, and favor time composability.

� We implement and integrate the most cost-effective cache hierarchy

in a 4-core RTL processor model prototyped in a FPGA. Our

results show that it has almost the same performance as modulo

placement, provides tight WCET estimates, and enables MBPTA

time-analyzability.

II. BACKGROUND

A. Basics on Timing Analysis

Real-time tasks are assigned a ‘criticality’ level as part of the safety

design process. For instance, in automotive, software elements – and

more specifically the safety requirements they are assigned – are

attached an Automotive Safety Integrity Level (ASIL). A common
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Fig. 1: pWCET distribution Fig. 2: Random placement cache

misconception is assuming that critical real-time tasks (even most-

critical ones) cannot miss a deadline without this causing a system-

perceived failure. In reality, safety mechanisms are put in place to

reduce the risk to sufficiently low levels of hardware/software faults

causing system failures (more specifically to the violation of the

safety goals of the system element they belong to). Hence, in short, all

hardware/software elements can fail and proper measures are put in

place – obviously for high ASIL more stringent measures are used

– to detect and correct faults if they occur. For instance, highest-

criticality (ASIL-D) random hardware residual faults are considered

acceptable if the failure rate is below 10
−8 per hour with a diagnosis

coverage of at least 99%. Following this concept, MBPTA [3] delivers

a probabilistic WCET (pWCET) distribution as shown in Figure 1,

where for instance the probability that the particular software unit

takes longer than 7ms in one run is at most 10−10.

The timing of tasks under analysis needs to be assessed against

allocated time budgets early in the design process to take corrective

actions with limited effort and time costs [21]. Otherwise, not only

regression tests are more complex to design but also, as software gets

integrated, finding an overrun late can cause costly system redesigns

and even delay product’s time to market. Hence, it is desirable for

system engineers to have time composable timing bounds that are

estimated in early design stages and remain valid upon integration

of other software components, thus enabling incremental software

integration. This is a fundamental property in increasingly-complex

multi-provider software projects like IMA [1] in avionics or AU-

TOSAR [6] in automotive domains.

With caches, the relative position of program’s memory objects

may change across software integrations leading to different cache

layouts with arbitrary impact on execution time. This breaks time

composability and shifts timing analysis and verification to the

latest design stages (when the binary is fixed) with increased risk

of failing to meet execution time bounds. In this context, random

placement policies together with MBPTA have been shown to enable

incremental verification in the presence of cache memories [8]. In

particular, random placement policies break the dependence of cache

placement on the actual memory addresses, i.e. in each run software

experiences random placement of memory objects in cache. As a

result, the actual memory addresses are irrelevant for cache placement

and the space of potential cache placements is randomly sampled

in each run. Since the probability distribution for cache placements

observed at analysis matches that during operation, impact of cache

placement can be analyzed with MBPTA to produce probabilistic

bounds on its impact on execution time. In fact, MBPTA is capable

of considering different sources of random variation (e.g. cache

placement for multiple caches, random arbitration in buses) simul-

taneously. However, while random caches remove WCET estimate

dependence on memory location of objects, thus relieving the user

from controlling memory placement, it has not been explored how

the different random placement policies need to be combined into

multi-level cache hierarchies. In particular the desired properties are:

1) WCET reduction as the main metric to optimize.

2) Reduced impact on average performance due to the impor-

tance of this metric for mixed-critical scenarios executing tasks

with different criticality levels.

3) Increase time composability to favor incremental software

development as described above.

4) MBPTA compliance to reduce the cost of changing existing

timing analysis tools.

Next, we present several multi-level cache designs and assess them

against these metrics.

B. Single-level Random Cache Implementations

Figure 2 shows a block diagram of a cache and how randomized

placement would fit in its overall design. As shown, for the generation

of the index – used to feed standard modulo placement – specific

logic ‘combines’ the accessed address and a random number from

a pseudo-random number generator (PRNG). State-of-the-art PRNGs

deliver value series long enough to exclude repetition in short periods,

thereby preventing any potential correlation of events [4].

hRP placement [16] uses a parametric hash function whose input

includes the memory address to be accessed and a random seed.

It produces the (random) set where the address is placed with that

random seed. The hash function combines address bits (factoring

out those determining the offset within the cache line) and the

random seed. In particular, it uses a set of rotator blocks and XOR

gates so that the set chosen for any given address is random. Thus,

whether two addresses are placed or not in the same set is a random

event. Upon change of the random seed, addresses are randomly

and independently mapped into sets. hRP provides homogeneous

distribution of addresses across sets, so the probability of each address

to be placed in each set is 1/S, where S is the number of sets.

hRP is used by flushing cache contents and setting a (new) random

seed, usually at task execution boundaries1. This leads to a random

placement of addresses, that holds during the whole execution, so

addresses placed in the same set compete for the set space during

the whole run, whereas addresses placed in different sets have no

conflict in that run. hRP imposes that cache line alignment during

analysis and operation is preserved. Thus, objects can be shifted in

memory freely at the granularity of cache line size upon integration

without impacting (random) placement.

RM placement [14]. Unlike hRP, RM placement breaks the depen-

dence between memory location and cache placement, preserving the

advantages in terms of spatial locality as modulo placement does. In

particular, RM prevents conflicts between cache lines with identical

tag bits, which we refer to as a cache segment. This is achieved by

using a random seed, hashed with tag bits (T bits), that determines

a random permutation of I (index) bits. Such random permutation

changes across addresses by varying T bits and across random seeds.

Thus, addresses are placed in random and independent sets across

runs. However, two addresses with identical T bits and different I
bits are necessarily placed in different cache sets given a fixed random

seed. Thus, nearby addresses (those sharing the same T bits) cannot

be placed in the same set.

1Tasks sharing a cache memory require coordination for seed update and
cache flushing. This can be achieved by changing seeds at execution time
partition boundaries as described in the context of IMA and proven in [30].
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(d) RM in dL1/iL1 and hRP in L2

dL1 set 

L2 tag 

dL1 tag 

address 

i/dL1 

D
E
C
O
D
E
R 

RM 

XOR 

XOR 

XOR 

XOR 

>
>

 
>

>
 

>
>

 

hRP 

XOR 

RM 

L2 

D
E
C
O
D
E
R 

L2 set [5-0] L2 set [9-6] 

RS 

RS 

RS 

(e) RM in dl1/iL1 and hRP+RM in L2
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Fig. 3: (a) Baseline modulo cache. (b)(c) Monolithic placements. (d)(e)(f) Hierarchical placements. RS stands for Random Seed

RM poses constraints on integration: addresses in a cache segment

(same T bits) during analysis must belong to the same cache segment

upon integration. Hence, addresses may be shifted at the granularity

of 2
I+O bytes (the size of a cache segment), which is practically

achieved by making cache way size (Wsize) match that granularity

(Wsize = 2
I+O), which is further made match memory page size.

Thus, at software level objects are aligned at page boundaries and

cache ways need to match that size (or be divisors of that size).

III. MULTI-LEVEL RANDOM CACHE APPROACHES

Time-randomized cache placement policies have been evaluated

mainly for single-level cache hierarchies. An exception to this is

hRP that has been shown to keep its MBPTA-compliance properties

for multi-level caches [17]. However, hRP is the existing random

placement policy with lowest average and guaranteed performance.

Hence, there is significant room for improvement in multi-level

random cache design. In this line, this section presents several

approaches that use, individually or in a smartly-combined way,

different random placement policies to provide higher-performance

MBPTA-compliant multi-level cache designs. For clarity, we use the

L2 placement policy as the identifier for the multi-level configuration.

See Table I for the list of configurations.

A. L2 Monolithic Placement

MOD setup is the reference setup against which we compare other

randomized setups in terms of average performance. This setup uses

modulo placement (MOD) – deployed in many multi-level cache

designs as placement policy for all cache levels – see Figure 3(a).

It determines cache placement based on cache index bits (I bits)

and it is not amenable for MBPTA. This is mainly due to MOD

deterministic behavior: although conflictive memory alignments can

be infrequent, they may occur upon integration with a systematic and

pathological nature, resulting in the so-feared (for measurement-based

techniques) cache risk patterns.

TABLE I: L1+L2 placement policies. PL stands for Page Level

Setup MOD hRP RM hRP2 hRP+MOD hRP+RM

L1 MOD hRP RM RM RM RM
L2 MOD hRP RM hRP hRP PL + MOD hRP PL + RM

hRP setup. In this setup hRP placement is used for first level

data and instruction caches, respectively referred to as dL1 and iL1,

and the second level cache (L2), see Figure 3(b). This setup was

already considered in [17] given that hRP was the first random

placement policy proposed compatible with MBPTA. This design

only imposes preserving cache line alignment between analysis and

operation phases. However, hRP allows all cache lines to be randomly

placed completely independently. Therefore, few cache lines may

be placed in the same cache set in L1 caches (either dL1 or iL1)

with a relevant probability for pWCET estimation, and also in L2

cache. Thus, while those bad placements occur with relatively low

probability, having low impact on average performance, they may

lead to large impact in pWCET estimates to account for very bad

placements that can occur even with very small working sets.

RM setup. RM placement implements a Benes network (Fig-

ure 3(c)) that produces a random permutation of the index bits –

XORed with the random seed – being the permutation controlled

by the T tag bits. With RM, cache-segment alignment must be

maintained between analysis and operation: all addresses fitting in a

cache segment in the experiments carried out at analysis, must remain

in a segment during operation. As explained before, the real-time

operating system (RTOS) can easily achieve this goal by matching

memory page size with cache segment size, or making page size be a

multiplier of cache segment size. In fact, this assumption has already

been shown compatible with complex avionics case studies [30].

RM can be soundly used for first level caches whose way size

(i.e. cache segment size) is typically equal or smaller than the page

size. When the way size is larger than the page size, usually the

case for L2 whose size is easily above 128KB-256KB, then RM can
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be used if the RTOS preserves page alignment at that granularity.

For instance, if the cache way size is k times larger than the

page size, the RTOS should maintain the alignment of pages at

k×page size bytes granularity to soundly apply MBPTA. However,

dealing with this constraint is unaffordable in practice due to memory

fragmentation (the subsequent memory space waste). Further, it also

adds complexity to the RTOS. Hence, RM can be used in L1 caches,

and hRP in the L2 instead as presented next.

Summary. Neither MOD nor RM in L2 are MBPTA compliant and

defeat achieving time composability. We keep the former for average

performance comparison purposes, while we discard the latter. hRP

is MBPTA compliant and maintains time composability, and hence,

we use it as reference randomization policy for L1 and L2.

B. L2 Hierarchical Placement

Next we propose hierarchical designs based on multiple policies

to get the best of each policy.

hRP2 setup. This setup combines the advantages of RM in L1

caches to preserve spatial locality, and the flexibility of hRP in L2,

avoiding posing undue constraints on memory object alignment, see

Figure 3(d). Thus, qualitatively, this setup is far more convenient

than those presented so far by smartly combining in different cache

levels appropriate random placement policies. However, hRP has been

shown to have low but non-negligible hardware cost, due to the

expensive barrel shifters followed by a tree of XOR gates, whose

number and size – and so impact on area – grows significantly with

the number of address bits to handle. Therefore, we examine other

hybrid solutions for L2 caches.

hRP+RM setup. This setup – that uses RM in L1 caches –

performs hRP at page size in L2 and RM within page size, as seen in

Figure 3(e). We build on the observation that, as L2 cache ways are

conceptually split into cache segments, hRP can be used to randomly

select the cache segment where an address is placed and RM to

select the set within the segment. This setup requires preserving page

alignment between analysis and operation phases. However, such

constraint is already imposed by L1 caches, so constraints remain

the same as for any other setup using RM in L1 caches.

This hierarchical design has a positive impact in the implementa-

tion cost of the L2. First, hRP only operates on tag (T ) bits instead

of on T + I bits. RM, instead, randomizes placement within page

boundaries thus operating on the remaining I bits. However, RM is

much cheaper than hRP in terms of area. This is further detailed later

in Section V and in Table III. While the impact on the critical path

is roughly null, hRP logic becomes the critical path for large caches

(larger than L2 caches evaluated in this work). Hence, the hybrid

solution would also mitigate delay issues in those cases.

As this design uses RM at the page level, the low performance of

hRP is mitigated. The other side of the coin is that it can be the case

that two pages are randomly mapped to the same cache segment. The

fact that we use RM inside L2 segments reduces the likelihood that

pages (segments) evict each other’s lines systematically.

hRP+MOD setup. While the previous setup reduces the hardware

overhead of L2 compared to those with hRP in L2, the hardware

for L2 cache placement must still accommodate hRP across cache

segments and RM within segments. This overhead can be further

reduced by removing RM from L2 cache segments (and sticking to

MOD), see Figure 3(f).

This approach reduces hardware complexity, but the degree of

randomization achieved in L2 also decreases. While it has been shown

that higher degrees of randomization lead to less abrupt execution

time variations (and thus to lower pWCET estimates) [29], the fact

that addresses go through RM placement and random replacement

(RR) in L1 caches, hRP across cache segments in L2, and RR in L2

(if more than 1 way is used per core), already brings high degrees

of randomization. Hence, we regard this setup as a good trade-off

between randomization achieved and hardware cost. In particular,

this setup decreases transistor count slightly and may reduce cache

placement latency for caches with large number of L2 cache sets due

to the decreased logic depth.

IV. EVALUATION ON A SIMULATOR

We build on SoCLib [28] to model a pipelined in-order processor

resembling the LEON3+ design in [13]. We model 16KB 4-way dL1

and iL1 caches per core, with 16 and 32B/line respectively, and a

shared 128KB 4-way L2 cache that is partitioned so that each core

receives an independent L2 cache way of 32KB. The dL1 is write-

through no write-allocate, so store operations are always forwarded

to the L2 cache and do not fetch data to dL1 on a miss. The L2

is write-back write-allocate, so on a store miss, the cache line is

fetched into L2 – and modified. Caches are non-inclusive, so no

control is exercised on whether cache lines must or must not reside

in any particular cache memory. Bus arbitration implements random

permutations [15]. Random permutations are also used to arbitrate

memory requests (L2 cache misses). Memory latency is 16 cycles to

serve a request and 27 cycles until the next request is served [23].

We evaluate a large subset of the EEMBC automotive [24] suite

comprising common critical real-time applications in automotive

systems and MediaBench [19] comprising embedded applications

such as multimedia and communications2.

Results. Our designs aim at (a) maintain MBPTA compliance; (b)

reduce pWCET estimates w.r.t. simpler MBPTA-compliant designs;

(c) obtain comparable performance to non-randomized (and hence

non MBPTA-compliant) modulo+LRU based multilevel cache hier-

archies; and (d) preserve time composability.

To assess MBPTA compliance, we have followed the approach

proposed in [17] checking that cache events preserve its random/prob-

abilistic nature. Our results – not shown for space constraints – show

that an address can be randomly mapped to any dL1 (iL1) and L2

set. Further, independence and identical distribution tests on execution

times are passed [3].

To derive pWCET estimates, and obtain solid average performance

results, we carry out 500 runs for each benchmark-setup pair. pWCET

estimates are shown for an exceedance threshold of 10
−12 per run,

since they are enough for the highest criticality software [30].

MediaBench. In Table II columns 2-3 show the pWCET estimates

obtained with each placement policy normalized to the monolithic

setup hRP. We observe that hierarchical setups consistently reduce

the pWCET estimates of hRP, by 28% and 34% for hRP+MOD and

hRP+RM respectively.

In terms of average performance, columns 4-6 show that the

three hierarchical setups obtain comparable results to those of the

deterministic approach (MOD+LRU), only up to 2% worse. This is

so because bad placements occur seldom even for the worst setups,

so average results hide outliers. We repeated the same analysis for

executions resulting in the highest 5% miss counts, as they shape

the tail of the execution time distribution, and hence WCET [3].

Our results show that hRP achieves worst results than hierarchical

approaches: with hRP, by allowing each cache line to be placed

randomly and independently in L2, any pair of cache lines can, in

2We excluded those benchmarks that we could not make work in our plat-
form: aifirf, aiifft, idctrn (EEMBC); g721, mpeg (MediaBench).
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TABLE II: MediaBench results

pWCET avg perf pWCET avg perf
vs hRP vs MOD vs hRP vs MOD

hRP hRP hRP hRP hRP hRP hRP hRP hRP hRP
MOD RM MOD RM MOD RM MOD RM

ad.d 0.08 0.05 1.01 1.00 1.00 m.m 0.99 0.89 1.01 1.01 1.02
ad.e 0.25 0.18 1.01 1.01 1.00 m.o 0.48 0.49 1.00 1.00 1.00
ep.d 0.89 0.90 0.99 1.00 0.99 m.t 0.87 0.83 1.01 1.01 1.01
ep.e 0.90 0.65 1.00 1.00 1.00 pe.d 0.71 0.72 1.01 1.00 1.00
gs.d 0.94 1.00 1.00 1.00 1.00 pe.e 0.65 0.64 1.01 1.00 1.00
gs.e 0.75 0.75 1.01 1.01 1.01 pg.d 0.73 0.75 1.01 1.00 1.00
jp.d 0.84 0.77 1.02 1.02 1.02 pg.e 0.69 0.16 1.02 1.00 1.01
jp.e 0.91 1.10 1.01 1.02 1.01 rast 0.87 0.76 1.00 1.00 1.00

the worst cases, be placed in the same set and produce high miss

counts, and hence execution times. This explains why hierarchical

placements improve hRP for pWCET (columns 2-3).

EEMBC Automotive trends are similar to MediaBench. We

observed similar average execution time for all placements, and hRP

being the worst policy in terms of worst-case execution time. Results

are omitted since they bring no further insights.

Summary. hRP+RM and hRP+MOD avoid some systematic ef-

fects of hRP, which reduces their L2 miss rate (and execution time)

for pathological cases w.r.t. hRP. Also, it cannot be claimed whether

hRP+RM or hRP+MOD is superior, since our results show that

conclusions change across different benchmarks. Moreover, although

the cost of implementing hRP+RM is only slightly higher than that

of implementing hRP+MOD in L2, hRP+MOD can be regarded as

an effective setup. Also, this combination is interesting because it

synergistically combines 3 different placement policies: RM in L1

caches, hRP across L2 cache segments, and modulo inside L2 cache

segments. For these reasons, we implemented this setup in RTL.

V. DESIGN VALIDATION:RTL IMPLEMENTATION

To validate simulation results we implemented hRP+MOD setup

in a LEON3-based RTL prototype and synthesized it in a Terasic

Stratix-IV board able to operate at 100Mhz.

Processor Model. The architecture of the baseline processor is

analogous to the one simulated with per-core iL1 and dL1, and

a shared L2. Cores are connected to the L2 through an on-chip

bus implementing a random arbitration policy [27] and a memory

controller is placed after the L2 to forward requests to the off-chip

DDR2 RAM memory. L1 caches are 16KB 4-way and the L2 is

128KB 4-way. To ease timing analyzability, the shared L2 cache

supports partitioning, where one way is assigned to each core. The

integration of random placement requires including one placement

function per each of the L1 private caches so in total 8 placement

functions are required for the 4 cores. The L2 cache module requires

using a different seed per core to allow cores having independent

probabilistic timing behavior. Note that despite the L2 is partitioned,

each core may read shared data from the other ways (while only

the master core is entitled to evict data) so 4 independent placement

functions are required for the L2, each one using the seed of the

corresponding core, hence the importance of mitigating area overhead

in L2 placement.

Area overhead. Table III shows the area and delay overhead

introduced by the different random placement functions considered in

this study. As shown, RM requires significantly lower area than hRP

since it uses a permutation network consisting of few pass transistors

per index bit. The actual permutation carried out is driven by XORing

address bits and seed random bits. Instead, hRP requires combining

the seed random bits and the address by means of barrel shifters and

several levels of XOR gates [16]. The hierarchical random placement

TABLE III: Hardware cost and delay

dL1 L2
hRP RM hRP hRP+MOD hRP+RM

Trans. Count 49488 240 49440 24360 24600
Delay (ns) 0.65 0.26 0.52 0.52 0.52

implementation reduces area overheads of hRP by roughly 50%.

This, coupled with the good performance results it provides, confirms

the hierarchical approach as the most suitable option to implement

random placement in L2 caches.

In terms of overall hardware occupancy, the baseline design

occupied 70% of the resources in the FPGA, whereas the design

including the random placement in all L1 caches and L2 occupies

less than 72%, thus showing that all cache modifications required to

achieve MBPTA-compliance incur very low overheads.

Critical Path. RM is faster than hRP-based approaches since the

latency of the latter is mainly determined by the depth of the XOR

gates tree employed to combine address and random bits. In the

case of RM, the XOR gates tree must produce the bits required for

configuring the permutation network while for hRP, XOR gates are

combined to produce the randomized index itself. For the L1 we see

that RM outperforms hRP being able to reduce its latency by 2.46×.

For the L2, hRP delay is lower than for the L1 since fewer XOR gates

are required to produce a wider cache index. However, hierarchical

implementations do not necessarily reduce the delay since, despite

fewer bits are combined to produce the random index, since this index

has fewer bits, more XOR gates are required to produce the output.

While in our implementation of the hierarchical approach the two

effects compensate each other, thus making latency remain the same,

different implementations may provide slightly different results.

Overall, the hierarchical implementation (hRP+MOD/RM) de-

creases area overheads and reduces the number of critical paths

(≈ 3X), which in this case correspond to the index bits, w.r.t. the

hRP implementation. The latter significantly mitigates the impact that

process variations have on the maximum achievable frequency [7].

In particular, for hRP+MOD, the L1 access latency slightly increases

by two XOR gates w.r.t. modulo placement. For the L2, hRP+MOD

causes a larger impact on critical path due to the higher complexity

of its design (XOR gates and barrel shifters). Still, this impact was

not enough to decrease the maximum operating frequency.

Performance Validation. To validate performance results of the

hRP+MOD setup, we run the EEMBC automotive benchmark suite

in the FPGA prototype. Our platform does not implement a floating-

point unit so we excluded those benchmarks using FP operations.

Also, MediaBench requires some I/O RTOS support that is not yet

available for this particular configuration, so we did not include them.

We made 500 runs of each benchmark and averaged hit ratios, and

compared the implemented hRP+MOD and the default MOD against

results in the simulator. Results (not shown for space constraints)

reveal that the FPGA implementation of hRP+MOD shows almost

the same behavior observed in the simulation evaluation. Hit rates

are quite high for all EEMBC, specially for the L1 but also for the

L2, proving the effectiveness of these placement policies.

Average and Worst-Case Performance Results. The first bar in

each pair in Figure 4 shows that hRP+MOD achieves very similar

average performance to that of MOD: 1% worse on average and

up to 3%, making hRP+MOD very competitive in terms of average

performance. For WCET estimation, we build on current industrial

practice for WCET analysis on real boards that takes as WCET

estimate a margin (e.g. 20%) over the high watermark (HWM)

execution time [30]. The second bar in each pair in Figure 4
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Fig. 4: Average performance results (left bar) and pWCET results

(right bar) of hRP+MOD w.r.t. MOD

shows the pWCET estimate obtained for hRP+MOD w.r.t. to the

highest execution time observed for MOD (i.e. the HWM). For all

benchmarks we observe that the pWCET estimate is above the HWM

(as expected) and for all benchmarks but one the pWCET estimate

with hRP+MOD is below HWM+20% obtained for MOD. Hence,

hRP+MOD helps reducing WCET estimates w.r.t. current practice

while increasing the confidence on estimates w.r.t. just increasing the

HWM by a fudge factor of 20%. On average, pWCET estimates are

just 8% over the HWM (12 percentage points below HWM+20%).

VI. RELATED WORK ON RANDOM CACHES

In [11] authors propose a pseudo-random hash function to dis-

tribute the data across sets and thus, make the cache performance

less sensitive to different placements compared to conventional mod-

ulo placement. Topham [12] also explores different pseudo-random

hashing functions to reduce conflict misses. With skewed associative

caches [10], each way uses a distinct hash function for randomized

placement across banks, which reduces conflict misses for programs

that process large matrices. A commonality of these solutions is

that placement uses only the address of the access. As a result, for

a given memory layout a single placement is produced across all

runs of the program. This poses the same limitations for MBPTA as

conventional deterministic architectures based on modulo placement:

time composability is lost since performance changes arbitrarily if

memory addresses change upon integration.

RM caches [14] improve performance over random hRP while

maintaining MBPTA compliance. Random caches (RM and hRP) in

the context of MBPTA have been shown to require to control the

number of runs to carry out [26], [22] to reach statistically relevant

results. This has been shown achievable [22], [2]. RM caches perform

better on the worst case scenarios than caches with hRP because

they avoid some pathological cases by construction, such as conflicts

across lines in the same page. Enhanced RM is an improvement over

RM [29] that homogenizes the distribution of addresses across sets.

We implemented this policy both in the simulator and the FPGA, but

omitted the results since the difference w.r.t. RM was marginal.

VII. CONCLUSIONS

While cache memories (in particular multi-level cache hierarchies)

offer benefits for RTES, they challenge timing analysis. Some studies

show that MBPTA combined with time-randomized caches facilitate

factoring in the impact of caches in WCET estimates. However, those

studies mostly focus on single-level cache hierarchies. In this paper,

we propose several multi-level configurations and implement them on

a simulator. These configurations include both, monolithic and new

hierarchical solutions. Finally, we implement the most cost-effective

hierarchical configuration in an FPGA, and compare it against a

conventional deterministic cache. Our results show that this solution

results in negligible average performance degradation and improved

(reduced) WCET estimates, while preserving time composability.

VIII. ACKNOWLEDGMENT

This work has been partially funded by the Spanish Ministry

of Economy under TIN2015-65316-P, Carles Hernandez’s TIN2014-

60404-JIN (jointly with FEDER funds) and Jaume Abella’s Ramon

y Cajal grant RYC-2013-14717. Pedro Benedicte is funded by the

Spanish Ministry of Education FPU15/01394.

REFERENCES

[1] ARINC Specification 653: Avionics Application Software Standard Stan-
dard Interface, Part 1 and 4, 2012.

[2] J. Abella et al. Heart of Gold: Making the improbable happen to extend
coverage in probabilistic timing analysis. In ECRTS, 2014.

[3] J. Abella et al. Measurement-based worst-case execution time estimation
using the coefficient of variation. ACM Trans. Des. Autom. Electron.
Syst., 22(4):72:1–72:29, June 2017.

[4] I. Agirre et al. IEC-61508 SIL 3 Compliant Pseudo-Random Number
Generators for Probabilistic Timing Analysis. In DSD, 2015.

[5] ARM. ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade, 2015. https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade

[6] AUTOSAR. Technical Overview V2.0.1, 2006.

[7] K. Bowman et al. Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale
integration. IEEE Journal of Solid-State Circuits, 2002.

[8] F. J. Cazorla et al. PROXIMA: improving measurement-based timing
analysis through randomisation and probabilistic analysis. In DSD, 2016.

[9] R. N. Charette. This car runs on code. In IEEE Spectrum online, 2009.

[10] F. Bodin et al. Skewed associativity improves program performance and
enhances predictability. IEEE Trans. on Comp., 1997.

[11] M. Schlansker et al. Randomization and associativity in the design of
placement-insensitive caches. HP Tech Report HPL-93-41, 1993.

[12] N. Topham et al. Randomized cache placement for eliminating conflicts.
IEEE Trans. Comput., 48, February 1999.

[13] C. Hernandez et al. Towards making a LEON3 multicore compatible
with probabilistic timing analysis. In DASIA, 2015.

[14] C. Hernandez et al. Random modulo: a new processor cache design for
real-time critical systems. In DAC, 2016.

[15] J. Jalle et al. Bus designs for time-probabilistic multicore processors.
In DATE, 2014.

[16] L. Kosmidis et al. A cache design for probabilistically analysable real-
time systems. In DATE, 2013.

[17] L. Kosmidis et al. Multi-level unified caches for probabilistically time
analysable real-time systems. In RTSS, 2013.

[18] S. Law et al. Achieving appropriate test coverage for reliable
measurement-based timing analysis. In ECRTS, 2016.

[19] C. Lee et al. Mediabench: A tool for evaluating and synthesizing
multimedia and communicatons systems. In MICRO, MICRO 30, 1997.

[20] E. Mezzetti et al. Attacking the sources of unpredictability in the
instruction cache behavior. In RTNS, 2008.

[21] E. Mezzetti et al. A rapid cache-aware procedure positioning optimiza-
tion to favor incremental development. In 19th RTAS, 2013.

[22] E. Mezzetti et al. Randomized caches can be pretty useful to hard real-
time systems. Leibniz Transactions on Embedded Systems, 2(1), 2015.

[23] M. Paolieri et al. An Analyzable Memory Controller for Hard Real-Time
CMPs . Embedded System Letters (ESL), 2009.

[24] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[25] R. Wilhelm et al. The worst-case execution-time problem overview of
methods and survey of tools. ACM TECS, 7:1–53, May 2008.

[26] J. Reineke. Randomized caches considered harmful in hard real-time
systems. Leibniz Transactions on Embedded Systems, 1(1), 2014.

[27] M. Slijepcevic et al. Design and implementation of a fair credit-based
bandwidth sharing scheme for buses. In 52nd DAC, 2017.

[28] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.

[29] D. Trilla et al. Resilient random modulo cache memories for
probabilistically-analyzable real-time systems. In IOLTS, 2016.

[30] F. Wartel et al. Timing analysis of an avionics case study on complex
hardware/software platforms. In DATE, 2015.

466 Design, Automation And Test in Europe (DATE 2018)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


