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Abstract – We present a latency-constrained iterative list 

scheduling type algorithm, FALLS, to minimize the total number 
of functional units (FUs) allocated, and thus the total area, in 
high-level synthesis designs. The algorithm incorporates a novel 
lookahead technique to selectively schedule available operations 
by allocating the needed FUs earlier or reserving available FUs 
for scheduling more timing-urgent operations later, such that no 
additional FU is needed and higher FU utilization is obtained. 
Further, a fractional search framework is developed to iteratively 
estimate the number of FUs of each function type required in the 
final design based on the current scheduling solution and FU 
utilization, and reiterate the lookahead-based list scheduling with 
the new FU allocation estimate to further increase FU utilization. 
Extensive experiments conducted over several DFGs and a wide 
range of latency constraints demonstrate that FALLS is much 
more effective than other approximate state-of-the-art algorithms 
in both number of FUs and total FU area, and has a much smaller 
runtime. Results also show that FALLS has only an average 5.5% 
optimality gap compared to an optimal integer linear 
programming (ILP) formulation, but is 278k times faster.  
FALLS also performs much better in architectural (FU + 
mux/demux + register) area, interconnect congestion and number 
of interconnects than approximate algorithms, and is at most 
4.0% worse in them than the ILP method. 

I.  INTRODUCTION 
High-level synthesis (HLS) tools schedule operations in the 

design specification to clock cycles (cc’s), bind and allocate 
the operations to functional units (FUs) to optimize an 
objective function subject to various design constraints. 
Latency-constrained scheduling to minimize the total number 
of FUs allocated in a synthesized design has been an objective 
of interest for decades, as it has a strong correlation to area and 
leakage power optimization. 

There are many operation scheduling works focusing on FU 
minimization [1-12]. The integer linear programing (ILP) 
formulation proposed in [1] [2] provides optimal scheduling 
solutions for FU minimization, but it is impractical for large 
designs due to the exponential runtime complexity. 
Force-directed scheduling (FDS) presented in [3] [4] schedules 
operations iteratively by choosing the scheduling option that 
best balances the operation execution distribution across all 
cc’s using the concept of minimum “force”, and thereby 
minimizes the number of FUs required. The sub-optimality of 
FDS stems from its greedy and sequential scheduling option 
selection and lack of lookahead. In addition, the high runtime 
complexity of O(n3), where n is the number of operations, 
motivates several refinements [5] [6] that reduce the 
complexity to O(n2). A versatile technique called SDC 
proposed in [7] models the scheduling problem as a linear 
programming formulation. Though it can solve different types 
of HLS problems, only timing problems like latency 

minimization can be solved exactly, and only these results are 
presented. Stochastic methods for FU minimization have also 
been widely studied. A simulated annealing (SA) approach is 
proposed in [8] and its move set guarantees that the complete 
solution space can be explored. In [9], an ant-colony based 
algorithm ACO is developed to gradually approach a good 
solution by iteratively and probabilistically generating 
scheduling solutions based on which the scheduling 
probabilities are updated. In [10], the scheduling order of 
operations is determined by a genetic algorithm. The above 
stochastic methods [8] [9] [10] require high runtime for 
achieving good quality solution, which prevents them from 
being effective for large problem sizes. 

List scheduling (LS) is a classical scheduling algorithm for 
latency-constrained FU minimization. It schedules operations 
in as early cc’s as possible if FUs are available, while greedily 
avoiding allocating new FUs unless it is mandatory for 
satisfying the latency constraint. Though the solution of LS is 
far from optimal as discussed later, its complexity of O(n log 
n) is very scalable. Therefore, several works like [10] [11] [12] 
that use LS or LS-type algorithms as an internal sub-routine to 
achieve good optimization quality. Lookahead in LS has been 
studied in scheduling problems in non-HLS fields [13] [14]. 
Early lookahead in instruction scheduling like [13] helps LS 
with a bad “precedence function” (different from the one we 
will discuss) to avoid failed scheduling by tentatively 
scheduling some or all unscheduled operations. Recent works 
like [14] in heterogeneous computing use a lookahead 
approach to exhaustively evaluate all candidate resources that 
can execute the scheduled operation, and chooses the resource 
that is most likely to lead to the smallest estimated latency. 
These lookahead techniques are not applicable to FU or area 
minimization in HLS. 

In this paper, we propose a novel FrActional search and 
Lookahead based List Scheduling (FALLS) algorithm. We 
construct a fractional search framework, an estimate based 
extension of binary search, to gradually approach a good 
scheduling solution by pre-allocating an appropriate number of 
FUs at the beginning of a scheduling iteration. Internally, a 
scheduler with a novel and more streamlined lookahead 
technique than in past work is used to schedule non-0-slack 
operations for higher utilization, and thus minimized allocation, 
of FUs. Moreover, our algorithm maintains a complexity 
comparable to that of LS, and thus scales well for large HLS 
designs, which is also shown in our experiments. 

The rest of the paper is organized as follows. We formulate 
the FU minimization scheduling problem and review the 
classical list scheduling in Section II. Our FALLS algorithm is 
discussed in greater detail in Section III. Experimental results 
comparing FALLS to state-of-the-art algorithms are presented 
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in Section IV, and we conclude in Section V. 
II.  BACKGROUND 

 Problem Formulation 
We consider the following well-known Minimum-Resources 

Latency-Constrained Scheduling (MR-LCS) problem. Given: 
1. An unscheduled data-flow graph (DFG) G (V, E), where V is 

the set of operations and E is the set of arcs representing 
data dependencies between the operations. 

2. A legal upper-bound latency constraint Lc in number of cc’s 
that is no smaller than the critical path delay. 

3. An FU library R that includes one FU design for each 
function type (FT) that appears in the operations in V. 
For any two operations u, v  V and a data dependency arc 

(u, v)  E, if u and v are scheduled in cc’s tu and tv, respectively, 
the dependency constraint is: 

 
where du  1 is the delay of u in number of cc’s. 

Our objective is to schedule each operation in V to a certain 
cc such that the cost, the total number of allocated FUs, which 
is strongly correlated to area as shown by empirical results, is 
minimized such that the achieved latency L  Lc and all 
dependency constraints are satisfied.  

 Review of List Scheduling 
Here we briefly discuss the classical latency-constrained list 

scheduling (LS) algorithm for the MR-LCS problem. In each 
cc, LS always schedules the most timing-urgent operations to 
available FUs. Starting with a minimum FU allocation, a new 
FU is only allocated when there is an available operation that 
needs to be scheduled immediately to satisfy the latency 
constraint, but there is no allocated FU of that FT currently 
available due to being busy executing other operations. By 
only allocating new FUs when it is mandatory, LS was 
expected to come close to minimizing the number of allocated 
FUs in the final scheduling solution. However, LS fails due to 
the low FU utilization mentioned later. 

The pseudo code of LS is presented in Fig. 1. Initially, only 
one FU per FT is allocated. The as late as possible (ALAP) 
time tL, the latest cc where an operation can be scheduled to 
satisfy the Lc, is computed for each operation. Let pred(u) and 
succ(u) denotes the set of predecessors and successors of 
operation u, respectively. The symmetric as soon as possible 
time tS and the ALAP time tL are recursively defined as: 

 

 

where  if pred(u) = Ø, and  if succ(u) = 
Ø. Then in each cc t in chronological order, for each FT k, an 
available unscheduled operation set Ut, k  V, which includes all 
unscheduled operations of FT k whose predecessors have all 
finished execution, is determined. The slack su of each 
operation u in Ut, k is then computed as: 

 
If su = 0, u is 0-slack and must be scheduled in cc t, i.e., one 
additional FU needs to be allocated if all FUs of FT k are busy 
executing other operations. The other operations in Ut, k are 
non-0-slack. If there are still available FUs after all 0-slack 
operations are scheduled, the non-0-slack operations are 
scheduled in cc t in slack-increasing order and bound to the 
available FUs. This slack-based scheduling process iterates for 

each cc t until all operations are scheduled. The time 
complexity of LS is Θ(n log n), since each sorting or searching 
operations in a balanced binary search tree based on ALAP 
times (equivalent to slack) takes Θ(log n) time, and the total 
number of searches is equal to the total number of available 
operations across all cc’s, which is Θ(n). 
 

 
Fig. 1. The pseudo code of the classical list scheduling algorithm. 

We term the FU allocation vector r (one element per FT) 
before any operation is scheduled as pre-allocation; it is only 
one FU per FT in LS; Similarly, the FU allocation vector r 
after all operations are scheduled is termed as post-allocation. 
In practice, the number of FUs in post-allocation is 
significantly more than that in pre-allocation in the solutions of 
LS, indicating many FUs are allocated in intermediate cc’s. 
This results in the FUs allocated in later cc’s being sparsely 
utilized. Due to the insufficient FU utilization, excessive FUs 
are likely to be allocated in the solutions of LS. 

III.  OUR FALLS ALGORITHM 
We present our FALLS algorithm in this section. FALLS 

schedules in chronological order of cc’s and utilizes slack to 
determine the timing-urgency of available unscheduled 
operations, which are the beneficial aspects of the classical LS 
algorithm. However, to rectify the drawback of LS, we have 
made significant extensions as follows: 
 We schedule non-0-slack operations following a novel 

lookahead technique that allocates new FUs earlier than they 
would be in LS or reserves available FUs in the current cc for 
scheduling future 0-slack operations, such that the average FU 
utilization is increased. 
 An estimate based extension of binary search, which we call 

fractional search, is proposed to incrementally estimate the 
number of FUs required for the design and finally accurately 
pre-allocate FUs at the last scheduling iteration to further 
increase FU utilization. 
 We use FU utilization rate as a general guideline to 

dynamically adjust pre-allocation, pre-allocation expansion 
technique for conservatively pre-allocating more FUs to 
increase FU utilization and pre-allocation pruning technique 
for eliminating redundant FUs. 

A general view of FALLS is given first: the pseudo code is 
presented in Fig. 2. The internal scheduler of FALLS, 
Lookahead, is based on LS but improved by our lookahead 
technique. Nesting the enhanced scheduler (in line 4 and 9), 

Algorithm LS (DFG G (V, E), latency constraint Lc, FU library R) 
1.  r = (1,1, ..., 1), t = 1   //pre-allocate one FU per FT 
2.  Compute the ALAP times tL for Lc 
3.  While there are unscheduled operations Do 
4.   For each FT k Do 
5.   Determine the available unscheduled operation set Ut, k 
6.      Compute slack su for all u  Ut, k by (4) 
7.      Schedule 0-slack operations in Ut, k to t, allocate new FUs  
 if needed, update rk if new FUs are allocated 
8.      Schedule non-0-slack operations in Ut, k to t in slack- 
 increasing order and bind them to remaining available FUs 
9.   End For 
10.   t = t + 1 
11. End while 
12. Return the scheduling solution 
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fractional search iteratively determines a more accurate 
pre-allocation by the pre-allocation expansion (line 5) and 
pruning (line 6 to line 16) technique, which are based on the 
pre-allocation and post-allocation of the previous iteration (call 
to Algorithm Lookahead). The final solution is latest solution 
after the last iteration where there is no improvement to the 
current solution after FU expansion and pruning techniques. 

 

 
Fig. 2. Pseudo code of the FALLS algorithm. 

 

 
Fig. 3. Illustration of the advantage of reserving FUs for later use in the 

lookahead scheduling of FALLS. “opi” denotes operation i. FU allocation 
results are shown below solutions. (a) An unscheduled DFG; (b) The solution 

of LS; (c) The solution of lookahead scheduling. 

 
Fig. 4. Illustration of the benefit of early allocation of new FUs in the 

lookahead scheduling of FALLS. FU allocation results are shown below 
solutions. (a) An unscheduled DFG; (b) The solution of LS; (c) The solution of 

lookahead scheduling. 

 Lookahead Scheduling 
The lookahead technique makes better scheduling decisions 

than LS for non-0-slack operations. In the current scheduling 
cc t, it detects operations that are currently unavailable and will 
become 0-slack in some near-future cc’s. To allow these 
operations to be executed on currently available FUs when 
they are available and 0-slack, some available FUs are reserved 
for this purpose in the current cc t. Moreover, it aggressively 
allocates new FUs in cc t to schedule certain non-0-slack 
operations under the condition that if the operations are not 
scheduled in cc t, the same number of new FUs are still needed 
to be allocated for scheduling them in later cc’s. By preventing 
allocating avoidable new FUs in later cc’s and allocating new 
FUs earlier that are unavoidable later, the average FU 
utilization is increased and hence the number of FUs needed is 
minimized. 

The advantage of reserving FUs for later use is illustrated by 
the example in Fig. 3. The DFG in Fig. 3(a) has only two FTs: 
addition with a 1-cc delay and multiplication with a 2-cc delay; 
Lc is 5 cc’s. In Fig. 3(b), LS schedules op5 (slack = 3) in cc 1, 
since it is the only available multiplication operation in cc 1 
and there is an available multiplier. The overlapping of 
execution time of op2 and op5 results in a new multiplier being 
allocated in cc 2. On the other hand, in cc 1, our lookahead 
scheduling detects that op2 will become 0-slack in cc 2 and 
hence reserves the multiplier for scheduling op2 in cc 2 to 
avoid the new multiplier being allocated, as in Fig. 3(c). As the 
scheduling proceeds, op5 eventually becomes 0-slack in cc 4, 
and the multiplier being busy in cc’s 2-3 becomes available for 
op5. Therefore, by reserving the multiplier in cc 1 and 
scheduling op5 later, one multiplier is saved. 

The other aspect of the lookahead scheduling, aggressive 
early new FU allocation, is illustrated by the example in Fig. 4 
with the same set of FTs and Lc as in Fig. 3. The scheduling 
quality here solely depends on the allocation of adders. In Fig. 
4(b), after op4 is scheduled in cc 1, LS schedules op5 in cc 3, 
since op5 is non-0-slack in cc 2 and there is no available 
multiplier then. Although a new multiplier must be allocated 
no matter where op5 is scheduled, LS fails to detect this 
situation due to the limited information provided by slack 
alone. This forces op6 to be scheduled in cc 5, where op3 is 
concurrently scheduled. This leads to a new adder to be 
allocated. Different from LS, our lookahead scheduling 
realizes that a new multiplier is unavoidable for scheduling 
op5, hence allocates it when op5 is first available in cc 2 and 

Algorithm FALLS (DFG G(V, E), Lc, FU library R) 
1.  soln.rpre = (1,1, ..., 1)   //pre-allocate one FU per FT 
2.  Compute the ALAP times tL for Lc 
3.  Repeat   //fractional search begins 
4.  soln = Lookahead (tL, soln.rpre) 
5.   For each FT k where soln.  > soln. , increase soln.   
 by (10) (  is the k’th element of vector rpre/post) 
6.   For each FT k where soln.   soln.  Do 
7.   Get  by major pruning (Sec. III-D) of soln.  
8.   Temporarily update soln.rpre with  
9.   Get a new solution = Lookahead (tL, soln.rpre) 
10.   If the cost of the new solution is improved Do 
11.   Linear search the range [ , ] to determine  
 a better , where  is the previous largest  
 unsuccessful soln.  that was tried Else 
12.   Binary search the range ( , soln. ] to determine 
 a better  
13.   End If 
14.   Update soln.rpre with the best  or  
15.  End For 
16. Until no improvement in soln.rpost 
17. Return the latest scheduling solution 
Algorithm Lookahead (ALAP times tL, pre-allocation vector rpre) 
1.  rpost = rpre, t = 1 
2.  Unschedule all operations if they are scheduled 
3.  While there are unscheduled operations Do 
4.   For each FT k Do 
5.   Determine the available unscheduled operation set Ut, k 
6.   Compute slack su for all u  Ut, k by (4) 
7.   Schedule 0-slack operations in Ut, k to t, allocate new FUs  
 if needed, update  if an FU is used for the first time 
8.   Apply the lookahead technique (Sec. III-A) to schedule  
 non-0-slack operations in Ut, k to t, allocate new FUs if  
 needed and update  if an FU is used for the first time 
9.   End For 
10.   t = t + 1 
11. End while 
12. Return rpre, rpost and the scheduling solution as soln 
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schedules op5 there. Such scheduling decision makes no 
change in multiplier allocation, but reduces the number of 
adders by one: op6 can be scheduled one cc earlier and hence 
avoid being executed concurrently with op3. 

Now we formulate our lookahead technique as follows. In 
any cc t during the scheduling process, after scheduling 0-slack 
operations of FT k, we explore the cc’s in the cc range R(t) = [t 
+ 1, t + dk – 1] of FT k, where dk is the delay of FT k and dk > 
1. We explore this cc range because this is the maximum range 
for which any executing operation of FT k scheduled in a cc  t 
will finish its execution in some cc in this range, and we will 
thus know exactly how many FT k FUs will be available in 
these cc’s. This information, along with which operations will 
become 0-slack in these cc’s, is needed to determine FU 
reservation and early new FU allocation in cc t.  For cc i  [t, t 
+ dk – 1], we define: a(i) to be the number of FUs that will be 
busy in i – 1 and become available in i; z(i) to be the total 
number of 0-slack operations in i; z’(i) to be the number of 
0-slack operations in i that are available in cc t < i. Therefore, 
z(i) – z’(i) is the number of 0-slack operations in i that are 
unavailable in t. Each of these parameters in the cc range can 
be determined in cc t. With these parameters, we can 
recursively compute Avail(i), the number of available FUs in 
cc i after scheduling z(i) – z'(i) operations in cc i, as: 

 
At the recursion boundary of cc t, Avail(t) is the number of 
available FUs after scheduling all 0-slack operations in t. 
Based on Avail(i), we can determine new(i), the number of new 
FUs needed in i for scheduling the z'(i) 0-slack operations of i, 
as: 

 
This needs to be followed by an update of Avail(i) in order to 
compute Avail(i + 1) by Eq. 5: Avail(i) = 0 if new(i) > 0, 
otherwise Avail(i) = Avail(i) – z'(i). As is hopefully clear from 
the formulation, new FUs are only allocated for scheduling z’(i) 
0-slack operations when there are not enough available FUs 
after scheduling the z(i) – z’(i) 0-slack operations. The updated 
Avail(i) that accounts for scheduling z’(i) operations becomes 
the number of available FUs in i after scheduling all its z(i) 
0-slack operations. 

After all cc’s in the cc range R(t) are explored, we can 
determine S(t), the maximum number of available non-0-slack 
operations to be scheduled in cc t by:  

 

where 

 

Surplus(i) is thus the number of available FUs in cc i after 
scheduling z(j) – z'(j) 0-slack operations in each cc j in [t + 1, 
i] without allocating any new FUs in any of these cc's; it can 
thus be negative. Equation (7) incorporates both aspects of the 
lookahead technique that are illustrated in Figs. 3 and 4. The 
first term with Surplus(i) allows use of only 

of the available FUs in cc t for 
available non-0 slack operations in it and reserves the rest for 
later use in R(t). The second term with new(i) is for early 
allocation and use of the appropriate number of new FUs in cc 
t. The idea of Surplus(i) is that if it is positive, and for the sake 

of argument we ignore other Surplus(j) values, then we can 
schedule at most min(Surplus(i), z'(i)) available non-0-slack 
operations in cc t of the z'(i) 0-slack operations of cc i, on the 
already available FUs in t (after its 0-slack operations are 
scheduled), without incurring any extra new FU in R(t) 
compared to scheduling these operations in cc i. However, for 
this to be true for all cc's in R(t), we can only schedule 

 (if it is positive) available non-0-slack 
operations in cc t (in slack increasing order—these are the 
operations that become 0-slack earliest among all the z'(i) 
operations in R(t)) without allocating any extra new FUs in 
R(t). If any more are scheduled in cc t, then the minimum 
positive Surplus point r in R(t) will become negative, meaning 
that extra new FU(s) will be needed to schedule some of the 
z(r) – z’(r) 0-slack operations in cc r. 

Thus, accounting for both the minimum Surplus(i) and early 
allocation of new FUs in cc t, we schedule S(t) available non-0 
slack operations in slack increasing order in cc t. 

 Fractional Search 
Our fractional search framework contains two 

sub-techniques: pre-allocation expansion and pre-allocation 
pruning. Both techniques rely on an indicator of FU utilization, 
utilization rate, to determine the number of FUs to be adjusted 
in the pre-allocation. The utilization rate (ur) of an FU is the 
fraction of cc’s in which the FU is busy executing operations 
over the entire scheduling latency. For the p’th FU of FT k with 
nk,p operations bound to it, its utilization rate urk, p is:  

 
where dk is the delay of FT k and L is the achieved latency of 
the current scheduling solution. Intuitively, FUs allocated in 
earlier cc’s have a greater potential to have high utilization 
rates compared to those allocated in later cc’s.  

We first illustrate fractional search in Fig. 5. For any FT k of 
a solution, we determine the new pre-allocation by the 
pre-allocation and post-allocation of the previous iteration. If 
the former is smaller than the later, we expand the 
pre-allocation by adding the sum of utilization rates of new 
FUs (an optimistic estimate) to it. Otherwise, we attempt to 
prune pre-allocated FUs by a utilization rate based major 
pruning followed by minor binary or linear pruning steps to 
gradually approach the accurate pre-allocation. Unlike binary 
search, which iteratively eliminates half of the search space, 
fractional search makes the new estimate based on utilization 
rate to more efficiently locate the target value. Fractional  
search terminates when the latest round of prunings for each 
FT that satisfies the pruning condition, no further solution 
improvement can be obtained. 

 Pre-allocation Expansion Technique 
Given a solution of an iteration, for any FT k, if its 

pre-allocation  is smaller than its post-allocation , 
the pre-allocation expansion technique is applied. The number 
of FUs to be increased in the pre-allocation of FT k is: 

 

where FU_new(k) is the set of new FUs of FT k allocated in 
the current scheduling iteration. The pre-allocation expansion 
is performed in a conservative way in which it only allocates 
the minimum number of FUs which can handle all operations
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Fig. 5. Graphical illustration of a single iteration of fractional search for a FT. 

bound to the new FUs with an ideal utilization rate of 100%. 
This allows fractional search to gradually approach the 
minimum number of required FUs. 

 Pre-allocation Pruning Technique 
Given a solution of an iteration, for any FT k, if its 

pre-allocation  is not smaller than its post-allocation , 
the pre-allocation pruning technique is applied. The pruning is 
performed when , since the unutilized 

pre-allocated FUs that have no operations bound to 
should obviously be pruned. Further, when , it is 
potentially beneficial to prune some of the utilized 
pre-allocated FUs, since these over-allocated FUs may be used 
to over-schedule less timing-urgent non-0-slack operations that 
have slacks greater or equal to the delay, making the FUs 
sparsely utilized in later cc’s. This pruning includes a major 
pruning followed by minor prunings that are either based on 
binary or linear search. 

Besides pruning the unused FUs, if any, the idea of major 
pruning is to adaptively increase the utilization rates of the 
most under-utilized FUs. Let the maximum and minimum 
utilization rate among all the used FUs in the current solution 
be urmax and urmin, respectively. We can evenly partition the 
range [urmin, urmax] into  (   2;  = 4 in our experiments) 
partitions. The most under-utilized FUs are in the 1st partition, 
which is the range . We 
attempt to increase the utilization rates of these FUs to the 
adjacent partition with a higher average utilization rate range 
uur2 so that fewer FUs are in the pre-allocation and this is 
expected to translate to fewer FUs in the post-allocation by 
reducing over scheduling. To execute the same number of 
operations that were bound to the most under-utilized FUs 
whose utilization rates are in urr1 with fewer but fully-utilized 
FUs whose utilization rates are in urr2, the least number of FUs 
required m is determined as: 

 

where FU(k, urr1) is the set of FUs of FT k whose utilization 
rates are in uur1 and  is the average utilization 
rate of FUs whose utilization rates are in uur2. The number of 
pruned FU is thus . 

As illustrated in Fig. 5, after major pruning, there are a 
series of minor prunings using either linear or binary search. If 
major pruning leads to a lower-cost solution, we perform linear 
search to further prune the number of FUs of FT k by the 
smallest granularity of one and re-schedule, and iterate until no 
better solution is found. On the other hand, if the new solution 
is worse than the previous one, we perform binary search in 
the range of the current pre-allocation and the previous 

pre-allocation until the best lower-cost solution is found or no 
lower-cost solution can be found. 

 Time Complexity 
The time complexity of the lookahead technique is Ο(n log 

n + ndmax), where dmax is the maximum delay among all FTs. 
The n log n term comes from LS’s time complexity, and the 
ndmax term from the fact that an FU executing an operation of 
FT k with delay dk cc’s, will be accessed dk times to determine 
a(i) and related parameters for lookahead processing. Further, 
if nk is the number of operations of FT k and there are q FTs, 
fractional search will determine at most O(log nk) new 
pre-allocations (and thus calls to lookahead scheduling) for FT 
k, and thus it overall makes O(q log n) ~ O(log n) (q being a 
small constant compared to n) calls to lookahead scheduling. 
Thus, the total time complexity of FALLS is Ο(n log2 n + (n 
log n)dmax) = Ο(max(n log2 n, (n log n)dmax) ~ Ο(n log2 n) if 
dmax is a small constant. 

IV. EXPERIMENTAL RESULTS 
We implemented FALLS in C++. Experiments were 

conducted on a machine with Core i7-4710HQ (3.5GHz) 
and16GB RAM. First, we make a direct comparison between 

TABLE I: COMPARISON BETWEEN ACO AND FALLS 

 
 

TABLE II 
AVERAGE NUMBER OF FUS AND AREA RESULTS. AREA UNIT = 102 

T. “*” MEANS A SET OF EXPERIMENTS RAN OUT OF MEMORY 

 

nFU +, * nFU +, * nFU +, * nFU +, *
1.0 11 5, 6 11 6, 5 0.0% 47 25, 22 46 22, 24 2.1%
1.1 10 4, 6 10 6, 4 0.0% 42 23, 19 42 18, 24 0.0%
1.2 9 4, 5 9 5, 4 0.0% 36 20, 16 34 14, 20 5.6%
1.3 8 3, 5 8 5, 3 0.0% 34 19, 15 30 12, 18 11.8%
1.4 8 3, 5 7 4, 3 12.5% 30 17, 13 26 11, 15 13.3%
1.5 7 3, 4 7 4, 3 0.0% 28 16, 12 25 10, 15 10.7%
1.6 7 3, 4 6 4, 2 14.3% 26 15, 11 22 9, 13 15.4%
1.7 7 3, 4 6 4, 2 14.3% 25 14, 11 21 9, 12 16.0%
1.8 7 3, 4 5 3, 2 28.6% 23 13, 10 20 9, 11 13.0%
1.9 6 3, 3 5 3, 2 16.7% 23 13, 10 19 8, 11 17.4%
2.0 6 3, 3 5 3, 2 16.7% 22 13, 9 18 7, 11 18.2%
Avg 7.8 3.4, 4.5 7.2 4.3, 2.9 8.1% 30.5 17.1, 13.5 27.5 11.7, 15.8 9.8%

FU % 
Improv

L c 

Factor

idctcol (114, 164) invert (333, 354)
ACO FALLS FU % 

Improv
ACO FALLS

nFU Area nFU Area nFU Area nFU Area nFU Area
1 hal 11 6.1 382.5 5.5 337.5 5.5 337.5 5.5 337.5 5.5 337.5
2 horner 18 6.5 355.8 5.7 309.9 5.3 315.0 5.1 300.0 5.1 300.0
3 arf 28 9.4 588.5 5.9 331.7 5.9 331.7 4.6 269.2 4.6 276.3
4 motion 32 20.9 1251.4 13.2 746.8 13.9 795.1 12.2 718.3 12.3 700.7
5 ewf 34 4.4 175.7 4.4 189.9 4.3 175.3 3.2 134.9 3.3 135.3
6 h2v2 51 10.3 356.2 7.2 293.9 7.4 228.9 6.3 218.8 6.5 233.8
7 feedback 53 21.5 1133.0 14.0 739.1 14.2 728.7 11.3 590.4 11.3 590.4
8 collapse 56 29.7 1595.7 13.5 800.1 13.7 764.7 11.4 684.3 11.6 692.0
9 write 106 70.4 2048.3 14.5 569.0 15.9 557.3 11.2 438.6 11.9 483.0

10 interpolate 108 41.8 2019.5 24.9 1256.4 27.9 1517.8 19.7 1055.9 20.2 1062.5
11 matmul 109 37.4 2188.5 20.4 1153.0 21.2 1224.6 15.5 931.5 16.3 956.9
12 idctcol 114 43.1 1826.9 22.3 990.8 15.8 738.0 10.8 497.0 12.1 533.2
13 jpeg 134 36.7 1617.8 25.9 1140.8 22.0 1108.8 14.6 703.3 15.4 704.9
14 smooth 197 75.9 3961.1 30.5 1737.6 31.6 1761.2 24.1 1403.2 26.2 1465.3
15 invert 333 100.2 5963.5 56.7 3328.9 55.9 3484.5 35.6 2216.7 39.5 2374.5
16 rand-1300 1300 520.7 59841.2 100.3 14271.1 115.7 16200.1 * * 94.5 13961.7

92.3 34.3 1697.6 17.6 928.4 17.4 937.9 12.7 700.0 13.4 723.1
60.8% 57.4% 23.8% 22.1% 22.6% 22.9% -5.5% -3.3% 0.0% 0.0%

167.8 64.7 5331.6 22.8 1762.3 23.5 1891.8 * * 18.5 1550.5
71.4% 70.9% 18.9% 12.0% 21.3% 18.0% * * 0.0% 0.0%

DFG 1-15 Avg
FALLS % Improv.

DFG 1-16 Avg
FALLS % Improv.

LS FDS SA ILP    FALLSDFG # of 
ops

Pre-allocation Pruning Region (if no new FU allocated) | Pre-allocation Expansion Region (otherwise) 

# of FUs of the 
current FT

Lower Bound: # of FUs 
assuming 100% ur 

Previous pre- 
allocation 

New pre-allocation 
after major pruning

… 

1st linear search step 
1st binary search step

Major pruning

Linear search region if major pruning successful. 
Terminates when no better solution is found 

Binary search region if major pruning unsuccessful. 
Standard binary search termination

Upper Bound: previous 
post-allocation  

FU expansion 

New pre-allocation 
after FU expansion
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FALLS and ant colony optimization (ACO) in [9]. The trivial 
FU library in [9] has only two FTs of FUs: multiplier (d = 2 
cc’s) for multiplication and division, ALU (d = 1 cc), denoted 
for simplicity by “+”, for the remaining FTs. For each DFG, 
the Lc is set to be a factor, called Lc factor, of the critical path 
delay. Perhaps due to the stochastic nature of ACO, it is hard to 
obtain consistent good results for all DFGs. Thus, to make a 
fair comparison, in Table I we compare FALLS to ACO results 
in [9] for two large DFGs which are the only ones for which 
FU allocation results with specified Lc’s are presented in [9]. 
Across various Lc’s, FALLS allocates an average of 8.1% and 
9.8% fewer FUs for the two DFGs than ACO. 

In Table II, we compare FALLS to LS, FDS [3] [4],  
SA [9] and ILP [1] [2] (implemented in CPLEX) for 15 DFG 
benchmarks from [15] and one randomly generated DFG 
rand-1300, to show its efficacy in FU minimization and the 
indirectly minimized total area. For this, we constructed a 
16-bit non-trivial FU library that has eight FTs: 
adder/subtractor (d = 4 cc’s), multiplier (d = 10 cc’s), divider 
(d = 24 cc’s), arithmetic and logical shift register (d = 1 cc), 
memory read and write (d = 1 cc), and logical AND (d = 1 cc). 
The delay and area of the FU designs from [16] are 
theoretically derived based on the number of gate inputs along 
the critical path and the total number T of transistors, 
respectively. Each number of FU (nFU) and area result in 
Table II is the average for a DFG for 11 Lc’s with Lc factors in 
the range [1, 2] with a granularity of 0.1. The results show that 
FALLS reduces the total number of FUs by an average of 
18.9% to 71.4% compared to LS, FDS and SA, and has similar 
area reductions. It also shows that FALLS has only a 5.5% 
optimality gap in the number of FUs and merely a 3.3% 
greater area compared to the optimal ILP method. We also 
performed the experiments with the trivial library used by [9]: 
FALLS’ FU and area improvements range from 11.9% to 
51.6% compared to the approximate algorithms while being 
only 1.2% worse than ILP. Mistakes made by the competing 
approximate algorithms are less costly in area in the trivial 
library as the area difference in the two types of FUs is much 
smaller than among FU types in the more complex library of 
Table II. This results in some shrinking of the % differences 
between the results of these techniques and FALLS compared 
to those for the complex library. 
  Further, though the following are not part of our 
optimization objective, we also determined the architectural 
area = the sum of the areas of FUs, mux’s/demux’s and 
registers, by using the left-edge algorithm [17] to bind 
operations to FUs (and thereby determine mux and demux 
sizes needed) and allocate registers post-binding. The results 
(not given per DFG in tables due to space constraints) show 
that FALLS has 32.4% to 60.8% average architectural area 
reduction compared to the competing approximate algorithms. 
Further, the average maximum congestion (max in + out 
degree of an FU) of FALLS is 3.5% to 14.7% smaller than 
these algorithms, and its average number of interconnects is 
9.6% to 37.2% fewer. Also, FALLS has at most 4.0% more of 
the above architectural area and interconnect metrics compared 
to ILP. Similar results were obtained with the trivial library. 
These results show that a good FU minimization algorithm like 
FALLS is indirectly beneficial to other important architectural 
metrics.  

Finally, the runtimes for the experiments of Table II show 
that FALLS is extremely fast, taking only 0.62 ms for the 

smallest and 69.85 ms for the largest DFG. The runtimes of SA 
and ILP are very high, preventing them from solving practical 
large-size problems. Across DFGs and Lc’s, FALLS is merely 
about 3 times slower than the extremely fast but extremely 
sub-optimal LS, but is 68, 873 and 278k times faster than FDS, 
SA and ILP, respectively. Also, for the largest DFG rand-1300, 
CPLEX runs out of memory for even the smallest Lc (and thus 
smallest solution space). Considering that FALLS obtains 
solutions to the largest DFG with 1300 operations in a 
miniscule 69.85 milliseconds, and that it has an average 
optimality gap of only 5.5%, one can conclude that it has very 
good runtime and solution quality scalability. 

V.  CONCLUSIONS 
We proposed a latency-constrained iterative list scheduling 

type algorithm FALLS to minimize the number of functional 
units (FUs) in high-level synthesis designs. We presented a 
novel lookahead technique to schedule some non-0-slack 
operations earlier to increase FU utilization or to reserve some 
currently available FUs for scheduling 0-slack operations in 
near-future clock cycles to avoid new FU allocations in them. 
Furthermore, a unique fractional search framework was 
developed to iteratively estimate the number of FUs required 
in the final design, and re-schedule with these initial FU 
allocations to further increase FU utilization and reduce the 
number of FUs. Extensive experiments demonstrated the 
significant effectiveness and efficiency of FALLS for FU area 
minimization, as well as for the beneficial side effects of 
reducing architectural area and important interconnect metrics. 
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