
Time-Decoupled Parallel SystemC Simulation

Jan Henrik Weinstock∗, Christoph Schumacher∗, Rainer Leupers∗, Gerd Ascheid∗ and Laura Tosoratto†
∗Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

†Istituto Nazionale di Fisica Nucleare - Sezione di Roma, Rome, Italy
Email: jan.weinstock@ice.rwth-aachen.de

Abstract—With increasing system size and complexity, design-
ers of embedded systems face the challenge of efficiently simu-
lating these systems in order to enable target specific software
development and design space exploration as early as possible.
Today’s multicore workstations offer enormous computational
power, but traditional simulation engines like the OSCI SystemC
kernel only operate on a single thread, thereby leaving a lot of
computational potential unused.

Most modern embedded system designs include multiple pro-
cessors. This work proposes SCope, a SystemC kernel that aims at
exploiting the inherent parallelism of such systems by simulating
the processors on different threads. A lookahead mechanism is
employed to reduce the required synchronization between the
simulation threads, thereby further increasing simulation speed.

The virtual prototype of the European FP7 project EURETILE
system simulator is used as demonstrator for the proposed work,
showing a speedup of 4.01× on a four core host system compared
to sequential simulation.

I. INTRODUCTION

Virtual platforms have proven to be a highly valuable tool
in the design process of embedded systems. They allow testing
and debugging of device dependent software before a hardware
prototype is available and enable design space exploration at
early development stages.

Since it became an IEEE standard in 2006, SystemC [1] has
emerged as the de-facto industry standard for the modeling of
virtual platforms. It is essentially a discrete event simulator
implemented as a C++ library with a set of classes and macros
that aid in quick virtual platform development.

Modern embedded systems are getting more and more com-
plex. State of the art platforms like the Qualcomm Snapdragon
Series [2] usually feature multicore processors with up to
four cores and multiple levels of memory. As more complex
components need to be simulated simultaneously, the speed of
these simulators degrades, threatening the viability of virtual
platforms as development tools.

One approach to mitigate this problem is to parallelize the
simulation, i.e., distributing the load of simulating multiple
processor cores as well as other components among different
host threads. Modern workstations are usually equipped with
multicore processors making them an ideal host for such a
parallel simulation.

A parallel simulator is typically composed of a set of
sequential simulations, each one running on its own thread and
controlling its own local simulation time. Parallel simulators
have to make sure that they behave identically to a sequential
version, i.e., it must be guaranteed that all simulation events
happen in exactly the same order. Violations of this order are
commonly referred to as causality errors [3], [4]. Establishing
the correct order of events among multiple simulation threads
is therefore the paramount objective.

A. Contributions

This paper presents a conservative approach to parallelize
the SystemC kernel, which employs a lookahead mechanism
to efficiently synchronize the event order amongst multiple
threads. A prototype simulation kernel called SCope has been
created from scratch according to the IEEE 1666-2005 Sys-
temC standard. It is capable of running industry-scale virtual
platforms like the EURETILE simulator [5] in a multithreaded
environment. The key contributions are as follows:

• Simulation partitioning: manual and semi-automatic par-
titioning strategies are outlined to distribute simulation
load among multiple threads.

• Parallel SystemC kernel: a parallel implementation of the
SystemC specification is presented that allows simulation
processes to run in a time-decoupled fashion to efficiently
exploit parallelism of the modeled system.

• Parallel TLM-2.0 API: extensions to the OSCI TLM-2.0
API are introduced that allow race-free and temporal cor-
rect communication between different simulation threads
and seamless integration with existing models.

• Case Study: the prototype simulation kernel SCope is
tested using the EURETILE embedded system simulator
and benchmark results versus sequential and synchronous
simulation engines are presented.

The remainder of this paper is structured as follows: First,
Section II gives a brief overview about related research efforts
in the field of parallel simulation of embedded systems.
Section III covers the conservative lookahead synchronization
mechanism used for this work. The design of the parallel
SystemC kernel is illustrated in Section IV and simulation
performance is analyzed in Section V. Finally, Section VI
summarizes the results and outlines possible future research.

II. RELATED WORK

The principles of parallel discrete event simulation (PDES)
have been well researched for over thirty years. With funda-
mental work being done by Chandy et al. [3], Fujimoto [4]
and Nicol et al. [6], PDES, however, still has not yet found
its way into mainstream electronic system level simulation.

In the recent years, there have been several approaches
pursuing a parallelization of SystemC. Still, most methodolo-
gies impose strong restrictions on the simulator software, e.g.,
they forbid using parts of the SystemC API, or even require
a structural redesign. As a consequence, complications arise
when applying those techniques to existing simulators or third
party intellectual property, where source code is typically not
freely available. Examples for such approaches are described
in [7], [8] and [9]. For the domain of SpecC, a parallelization
mechanism requiring a statical analysis of the simulator has
been proposed in [10].

978-3-9815370-2-4/DATE14/ c©2014 EDAA



A synchronous approach to parallel SystemC simulation
is presented in [11]. Synchronous techniques, however, are
unable to exploit the full parallelism of a simulation, given
that they enforce strict time synchronization among all threads.
The approach presented in this work attempts to overcome the
limitations of synchronous simulation by applying a conser-
vative lookahead technique. Furthermore, existing simulators
should be supported without requiring structural redesign or
modifications to the source code.

III. LOOKAHEAD SIMULATION CONCEPT

The parallel simulation is split up into n different sequential
simulators, each one running on its own thread and managing
its own state, e.g., event queues, process lists and simulation
time. All state except events is considered to be private to the
thread that it was assigned to, e.g., no thread is allowed to run
processes from another thread. Only events may be notified
from a different thread.

State belonging to a simulator running on thread i will be
referred to using subscript i, e.g., the local time of thread i is
ti. Local times of all threads are not allowed to deviate from
another by more than the lookahead tla. Therefore, a time
limit tlim,i is introduced as defined in equation 1.

ti ≤ tlim,i = min
0≤j<n

tj + tla (1)

Every thread i is allowed to simulate without synchro-
nization until it needs to process an event ei with a trigger
timestamp ttrigger,ei beyond tlim,i. If a thread has no events
left to trigger before tlim,i, it sets its local time ti to tlim,i and
computes a new limit according to equation 1.

An event notification of an event ei originating from a
thread j, with i 6= j is called remote notification in this work.
This is the designated way for two sequential simulators to
communicate without risking causality errors or data races.
Remote notifications must be handled carefully, since local
times of both threads will likely be different. The time at
which j wants ei to be triggered by i might have already
passed in the context of i. In that case, triggering ei anyway
would likely lead to causality errors, since ei could operate
on state that future events might have already modified.

The trigger timestamp of ei is ttrigger,ei . It depends on the
local time tj of the thread that invokes the notification and
a constant time delta tnotify imposed by the architecture that
is being modeled. This is shown in equation 2 for a remote
notification from j.

ttrigger,ei = tj + tnotify (2)

To avoid causality errors, remote notifications must be
issued sufficiently ahead of time. Since thread i is only
allowed to simulate until tlim,i it is sufficient to enforce
ttrigger,ei > tlim,i. This expression can be further simplified
by combining the equations 1 and 2. The result is presented
in equation 3.

tnotify > tla (3)

Since tnotify is usually defined by the simulated architecture,
one has to adjust tla to meet the requirements imposed
by equation 3. This safely enables time decoupled parallel
simulation, allowing cross-thread communication using remote
event notifications without incurring causality errors.

IV. IMPLEMENTATION ASPECTS

This section describes the SCope simulation kernel proposed
in this work, focusing on the extensions necessary to allow
seamless cross thread communication using TLM.

A. Simulator Partitioning

As described in Section III, SCope consists of one sequential
simulation kernel per worker thread. To avoid simulation state
being accessed from multiple threads, each object within the
simulation must be assigned to a specific thread. Only this
thread is allowed to perform operations on that object, i.e.,
access members or call methods.

Within the context of SystemC, objects such as modules,
events, processes, ports or channels, are organized hierarchi-
cally. Objects created within the constructor of another object
become the child of this object. Typically, a module will be
the parent of a number of events and processes that operate on
plain C/C++ data types to model a specific behavior. To avoid
data races between such processes, child objects automatically
inherit the thread affinity of their parent. However, it is
possible to reassign those objects manually.

Objects without a parent are called top level objects. Such
objects are initially assigned to the main thread (id = 0) and
can be manually reassigned to a different thread to improve
simulator load distribution and increase simulation speed.
This can be done either manually during elaboration or by
specifying a mapping file before the simulator is invoked. Such
a file links objects to specific threads using their name.

B. Parallel SystemC

The prototype implementation of the SCope SystemC kernel
proposed in this work was done according to the specifications
set forth in [1]. Its main difference compared to the OSCI proof
of concept implementation [12] is that it consists of multiple
simulation engines, each one running on its own thread. The
number of threads and engines to use is fixed throughout the
simulation and is specified before the simulator is started.

The master simulator is running on the main thread and
invokes the sc main function where the user can instantiate all
simulation components and call sc start. This function spawns
the additional simulation threads that immediately begin to
execute their simulation loops in parallel.

First, each thread invokes the elaboration callbacks such as
end of elaboration for each of its objects. After elaboration,
all threads begin executing the simulation loop. However,
each thread is only allowed to advance time to tlim,i. Once a
thread reaches this limit, it checks the local times of the other
threads and computes a new limit according to equation 1. The
lookahead tla must remain constant throughout the simulation
and must be specified either before simulator start or during
elaboration.

C. Remote Events

Communication between two objects being simulated on
different threads is only allowed using remote event notifi-
cations. To maintain backwards compatibility with sequential
SystemC simulation engines it was decided to implement this
feature in a new primitive called sc remote event rather than
augmenting the existing sc event.

The sc remote event primitive behaves like a regular Sys-
temC event in that it can be notified and processes can be made
sensitive to it. However, due to the limitations imposed by



equation 3, immediate and delta notifications as well as timed
notifications with a notification time of not more than tla are
strictly forbidden. As the SystemC standard states for regular
events, notifications with a smaller tnotify override previous
notifications. Event cancellations are allowed as well, but must
be stated sufficiently ahead of time, i.e., a remote event can
only be canceled up to tla before it is triggered. Canceling a
remote event any later is considered an error.

Deciding whether a notification of a remote event should
result in triggering the remote event is difficult. The notifica-
tion could get canceled or overridden by an earlier one that
has not yet been stated since the issuing thread might have
not yet advanced to that point. To cope with that, each remote
event holds a history of notify and cancel requests made to
it, associated with the timestamp when the request was made.
Each time an event is notified, it is always scheduled to be
triggered at the desired time, ignoring whether the notification
might have been canceled or overridden before. Using the
history it is possible to decide whenever an event is triggered,
if it was valid to trigger the event. Only then all sensitive
processes are scheduled for execution. Algorithm 1 illustrates
this decision process. It takes as input the history of the remote
event ei sorted by request issue time and returns whether it is
valid to trigger the remote event at ti.

Algorithm 1 Trigger decision algorithm for sc remote event

1: requests← history[ttrigger,ei ... ti − tla]
2: cur req ← 0
3: while requests not empty do
4: next req ← extract first item from requests
5: if next req is cancel then
6: cur req ← 0
7: else if cur req = 0 then
8: cur req ← next req
9: else if tnotify,next req < tnotify,cur req then

10: cur req ← next req
11: end if
12: end while
13: return tnotify,cur req == ti

D. Parallel TLM

While remote events and remote event queues offer a
mechanism for race free and temporal correct communication
inside a parallel simulator, it is still unsafe to run TLM based
simulations in parallel. If initiator and target of a transaction
reside on different threads, the callback function of the target is
executed within the context of another thread, which is likely
to result in races or causality errors. Therefore, such remote
transactions must be protected. To achieve that, the TLM sim-
ple target socket has been augmented using remote payload
event queues to allow seamless integration with existing TLM
models. While this work focuses on the blocking transport
interface, a similar mechanism could be designed for non-
blocking or custom TLM interfaces.

Figure 1 shows the modifications done to the simple initiator
socket. Whenever the socket receives a b transport call, it first
checks whether the call originated from the same thread the
target has been assigned to. If this is the case, no synchroniza-
tion is necessary and the transaction is forwarded as usual.
Otherwise the target socket puts the transaction into a remote

tlm_initator_socket simple_target_socket

initiator

module b_transport
target

module

is remote

call?

b_transport b_transport

remote payload

event queue

SC_THREAD

process

no

yes

...

Fig. 1. Local and remote TLM transaction flow

payload event queue. Using remote events this queue notifies
a relay process at the time the transaction is supposed to be
recieved by the target. This time is defined by the local time
of the sending thread plus the delay given in the b transport
call. Since this relay process runs on the same thread as the
target, it can safely forward the transaction to the target after
extracting it from the queue.

E. Limitations

The implementation uses the delay parameter of the
b transport call to queue transaction objects to be forwarded
to the target. This implies that this parameter must be greater
than tla (see equation 3), i.e., the initiator must be able to
perform the transaction ahead of time.

Currently it is not allowed for the target to advance time
while processing the transaction or reporting errors back to
the target. The reason for this is, that there is no backward
path at the moment that can be used to communicate the extra
time taken or errors back to the initiator.

V. EXPERIMENTAL RESULTS

This section will outline experimental results when applying
the SCope simulation kernel to the European FP7 project
EURETILE [5] system simulator.

A. EURETILE simulator

The EURETILE hardware structure consists of a set of
computational tiles that are connected in a 3D torus network.
Each tile is equipped with a distributed network processor
(DNP) [13] that handles communication with neighboring
tiles, a RISC processor that serves as the central processing
unit for a tile, as well as on-tile memory and peripheral
components such as a timer and an interrupt controller. For
the performance analysis, the simulator was set up to run 64
tiles in a 4× 4× 4 configuration.

The set of applications used for performance evaluation con-
sist of a distributed 32 point FFT application (FFT) running
on DNAOS [14] and a DNP driver stress test (presto), that exe-
cutes typical network traffic patterns (scatter/exchange/gather).

Preparation for time-decoupled parallel simulation was done
in less than one person-day. The simulator was divided into
4 groups of 16 tiles each and each group was assigned to an
individual worker thread. The latency of 400 ns for sending a
packet to a neighboring tile enabled a lookahead of 399 ns.

Furthermore it should be noted that most simulation com-
ponents were not developed for use in a parallel environment.
Thanks to the design of the partitioning mechanism of the



3x

4x

1 ns 10 ns 100 ns

presto
FFT

Fig. 2. Speedup with varying lookahead tla

proposed kernel, all components can interact with their peers
in a virtual sequential environment. This allows the use of
mechanisms such as immediate notifications and direct mem-
ory interface.

B. Performance Results

First the parallel performance of the proposed simulation
kernel SCope is compared to the sequential SystemC imple-
mentation OSCI [12] and the synchronous parallel SystemC
kernel parSC [11]. All tests were performed on a quad-core
Intel i920 workstation PC, with both parallel simulators using
4 threads. The results are presented in table I.

TABLE I
PERFORMANCE RESULTS

benchmark OSCI parSC (4 threads) SCope (4 threads)
application time time speedup time speedup

presto 0:09:32 0:04:29 2.13× 0:02:19 4.12×
FFT 4:29:27 2:03:54 2.18× 1:07:10 4.01×

Due to the high lookahead (399 ns) relative to the processor
model clock cycle time (10 ns), each thread of the time-
decoupled simulator can simulate 40 processor cycles in
parallel before it needs to synchronize with the other threads,
leading to a linear speedup of 4.12× and 4.01× for presto and
FFT, respectively. In comparison, parSC can only simulate
one delta-cycle before it needs to synchronize with the other
threads again. In the context of EURETILE, at least two delta-
cycles are needed to execute one processor cycle.

C. Lookahead Analysis

A second experiment illustrates how a reduction of the
lookahead tla changes the possible speedup. The presto and
FFT benchmarks were repeated with varying lookahead and
the relative speedups were calculated for both benchmarks
using the sequential reference execution time from table I.
Figure 2 shows the results.

The possible speedup remains almost constant until the
lookahead drops below the processor clock cycle time of 10 ns.
However, even with a lookahead of only 1 ns, the simulator
still maintains a reasonable speedup of 3.2×.

As already noted in the previous experiment, the application
does not have a huge impact on simulation speedup. Although
the presto application sends more traffic over the network
within short time intervals and thus stressing the parallel TLM
implementation much more, simulation speed stays the same.

D. Single-threaded Performance

Finally, the performance of the proposed simulation kernel
was analyzed when running with only one thread. The purpose
of this experiment is to give an estimation of the quality of

the sequential components built for the simulation engine, i.e.,
the process scheduler and the event notification mechanisms.

TABLE II
SINGLE THREADED PERFORMANCE RESULTS

application OSCI SCope (1 thread) speedup
presto 0:09:32 0:09:30 1.0035 ×
FFT 4:29:27 4:40:03 0.9622 ×

Table II illustrates that both benchmarks show almost iden-
tical performance between the reference SystemC implemen-
tation and SCope.

VI. CONCLUSION

With rising demands towards fast system level simulators,
time decoupled simulation appears a promising field of re-
search. The work in this paper presented a new approach
to parallel SystemC simulation using time decoupling. A
first prototype implementation called SCope showed linear
speedups, accelerating the execution of the EURETILE simu-
lator by factor 4.01 on a four core host machine.

Future work includes improving compatibility with existing
TLM models, e.g., support for the non-blocking transport
interface and enabling a backward communication path to
eliminate some limitations of the current design.

ACKNOWLEDGMENTS

This work has been supported by the European FP7 project
EURETILE and the German excellence cluster UMIC.

REFERENCES

[1] IEEE standard SystemC language reference manual, IEEE Std. 1666-
2005, 2006.

[2] Qualcomm inc. snapdragon platform. (Sep 2013). [Online]. Available:
http://www.qualcomm.com/snapdragon

[3] K. Chandy and J. Misra, “Distributed simulation: A case study in design
and verification of distributed programs,” IEEE Trans. Softw. Eng., 1979.

[4] R. M. Fujimoto, “Parallel discrete event simulation,” in Proceedings of
the 21st conference on Winter simulation, 1989.

[5] P. S. Paolucci, I. Bacivarov, G. Goossens, R. Leupers, F. Rousseau,
C. Schumacher, L. Thiele, and P. Vicini, EURETILE 2010-2012 sum-
mary: first three years of activity of the European Reference Tiled
Experiment, 2013, arXiv:1305.1459 [cs.DC].

[6] D. Nicol and P. Heidelberger, “Parallel execution for serial simulators,”
ACM Transactions on Modeling and Computer Simulation, Jul. 1996.

[7] A. Mello, I. Maia, A. Greiner, and F. Pecheux, “Parallel simulation
of SystemC TLM 2.0 compliant MPSoC on SMP workstations,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, 2010.

[8] M. Moy, “Parallel programming with SystemC for loosely timed models:
a non-intrusive approach,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2013.

[9] R. Sinha, A. Prakash, and H. Patel, “Parallel simulation of mixed-
abstraction SystemC models on GPUs and multicore CPUs,” in Design
Automation Conference, 2012 17th Asia and South Pacific, 2012.

[10] W. Chen, X. Han, and R. Dömer, “Out-of-order parallel simulation for
ESL design,” in Proceedings of the Conference on Design, Automation
and Test in Europe.

[11] C. Schumacher, J. H. Weinstock, R. Leupers, G. Ascheid, L. Tosoratto,
A. Lonardo, D. Petras, and T. Grötker, “legaSCi: Legacy SystemC model
integration into parallel SystemC simulators,” in Proceedings of the
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, 2013.

[12] Accellera Systems Initiative. OSCI SystemC 2.2. (Sep 2013). [Online].
Available: http://www.accellera.org

[13] R. Ammendola, A. Biagioni, O. Frezza, F. Lo Cicero, A. Lonardo,
P. Paolucci, D. Rossetti, A. Salamon, G. Salina, F. Simula, L. Tosoratto,
and P. Vicini, “APEnet+: high bandwidth 3D torus direct network for
petaflops scale commodity clusters,” Journal of Physics: Conference
Series, 2011.

[14] X. Guerin and F. Petrot, “A system framework for the design of embed-
ded software targeting heterogeneous multi-core SoCs,” in Application-
specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th
IEEE International Conference on, 2009.


