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Abstract—Predication is an essential technique to accelerate
kernels with control flow on CGRAs. While state-based full
predication (SFP) can remove wasteful power consumption on
issuing/decoding instructions from conventional full predication,
generating code for SFP is challenging for general CGRAs,
especially when there are multiple conditionals to be handled
due to exploiting data level parallelism. In this paper, we present
a novel compiler framework addressing central issues such as
how to express the parallelism between multiple conditionals, and
how to allocate resources to them to maximize the parallelism.
In particular, by separating the handling of control flow and
data flow, our framework can be integrated with conventional
mapping algorithms for mapping data flow. Experimental results
demonstrate that our framework can find and exploit parallelism
between multiple conditionals, thereby leading to 2.21 times
higher performance on average than a naive approach.

Index Terms—CGRA; reconfigurable architecture; predica-
tion; predicated execution, conditional, compilation;

I. INTRODUCTION

Coarse-grained reconfigurable architectures (CGRAs) [1]–
[6] are a promising solution for embedded systems, since they
can provide high performance, low power, and flexibility at
the same time. High performance can be provided through
abundant processing elements (PEs). Compared to multi-
core architectures, CGRAs can consume much lower power
while maintaining the flexibility of reconfiguration since each
processing element is much simpler and a single controller
manages all PEs.

However, the use of a single controller to achieve high
energy efficiency creates challenges in terms of accelerating
programs with control flow. Due to the lack of hardware
in CGRAs that can directly handle branch operations, even
a small fragment of code with control flow may require
intervention by a main processor, or it cannot be executed
on a CGRA at all. To remedy this problem, many CGRAs
adopt predicated execution [7]–[9], which essentially converts
control dependence into data dependence.

To reduce energy wasted by conventional predication due
to fetching/decoding instructions, a low power predication
technique named state-based full predication (SFP) has been
recently proposed [9]. It avoids the capacity and power over-
head in instruction memory incurred by the additional field
in the predicated instructions of the conventional approach. It
also saves power by turning off PEs on untaken paths, which
is not allowed in the conventional one. As a result, SFP can
save energy by up to 23.9%.

However, there are a number of challenges in compiling
loops for CGRAs that support SFP. At the core of the problem
lies operation-to-PE binding, which would be trivial if the
target architecture has only one PE, or allows SIMD execution
only as in [9]. But if the target architecture allows non-SIMD

execution, that is, different operations can be performed by
different PEs in the same cycle as in a VLIW processor,
the ways to map operations to multiple PEs can affect the
performance of the CGRA significantly. If operations in one
conditional are scattered among multiple PEs, the overhead of
managing the state registers of PEs may exceed the benefit.
Also, if operations from several conditionals are interleaved
in their schedule on the same PE, switching the state register
will cause large overhead.

Another issue arises from the fact that power saving mode
of a PE renders almost all the resources of a PE including
the local register file of a PE inaccessible. If a PE in a
power-saving (sleep) state has a scalar variable stored in its
register file, and the variable is needed by another PE, we must
route the variable in advance before the first PE goes into the
power-saving state. Otherwise, routing must be processed after
exiting the power-saving mode so performance will be greatly
degraded. Even worse, if another routing is required in the
opposite direction (i.e., the PE in sleep state wakes up when
the data from the other PE is available) at the same time, then
the execution can go into deadlock and will be failed.

This paper presents a mapping framework for SFP-based
CGRA processors that allow non-SIMD execution in order to
maximize performance while guaranteeing correctness.

II. RELATED WORK

Many CGRAs have been proposed so far [1]–[6]. Although
each of them has its own merits, adding SIMD features to
the architecture has been commonly claimed to be one of
the most important merits [1]–[3], [6]. It is because SIMD
is already well known to be effective and thus it is widely
used in commercial processors.

Supporting control flow on data-level parallelism processors
including SIMD processors as well as CGRAs has been
addressed continuously [7]–[11]. To the best of our knowl-
edge, predication is the only solution known so far; some
researches have focused on automating the use of conventional
predications and some others have invented a new form
of predications. For automatic mapping of control flows on
CGRA using conventional predications, [8] and [11] have
shown that only minimal efforts are needed. By adopting if -
conversion (e.g., [12]), control dependency can be converted to
data dependency. As a result, conventional mapping algorithms
do not need to handle control flow explicitly, but only need to
consider data dependency as usual. [9] has first proposed an
approach to low power predication at the architectural level.
However, compilation issues have not been addressed yet.

III. COMPILATION FOR STATE-BASED FULL PREDICATION

A. Target Architecture
Our target architecture consists of a 2D array of PEs, which
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for (i=0; i<8; i++)
{
if(c[i] == 1)
{

x[i] = 0;
y[i] = 1;

}
else
{

x[i] = 1;
y[i] = 0;

}
}

(a)

load R0 c[i]
cmp R0 #1
b neq pc+4
store 0 x[i]
store 1 y[i]
b uc pc+3
store 1 x[i]
store 0 y[i]

(b)

load R0 c[i]
cmp R0 #1
csleep neq #3
store 0 x[i]
store 1 y[i]
csleep uc #2
store 1 x[i]
store 0 y[i]

(c)

Fig. 1. (a) an example of loop code, (b) assembly code of the loop body
using branchs, and (c) assembly code of the loop body using SFP.

SIMD, and MIMD. In full SIMD, all PEs execute the same
instruction (or have the same configuration) at a time. There
can be various implementations of partial SIMD. For example,
PEs on the same column can have different instructions, but
PEs on the same row execute the same instructions. In MIMD,
all PEs can execute different instructions at the same cycle.
Since using SFP in full SIMD mode is trivial (Section III-B),
we assume in this paper that our target architecture is used
in partial SIMD or MIMD mode. Partial SIMD and/or MIMD
modes are frequently exploited by many CGRAs including
MorphoSys [3], REMARC [2], PADDI [1], and FloRA [6],
[13].

SFP mechanism is implemented on PEs as suggested in [9].
Each PE is in either of awake and sleep states. Instructions
are executed normally in the awake state but aborted in the
sleep state. The transitions between the two states are made
by sleep instructions and the sleep period counter.

B. Mapping Issues on CGRAs
If only one PE (or full SIMD mode of our target archi-

tecture) is considered for mapping one iteration of a loop,
generating code for SFP will be very straightforward. Simple
replacement of branch instructions by sleep instructions can
generate correct and efficient code for SFP [9]. Fig. 1 shows
an example of original C code, the corresponding assembly
code obtained through compilation using branch instructions,
and the one obtained by using SFP.

For CGRAs that use partial SIMD and/or MIMD1, however,
there are a number of compilation issues as mentioned in
Section I, which arise because (1) multiple PEs can be
used to map one iteration and (2) a PE can interleave the
executions of multiple conditionals. To ensure correctness and
also maximize performance, it becomes clear that one should
not shuffle operations from different conditionals. In the next
section we present our technique to run them in parallel while
keeping them separated.

Although multiple conditionals in one loop may seem rare
in the initial code, simple loop transformations such as loop
unrolling can multiply the number of conditionals. Since such
multiple conditionals can be performed at the same time,
which is very common, mapping them properly is especially
important to maximize the effectiveness of loop unrolling.

IV. PROPOSED MAPPING FRAMEWORK

A. Overall Flow
Fig. 2 illustrates the overall flow of our framework for

mapping loops with control flow on SFP-based CGRAs. It

1There is no difference between partial SIMD and MIMD modes during
mapping in that several PEs is considered for mapping one iteration.

Fig. 2. The mapping framework on SFP-based CGRAs.

starts from IR (intermediate representation), which can be
obtained easily by frontend tools. The framework largely
consists of two parts. The first part converts IR to CDFG
(control data flow graph), extracting parallelism on the way.
The second part takes the CDFG and allocates PEs to different
parts of the CDFG (each part is a DFG) so that each part can
be mapped separately in a temporal or a spatial manner using
known mapping algorithms.

B. From IR to CDFG
1) CDFG Generation: The IR for a loop body is given

as a CFG of DFGs, where each node (DFG) represents a
basic block. Fig. 3a illustrates the CFG of a loop body, which
contains one nested-if construct followed by a simple if-else.

We first transform the CFG to our CDFG representation so
that the control structure and parallelism can be captured more
explicitly. We use a hierarchical CDFG defined as follows.
Each node of the CDFG is a block of either of two types:
unipath and multipath. A unipath block is simply a DFG,
whereas a multipath block contains one or more CDFGs with
a condition for each CDFG. Fig. 3b illustrates the CDFG
corresponding to the IR in Fig. 3a. In the figure, ovals, solid
round boxes, and dashed ones represent DFGs, blocks, and
CDFGs, respectively. Directed edges indicate data dependency
between two blocks. Note that the edges in Fig. 3b are obtained
through data flow analysis and are different from those in
Fig. 3a.

To transform an IR to a CDFG representation, we first
identify conditionals to generate CDFGs at lower levels of
hierarchy (see Fig. 3b). Since multipath blocks can contain
other multipath blocks in such lower level CDFGs, nested-if
structures can be naturally represented.

2) Exploiting Parallelism: We then update data dependence
among blocks, which may reveal parallelism between blocks.
In Fig. 3b, if DFGs D, E0, and E1 are not dependent on
B0, B1, or C0, we can remove the dependence edge between
them, making D an immediate successor of A as illustrated in
Fig. 3c. In addition, we exploit more parallelism by extracting
operations from A or F if they have no dependency with any
operation in the conditionals. We separate those operations out
as new DFGs (G and H) as shown in Fig. 3c.

C. Separation
To ensure correctness and maximize performance, we map

operations from different conditionals separately either in
temporal or spatial manner, which can be achieved by DFG
grouping and PE-to-DFG allocation. A DFG group is defined
as a set of DFGs running in parallel. We group DFGs and order
groups as a list. Within a group, we allocate different PEs to



(a) A loop body repre-
sented as a CFG of DFGs

(b) Identifying conditionals (i.e.,
fork-join structures)

(c) Exploiting parallelism

Fig. 3. Conversion process from IR to CDFG.

different DFGs, which corresponds to spatial separation. The
groups are put into a list in the order of their generation, which
corresponds to temporal separation.

When grouping DFGs, we need to consider two aspects.
If many DFGs are put into one group so that they can run
in parallel, it can help increase performance especially when
each DFG has low instruction-level parallelism. On the other
hand, if too many DFG are in one group, registers can be
spilled, resulting in performance reduction. Thus our strategy
is to assign just enough number of PEs to each DFG to avoid
register spills and then to group DFGs as long as PEs are
available. Therefore we first estimate the register requirement
of each DFG, followed by DFG grouping and PE-to-DFG
allocation.

1) Register Requirement Estimation: The register require-
ment of a CDFG is the maximum of all the register re-
quirements of its blocks. For a unipath block, its register
requirement is that of its DFG. For a multipath block, its
register requirement is the maximum of those of its CDFGs.
Thus we only need to obtain the register requirement of DFGs.
To calculate the upper bound of the number of registers needed
for a DFG, we run a scheduler on the DFG without doing
detailed mapping such as operation-to-PE binding and register
binding. This is because scheduling is enough to calculate the

upper bound of the register usage (in our target architecture,
the binding processes do not affect the register usage).

2) DFG Grouping and PE-to-DFG Allocation: Based on
register requirements, we calculate PE requirements of ready
DFGs considering available number of registers. If an archi-
tecture has four PEs and total eight registers are available now
and if a DFG requires three registers, then the PE requirement
of the DFG is two since there are two available registers per
PE on the average (in the later scheduling and binding phase,
if the actual number of available registers is different from the
average, then we may have to take extra cycles to move data
around). After that, grouping is performed in a way similar to
heaviest-first selection in the knapsack problem. That is, DFGs
are selected with most PE requirement first and packed into
a sack while the capacity of the sack is not exceeded. After
packing one sack, we update the number of registers that will
be available after the execution of the previous group. And
then we pack another sack by repeating the above processes.

D. CDFG Mapping
CDFG mapping flow is shown in Fig. 2 surrounded by

the dotted line. Differing from conventional DFG mapping
flow, our framework requires two more simple processes.
First, after selecting a DFG group, we route their input
data that are not in the PEs assigned to their DFGs. Also,
for conditionally executed DFGs, state-controlling operations
(sleep instructions) are inserted at the entry of the DFGs.

After the two processes, mapping a DFG to a set of PEs
can be done using known mapping algorithms (e.g., [14]–[17]).
Since our framework solves the problem of handling CDFG
by separating control flow and data flow, control flow needs
not be considered during data flow mapping, thus conventional
algorithms can be easily integrated into our framework.

V. EXPERIMENTS

A. Experimental Setup
We used a CGRA named FloRA [6], [13] as the target

architecture. It has an 8x8 array of PEs, and the eight PEs in
each row can share the same instruction in a pipelined manner
(i.e., partial SIMD mode). We implemented the CGRA with
SFP in Verilog RTL and successfully synthesized it at 500MHz
using TSMC 45nm technology. Its functionality was verified
with gate-level simulation [9].

We extended the LLVM compiler infrastructure [18] to
implement our compilation framework. Clang compiler [19]
was used as the frontend tool to obtain IR. For the DFG
mapping we used a variant of list-scheduling-based mapping
algorithm that performs scheduling, operation-to-PE binding,
and register binding all at once, similarly to [14] except that
we do not adopt modulo scheduling. However, other mapping
algorithms can also be used as mentioned in Section IV-D.

B. Target Applications
Any kernel having control flow can be a target application.

Especially, parallel conditionals often appear as a result of loop
unrolling, although they can also appear within a single iter-
ation. Thus, we experimented with the following applications
with various unrolling factors (1,2,4, and 8).

• Clipping (clip): it saturates values into the predefined
ranges.

• Sum of absolute differences (sad): it calculates the sum
of absolute differences between pairs of integers.

• Shift instead of division (shift): it divides the given
integers by 16 using shift operations. If the integer is
negative, then control flow is needed.



Fig. 4. Comparison of mapping results on performance. The upper X axis
means the unrolling factors. The values are normalized to baselines. A baseline
of each example is the case when unrolling factor is 1 and the naı̈ve approach
is used.

• SECDED decoding (secded): it means single-error-
correction-and-double-error-detection.

C. Verification of Mapping Framework
We verified the functional correctness of the proposed

mapping framework by simulating mapping results obtained
from the framework on FloRA at RTL using ModelSim. We
tested with total 16 cases (4 examples with 4 unrolling factors
for each), and confirmed that our framework works correctly
in all cases.

D. Quality of Mapping Results
We need to check our framework to see if it really exploits

parallelism among multiple conditionals well. It is hard to
measure the relative quality of mapping results since this is the
first work for compiling applications using SFP, but one way is
to compare with a naı̈ve approach where multiple conditionals
are handled sequentially. The comparison results are shown in
Fig. 4. We assume that there are total 64 iterations. 8-way
SIMD is supported in the architecture.

In the figure, all the examples show a similar tendency, but
the results of ‘sad’ show what we want to do in this paper.
Each iteration in ‘sad’ has low instruction-level parallelism so
there exist many idle PEs if it executes only one iteration in
a column (8 PEs). Thus, we unroll the loop to increase the
utilization. However, if structures are serialized in the naı̈ve
approach, thus unrolling does not give enough benefit. On the
other hand, our proposed method fully parallelizes eight if
structures in one column, maximizing benefit from unrolling.
The average improvement of our approach for the cases with
unroll factor of 8 is 2.21 in the harmonic mean. Note that our
work is irrelevant to how much benefit loop unrolling gives,
but tries to maximize the performance given that a loop is
unrolled.

VI. CONCLUSION

In this paper we presented a compilation framework for
CGRAs that relies on SFP for conditional execution. While
SFP can remove wasteful power consumption on issuing/
decoding instructions from conventional full predication, com-
pilation becomes more challenging to handle multiple con-
ditionals. Our technique uses a new CDFG structure that
can succinctly capture the parallelism existing between condi-
tionals, and also includes an efficient mapping algorithm for
the CDFG. Especially, by separating the handling of control
flow and data flow, it is also possible to be integrated with
conventional mapping algorithms.

The correctness of mapping results is verified on the real
architecture in RTL simulation and our experimental results
demonstrate that our framework succeeded in finding and
exploiting parallelism between multiple conditionals, thereby

leading to 2.21 times higher performance than the naı̈ve
approach.
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