
Exploiting Replicated Checkpoints for Soft Error

Detection and Correction

Fahrettin Koc, Kenan Bozdas, Burak Karsli, Oguz Ergin

Department of Computer Engineering

TOBB University of Economics and Technology

Ankara, TURKEY

{fahrettin.koc, kbozdas, ibkarsli,oergin}@etu.edu.tr

Abstract—Register renaming is a widely used technique to

remove false dependencies in contemporary superscalar

microprocessors. A register alias table (RAT) is formed to hold

current locations of the values that correspond to the

architectural registers. Some recently designed processors take a

copy of the rename table at each branch instruction, in order to

recover its contents when a misspeculation occurs. In this paper

first we investigate the RAT vulnerability against transient

errors. Then we analyze the vulnerability of RAT checkpoints

and propose two techniques for soft error detection and

correction utilizing redundantly taken copies of the entries whose

content is the same with the previous and/or next checkpoints.

Simulation results of the spec 2006 benchmarks reveal that on

the average RAT vulnerability is 25% and checkpoint

vulnerability is 6%. Results also reveal that redundancy exists at

sequential checkpoint copies and can be used for error detection

and correction purposes. We propose techniques that exploit this

redundancy and show that faults in 41% of all checkpoints and

44% of rolled-back checkpoints can be detected and errors in

33% of the rolled-back checkpoints can be corrected. Since we

exploit the already available storage, proposed error detection

and correction techniques can be implemented with minimal

hardware overhead.

Keywords— Microprocessors, Register Rename, Checkpoint,

RAT Vulnerability, Soft Error, Error Detection and Correction

I. INTRODUCTION

ALPHA particles released by packaging radioactive

impurities and neutrons caused by cosmic particles coming

from outer space are known to cause transient errors in

contemporary microprocessors [8]. Capacitive nodes of the

processor storage components such as SRAM bitcells and

latches are the most sensitive parts to these particle hits. These

hits may cause single or multi-bit transient errors since they do

not cause permanent defects in the hardware and hence are

called soft errors in the literature.

Contemporary microprocessors use performance boosting
techniques like out-of-order execution, deep pipelines, and
dynamic scheduling. Moreover, almost all contemporary
processors use register renaming in order to cope with false
data dependencies. Register renaming technique brings the use
of a Register Alias Table (RAT) where all architectural to
physical register mappings are stored.

978-3-9815370-0-0/DATE13/©2013 EDAA

Speculative execution is also another technique by taking
the advantage of the information about the taken or not taken
history of the conditional branches. Any speculative path with
mispredicted conditional branch would need a proper roll-back
mechanism for returning to a safe state just before the path.
This roll-back mechanism can be constructed as a reorder
buffer (ROB) based or checkpoint-based implementation.

Since errors are hazardous for correct program flow our
main motivation is the identification and measurement of the
most vulnerable areas against soft errors in the checkpoint-
based RAT recovery methods. In this paper we start by
investigating the RAT vulnerability against transient errors.
The RAT contains current mappings of the architectural to
physical registers and hence is important for correct execution.
Then we analyze the vulnerability of the RAT checkpoints
taken for recovery purposes. A checkpoint may also be crucial
if it is rolled-back and written onto the RAT. Finally, we
propose two techniques for soft error detection and correction
utilizing redundant information stored in consecutive
checkpoints. Conventional error detection and correction
methods utilize redundant storage [12] with increased area
overhead for the copies. However, our technique exploits
already existing redundancy between consecutive RAT copies.

The rest of the paper is organized as follows: the discussion
about the related work is placed in the Section II. Two main
misprediction recovery approaches are detailed in section III.
In section IV, vulnerability analysis on RAT and its
checkpoints is given. Checkpoint assisted error detection and
correction schemes and their hardware implementations are
presented in section V. We present our experimental results in
section VI. Finally, we offer our concluding remarks in the
same section VI.

II. RELATED WORK

RAT and checkpoints can be implemented as RAM or
CAM array. RAM array table is fast and scalable whereas
CAM array [11] requires smaller storage area and is easy to
recover. Checkpoint for a CAM array table need only copy of
the valid bits whereas for a RAM array RAT whole table is
copied. Random access buffer [2] checkpointing recovers in 1
clock cycle and we selected this scheme in our hardware
implementation but our techniques can also be adapted to
sequential access buffer scheme. Zeng et.al. [6] suggests CAM
array RAT and checkpoints and storing bit vectors instead of
storing whole RAT as in RAM array. However, recovery

 Fig. 2. Architectural Vulnerability Factor (AVF) for RAT Fig. 3. AVF for RAT Checkpoints

Fig. 1. Checkpoint entries with Same Bit

mechanism needs multiple cycles for reconstructing the rename
table and hence causes roll-back performance degradation.

There are many contributions including AVF analysis like
the studies of Mukherjee et. al. [13] which proposes AVF
analysis on computer elements, however to the best of our
knowledge the RAT and checkpoint AVF analysis are firstly
introduced in this paper. Montesinos et.al. [9] investigates the
register lifetime for soft error analysis on register files. The
error resilience in fault tolerant systems is generally sustained
with adding redundancy by copying data. As an illustration,
storage-based systems use two copies for error detection and
three copies for error correction where the latter is a well-
known example of the triple modular redundancy mechanism
[12]. However, such systems have hardware cost for extra
storage and comparison circuitry. Redundant information in
RAM-based sequential RAT checkpoints is the main
inspiration point of our work. There are also several studies by
using architectural implementations as an whole unit of error
detection and correction like Sorin’s contribution, an error
detection unit called Argus [12]. Furthermore, there exist some
well known techniques like exploiting parity bits in case of
single error occurrence commonly used applied to current
systems because of their high success rates. In our work, we
exploit already existing redundancy in these copies of RAT for
soft error detection and correction without extra hardware
overhead for storage in order to build up resilient systems
against multiple errors.

III. MISPREDICTION RECOVERY

Superscalar microprocessors use speculative flow control
like branch target speculation to increase performance further.
However, on a mispredicted branch this speculative flows need
to recover to the last known safe state. This can be done by
recovery mechanisms utilizing reorder buffer (ROB) or taking
checkpoints of the state before branch. ROB-based
mechanisms are wait, walk forward and backwards [5].
Checkpoint-based mechanisms can be implemented as
sequential access (shift registers) [9] and random access [3].
The simplest way to recover from a misprediction is to keep
the information for the history of the committed instructions.
The table that holds the location of the commited values of the
architectural registers is called the commit rename table (CRT).
A scheme that makes use of the CRT to recover from branch
mispredictions, starts from the beginning of the ROB and waits
until the mispredicted branch commits. Once the branch is
committed, contents of the CRT, which contains the last known
safe state, are copied onto the RAT. Checkpoint mechanism is
taking the snapshot of the RAT [14] when a conditional branch
arrives to the rename stage. Recovery with checkpointing from

a misprediction is a faster solution but brings higher
complexity in circuit level compared to ROB-based
counterparts. RAT and checkpoints can be RAM array where
entries are accessed by index with architectural register ids [2],
[5]. In a CAM array RAT, the number of entries equal to the
number of physical registers and indexed with physical register
ids [1]. In RAM array method, the whole RAT table is
checkpointed, whereas in CAM array RAT only valid bits
vector is needed to be copied. Checkpoints can be accessed in
sequential or random access fashions [2]. Taking a snapshot of
the status at each branch may create redundant states to be
copied consecutively. These redundancies will be used to
detect and/or correct a soft error.

IV. VULNERABILITY ANALYSIS

RAT Vulnerability: RAT contains current architectural to
physical register mappings and hence is critical for the correct
execution. Any error on this table may not only cause data
corruption but also incorrect flow control. As an illustrative
case, vulnerability of an entry in this table is directly related to
the current mapping being requested by any other instruction’s
source or not. In other words if there is no dependent to the last
mapping of an architectural register then any error on this
mapping entry would be invisible in program outcome. In
another case, a branch misprediction may cause a roll-back and
effectively vulnerability of the table entries in the speculative
path will be zero. Consequently, average AVF of each
architectural to physical register mapping can be determined
according to net lifetime of the mapping in a program which is
the difference between total lifetime in execution and total
speculative lifetime on mispredicted branch executions. The
AVF of all mapping entries corresponding to each architectural
register is found for AVF of the RAT.

Checkpoint Vulnerability: Considering the random access
buffer checkpoint mechanism proposed in [2], M cell
corresponds to typical RAT without any other specific
condition and its vulnerability can be determined as in (2).
However, vulnerability of the checkpoints (C) is slightly
different. Vulnerability is zero for unused checkpoints since
they have no effect on the program flow. Vulnerability of the
rolled-back checkpoints depends on the duration starting from
the taken time to the roll-back time.

The AVF of the RAT for each SPEC2006 benchmark

programs are given in Fig. 2. The AVF of the RAT is

minimum 14.2% for specrand with 32-checkpoint

configuration maximum 49.4% for leslie3d with base

configuration and 25% on the average. RAT vulnerability is

the average of active life cycle of each entry in the RAT. Life

a) 14-bit Comparator for on-the-demand check

Fig. 5. b) Error correction circuit for on-the-demand scheme

Fig. 4. 7-bit Comparator for on-the-fly check

Fig 1

cycle for an entry in the RAT begins with a rename and ends

with the last read from the corresponding architectural

register. The AVF of checkpoints for each benchmark

program is given in Fig. 3. Vulnerability of the checkpoint

begins at the taking a copy of RAT and ends with roll-back.

Checkpoint AVF is low for some benchmarks where the

number of roll-backs is small. Vulnerability increases with the

number of checkpoints since more checkpoints allows more

in-flight branches and decreases stalls. As a result total

lifetime of the checkpoint in the storage area increases.

V. CHECKPOINT ASSISTED ERROR DETECTION

AND CORRECTION

 Considering an architectural register between two

consecutive conditional branches, checkpoint entries in some

rows (architectural to physical mappings) can be same. This

situation occurs if there is no rename operation took place for

the corresponding entries and corresponding physical registers

are not released. An error detection algorithm may utilize this

redundancy in the consecutive checkpoints. We define

comparable entries (CE) as any individual entry in the table

has a redundant copy at its neighborhoods.

We define same bit which guarantee that consecutive are

real comparable entries. For instance, assume that two

consecutive entries have the same value X. Having the same

value does not guarantee that these two entries are

comparable. In order to assure comparable entries two distinct

situations must be satisfied. Firstly, there is no new rename for

the corresponding register since last conditional branch point.

Secondly, this same bit must act as a valid bit for each

checkpoint to indicate corresponding checkpoint is not flushed

due to a mispredicted older branch or its speculative branch is

not committed. A conceptual view of the checkpoints with

same bit is given in Fig. 1. We propose two different schemes

at distinct phases for error detection in RAT, namely On-the-

fly Check and On-Demand Check.

On-the-fly Check: First scheme takes place when there is a
speculative flow in the program where a checkpoint is created
and stored in checkpoint space. We are proposing to compare
the current copy of each RAT entry with the previous copy if it
is known that there is no register rename for the corresponding
register since last checkpoint. We add an extra same bit to each
entry in the table that indicates current and next copy are
comparable as illustrated in Fig. 4. Each checkpoint updates
these control bits in the previous checkpoint copy which will
be utilized in the second scheme. The circuit is given in Fig. 4.

On Demand Check: Comparison at this scheme starts when
there is a roll-back request for the corresponding checkpoint.
During roll-back, each table entry is compared with the
corresponding CEs in either preceding or next checkpointed
tables. If same bit is ‘1’ for the entry in the requested
checkpoint then the corresponding entry in the next checkpoint
would not be compared. This ‘1’ indicates that there was a
rename between these two neighbor checkpoints. If same bit is
‘0’ these two entries are CEs. There are 3 possible situations.
First, there are no CEs in the neighborhood of the current entry.
It is not possible to detect any errors just by comparison. In the
second case, there is one CE and comparison reveals error if
exist. If any error is detected this could be flagged to a
recovery mechanism. For the last case there are 2 CEs and
error can be detected and corrected by comparing these three
consecutive copies. If any error is corrected and there is no
other detected error then it is safe to recover with the
corresponding checkpoint. The circuit is given in Fig. 5.

Hardware Implementation: We full custom designed RAT
and checkpointed tables as random access buffer scheme
proposed in [2] design for UMC 90nm technology library with
Cadence Virtuoso. RAT cell has eight read and four write ports
as required in a 4-way machine. Checkpoint cells each have
one port for read and write as only one checkpoint can be taken
or rolled-back at a time. Each entry in RAT cell has seven bits
for mapping 128 physical registers. Checkpointed table cells
each have one read/write port. Each entry in checkpoint cell is
eight bits where one same bit is added to indicate that current
cell and the next cell are comparable entries at the
corresponding rows. Roll-back and branch resolution events

Fig. 7. One CE and Two CEs in Neighborhood Percentage for On-demand Scheme Fig. 8. Total AVF Reduction by Proposed Techniques

indicating that current cell has a valid copy of the RAT for an
unresolved conditional branch.

The area of the 64x7 RAT checkpoint SRAM with one
read/write port is 24,023 µm

2
 and 25,492 µm

2
 for a 64x8

checkpoint table. Adding a same bit to each entry in table for
error analysis purpose brings 6% area overhead. Adding
comparison circuit for on-the-fly scheme brings 5857,95 µm

2

and for on-demand scheme brings 10406.4 µm
2
 extra area.

Critical path delay is 208 ps for the baseline checkpoint table
whereas it is 217 ps with the same bit added. Adding one bit
makes critical path longer and brings 4% delay overhead.
Adding an extra bit for error analysis will not alter precharge,
decoder, sense amplifier, and write drive energy consumptions.
Only word select energy will slightly increases since getting
longer. Word select energy for the baseline table is 95.56 fJ
and for the proposed table is 96.91fJ.

VI. RESULTS AND DISCUSSIONS & CONCLUSION

The percentage of the CEs in on-the-fly checking scheme

is given in Fig. 6. The number of CEs is almost constant with

the number of checkpoints for each benchmark since it

depends on only the program flow. Percentage is found by

averaging on the number of total checkpoints. The percentages

of one CE and two CEs for on-demand scheme are given in

Fig. 7 respectively. Benchmark simulation results reveal that

minimum 30.22%, maximum 53.41%, and average 44.82% of

the errors can be detected for the on-demand scheme.

Moreover, minimum 0.42% (excluding 2 checkpoints since

not applicable), maximum 49.55%, and average 33.38% of the

errors can be corrected for on-demand scheme. Percentages

are found by averaging on the number of total roll-backs. The

AVF reduction results achieved by using the proposed

techniques are illustrated in the Fig 8. As the figure reveal, on

the average across all benchmarks AVF is reduced by more

than 32% while individual benchmarks, such as the hmmer,

show benefits of as high as 42%.
As a conlusion in this paper, we analyzed the simulation

results for the vulnerability of the RAT against soft errors and
investigated the vulnerability of the RAT checkpoints for RAM
array structure accessed as in RAB. Cycle accurate simulations
revealed that average RAT vulnerability is 25% and average
RAT checkpoint vulnerability is 5.66% for aforementioned
SPEC 2006 benchmarks. Then, we proposed two techniques
for error detection and correction utilizing the redundant
information in sequential checkpoints. On the average on-the-
fly check is capable of detecting 41.5% of the errors by
checking the current checkpoint with the previous. On-demand
check is capable of detecting almost half of the errors on a roll-
back and of correcting one third of the errors occurred in one of

the checkpoint in neighborhood of the rolled-back checkpoint.
We have full custom designed the RAT table and checkpoint
table and comparators for proposed techniques. Adding an
extra control bit for error check brings little area and delay
overhead and small energy consumption.

VII. ACKNOWLEDGEMENTS
This work was supported in part by the Scientific and

Technological Research Council of Turkey (TUBITAK) under
Grant 112E004 and in framework of COST ICT Action 1103.

REFERENCES
[1] E. Safi, A. Moshovos, and A. Veneris, “A physical level study and

optimization of CAM-based checkpointed register alias table,” in Proc.
IEEE Int. Symp. Low Power Electron. Des., pp. 233–236, Aug. 2008.

[2] E. Safi, P. Akl, A. Moshovos, A. Veneris, and A. Arapoyianni, “On the
Latency, Energy and Area of Checkpointed, Superscalar Register Alias
Tables,” in Proc. IEEE Int. Symp. Low Power Electron. Des, 2007

[3] E. Safi et al., “On the Latency and Energy of Checkpointed Superscalar
Register Alias Tables,” IEEE Transactions on VLSI vol.18, no.3, 2010.

[4] H.Zeng, M. T. Yourst, and K. Ghose, “An energy-efficient
checkpointing mechanism for out of order commit processor”, in Proc.
14th ACM/IEEE Intl. Sym. on Low Power Electron. Des., 2009.

[5] K. C. Yeager, “The MIPS R10000 Superscalar Microprocessor”, in
Proc. of the 29th Int. Symp. on Microarchitecture vol. 16, no. 2, 1996.

[6] N. Binkert et.al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol.39, no.2. pp.1–7, May 2011.

[7] P. Montesinos, W. Liu, J. Torrellas, “Using Register Lifetime
Predictions to Protect Register Files Against Soft Errors,” 37th
International Conference on Dependable Systems and Networks 2007

[8] R. C. Baumann, “Soft errors in advanced computer systems,” IEEE Des.
Test. Comput., vol. 22, no. 3, pp. 258–266, May/Jun. 2005.

[9] R.E. Kessler, “The Alpha 21264 Microprocessor,” Proceedings of the
32nd International Symposium on Microarchitecture, vol. 19, 1999

[10] R.E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM Journal of R&D, vol.6, no2, 1962

[11] S. S. Mukherjee et al. “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance
Microprocessor”, in Proc of the 36 Int. Symp. on Microarchitecture,03

[12] D. J. Sorin et al. “ARGUS: Low-Cost, Comprehensive Error Detection
in Simple Cores”, IEEE Micro 2008

[13] T. N. Buti et. al., “Organization and implementation of the register-
renaming mapper for out-of-order IBM POWER4 processors”, IBM
Journal of Research and Development, vol.49, no.1, pp. 167-188, 2005.

[14] W. Hwu and Y. N. Patt. Checkpoint repair for out-of-order execution
machines. In Proceedings of the 14th ISCA, June 1987

Fig. 6 Percentage of Comparable Entries for On-the-fly Scheme

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92

