
Is TSV-based 3D Integration Suitable for Inter-die
Memory Repair?

Mihai Lefter, George R. Voicu, Mottaqiallah Taouil, Marius Enachescu, Said Hamdioui and Sorin D. Cotofana
Delft University of Technology, Delft, The Netherlands

E-mail: {M.Lefter, G.R.Voicu, M.Taouil, M.Enachescu, S.Hamdioui, S.D.Cotofana}@tudelft.nl

Abstract—In this paper we address lower level issues related
to 3D inter-die memory repair in an attempt to evaluate the actual
potential of this approach for current and foreseeable technology
developments. We propose several implementation schemes both
for inter-die row and column repair and evaluate their impact in
terms of area and delay. Our analysis suggests that current state-
of-the-art TSV dimensions allow inter-die column repair schemes
at the expense of reasonable area overhead. For row repair,
however, most memory configurations require TSV dimensions
to scale down at least with one order of magnitude in order to
make this approach a possible candidate for 3D memory repair.
We also performed a theoretical analysis of the implications of the
proposed 3D repair schemes on the memory access time, which
indicates that no substantial delay overhead is expected and that
many delay versus energy consumption tradeoffs are possible.

I. INTRODUCTION
Recent enhancements in Integrated Circuits (ICs) manu-

facturing process enable the fabrication of three dimensional
stacked ICs (3D-SICs) based on Through-Silicon-Vias (TSVs)
as die-to-die (D2D) interconnects, which further boost the
trends of increasing transistor density and performance. 3D-
SIC is an emerging technology, that, when compared with
planar ICs, allows for smaller footprint, heterogeneous inte-
gration, higher interconnect density between stacked dies, and
latency reduction mostly due to shorter wires [1].

3D memories have been proposed ever since the technology
was introduced, one of the reason being their regular structure
that allows them to be easily folded accross bitlines/wordlines
and spread over multiple layers in a 3D embodiment [2].
Moreover, the typical area of a System on a Chip (SoC) is
memory dominated, and, as the ITRS roadmap predicts that
the trend of memory grow continues [3], it is expected that
memories will play a critical role in 3D-SICs as most of the
layers in the stack are likely to be allocated for storage.

As technology keeps shrinking towards meeting the re-
quirements of increased density, capacity, and performance,
IC circuits, memory arrays included, are more prone to degra-
dation mechanism [4], and different sorts of defects during
the manufacturing process [5]. In addition, the utilization of
the still in its infancy 3D stacking technology increases the
risk of low yield. To deal with this issue several works pro-
posed inter-die memory repair, i.e., sharing redundant elements
(rows/columns) between layers, in an attempt to increase the
compound yield of memories [6], [7], [8], [9], [10], [11].

Up until now, all the work targeting inter-die memory
repair primarily discussed the idea in principle, with no real
implications being studied. The proposed approaches have
been only evaluated via fault injection simulations and the
obtained repair rate improvements form an upper bound. In
order to achieve inter-die repair, a certain infrastructure has to

be embedded into the memory such that spares can be made
available to memory arrays in need that are located on remote
dies. The added infrastructure must not affect the normal
operation of the memory and may incur certain penalties in
terms of area and/or delay which have not be studied.

In this paper we build upon previous work proposals
and we further investigate the real implications of inter-die
memory repair based on redundancy sharing. We first provide
a classification of the possible access scenarios to memory
arrays stacked in a 3D memory cube. Next, we propose several
implementation schemes both for inter-die row and column
repair in which we detail the circuit infrastructure required to
support these access scenarios. For each scheme we propose
the infrastructure, highlight its advantages and disadvantages,
and discuss its impact on memory area and delay.

The area overhead is mostly dependent on the TSV size
rather than on the extra logic. From our analysis it results that
current state-of-the-art TSV dimensions allow inter-die column
repair schemes with reasonable area overhead. For row repair,
however, most memory configurations require TSV dimensions
to scale down with at least one order of magnitude to make
this approach applicable in practical 3D memory systems. We
also performed a theoretical analysis of the implications of
the proposed 3D repair schemes on the memory access time.
Assuming a 20ps TSV delay our analysis indicates that for
row repair the overhead is negligible and for column repair
it can be in the same order of magnitude. This indicates that
no substantial delay overhead is expected and that many delay
versus energy consumption tradeoffs are possible.

The remaining of the paper is organized as follows. Sec-
tion II briefly describes general memory repair techniques
and related work regarding 3D memory repair. Section III
defines the 3D memory repair architecture and the associated
framework for inter-die redundancy. Section IV introduces the
circuit infrastructure necessary to support inter-die memory
repair. Section V considers various trade-offs and cost over-
head in terms of area and delay. Finally, Section VI concludes
the paper.

II. REDUNDANCY BASED MEMORY REPAIR
State of the art memory repair relies on the addition

of several redundant resources to the memory arrays. These
resources do not affect the interface or capacity of the memory,
but can be later on utilized to substitute memory cells affected
by, usual, permanent errors. Based on the physical placement
of the spare elements we can broadly distinguish two types,
that are not excluding one another, of memory redundancy:
(i) external redundancy, in which a special smaller memory,
external to the initial one is present, and where, based on a
fault table, bad addresses are remapped by a Built-In Repair

978-3-9815370-0-0/DATE13/ c©2013 EDAA



Fig. 1: 3D inter-die memory repair - general idea.

Analysis (BIRA) unit [12]; and (ii), internal redundancy, in
which spare elements in the form of redundant rows and/or
columns, are placed inside the memory alongside the normal
columns and/or rows.

In this paper we consider internal redundancy only. Here,
the mechanisms involved for row and column repair are quite
different. For row replacement, detected faulty row addresses
are stored in special registers. Whenever the memory is
accessed, the incoming address is first compared with those
stored in the special registers to check if a defective row is to
be accessed. If this is the case, the output of the comparator
disables the row decoder and activates the spare wordline. For
column replacement, in general, a column switching mecha-
nism is present to isolate the faulty column and to forward
data from non-defective cells [13].

To create extra opportunities for memory repair various
inter-die approaches have been proposed. In [7] a Die-to-Die
(D2D) stacking flow algorithm is presented which assumes
that each die is beforehand locally repaired such that the
number of available (not utilized for local repair) spares are
made available as inputs for the global repair algorithm. This
method for inter-die column replacement is suitable only for
the particular case where arrays are simultaneously accessed
with the same address. A similar D2D stacking approach
is considered in [11] where the die stacking flow is mod-
eled as a bipartite graph maximal matching problem. Several
global D2D matching algorithms without local repair first are
introduced and compared in [8]. An interesting approach
is introduced in [9] where the authors propose to recycle
irreparable dies (i.e., dies with arrays that are not repairable
if only local spares are considered) in order to create good
working memories.

III. 3D INTER-DIE MEMORY REPAIR ARCHITECTURE
The considered memory arrangement resembles a memory

cube, as depicted in Fig. 1. The cube employs 3D array
stacking with the identical memory arrays being equipped with
redundant rows and/or columns. In this organization, a situa-
tion may arise in which arrays with insufficient redundancy
are in the vertical proximity of arrays that still have unutilized
redundant elements. Supporting the replacement of faulty cells
by using redundant resources from arrays from other dies,
i.e., inter-die spare replacement, results in extended memory
reparability rates [8]. This can be observed on the lower part
of Fig. 1, where the top arrays have utilized all their available
spare rows/columns (two in this case) and still have one faulty
row uncovered. However, the bottom arrays can provide the

Fig. 2: Memory partitioning.

necessary spare rows/columns to replace the faulty ones on
the top arrays to make the memory defect free.

We define the arrays that have available spare resources as
spare providers and arrays which make use of the externally
available spare resources as spare consumers. For the 3D
memory repair to function correctly the consumer must be
able to retrieve/store data from/on the provider in a transparent
manner, i.e., the provider must be able to function normally,
despite its spares being accessed by a neighboring die. In
addition, it is important that the inter-die repair infrastructure
does not disrupt the functionality of the memory cube when no
repair takes place. Therefore, the required infrastructure that
assures the memory repair mechanism is highly dependent on
the exact internal structure of the memory arrays.

In order to balance area, delay, and power tradeoffs, a large
memory is usually constructed in a hierarchical manner and is
composed out of several banks, with each bank being further
divided in several arrays. An example is presented in Fig. 2
where the partitioning employs banking and interleaving. Each
bank can be accessed either concurrently with independent
addresses, or sequentially, where one bank is accessed while
the rest remain idle. For interleaving, however, all the subarrays
of a bank are concurrently accessed with the same address.

As the internal organization of the memory cube is defined
at design time, a fixed memory partitioning implies three
exclusive situations in which two memory arrays, a provider-
consumer pair, can be accessed: (i) Idle provider - the two
arrays are located in different banks that are never concurrently
accessed; we use the term idle to denote that the two arrays
are never accessed at the same time; from the consumer’s
perspective this is equivalent with the provider being always
idle; (ii) Busy provider with different access pattern - the
two arrays are located in different banks that are concurrently
accessed with independent addresses; (iii) Busy provider with
same access pattern - the two arrays are part of the same bank
with interleaving, therefore the accessing address is the same.

We add that, although our proposal is general and can in
principle be applied to more than two adjacent dies, in this
paper we consider that inter-die replacement is performed be-
tween exclusive pairs of adjacent dies. The reasons behind this
restriction are as follows: (i) the infrastructure overhead grows
with the number of dies involved in the spare sharing process,
and, (ii) two dies spare replacement is enough to sustain a
satisfactory yield [8], since the die yield has a high value after
repair. In the next section we introduce the infrastructure for
the above identified provider-consumer repair schemes.



(a) (b) (c)
Fig. 3: Inter-die row (a,b) and column (c) replacement infrastructure.

IV. 3D INTER-DIE MEMORY REPAIR INFRASTRUCTURE
In this section we detail the inter-die repair schemes for

each of the three provider-consumer pair scenarios introduced
in Section III for row and column replacement.

A. Inter-die Row Replacement
1) Idle provider: Fig. 3a depicts the situation for the case

in which the provider is idle. On the consumer side, the local
spare row is already allocated and another faulty row needs to
be replaced remotely. A register is required to store its address
(3DFR - 3D Fault Register), in a similar fashion as in the local
replacement scheme. Furthermore, a comparator and several
logic gates are introduced in the design to disable the local row
decoder and to activate the spare wordline on the provider side
whenever the incoming address is equal to the value stored in
3DFR. We propose to place the data TSVs after the column
multiplexer. This requires the column address to be transfered
through TSVs and the column decoder (CD) on the provider
to be enabled. In this manner fewer TSVs are required when
compared to the case when TSVs are placed for every bitline.

2) Busy provider with different access pattern: When both
consumer and provider can be accessed in parallel the con-
straints imposed to the inter-die memory repair interface are
tighter, making the infrastructure more complex. In particular,
when an inter-die replacement occurs, both consumer and
provider need to use the provider’s bitlines, giving rise to a
conflict. For this reason the data TSVs cannot be placed after
the column muxes and extra transistors (denoted by T2 and
T3) are required in every spare memory cell, as in Fig. 3b.

3) Busy provider with same access pattern: A particular
case of provider and consumer parallel access arises when
their address is the same (i.e., in an interleaving organization of
memory banks, see Section III). In contrast with the previous
scheme, the infrastructure can be reduced in terms of logic.
However, each spare cell still needs to be augmented with 4
extra transistors and 2 TSVs. Thus, even if we assume that
future TSV manufacturing process will be greatly improved to
a negligible size, the cell area almost doubles.

B. Inter-die Column Replacement
The general infrastructure required for inter-die column

replacement depicted in Fig. 3c comprises all the cases intro-
duced in Section III. The common part for all the cases consists
of the TSV pair utilized for bitline value transmission. They

are enabled by the switching control block, which needs to be
adapted to control also the inter-die replacement mechanism.

A special TSV is required for every wordline whenever the
provider is busy accessing a different address, or when it is
idle, in order to assert the required wordline for the consumer.
When the provider is busy it is also mandatory to decouple the
provider’s wordline such that no bitline conflict arises because
of multiple wordlines assertion. For brevity this action is not
represented in Fig. 3c. For the case in which the provider
is idle, the TSV required for the wordline activation may be
discarded if the provider’s row decoder is enabled. However,
this requires the consumer’s address to be driven onto the
TSVs. Nevertheless, the gain is a significant TSV reduction.

The easiest and most convenient inter-die column replace-
ment scheme in terms of TSV requirements is by far when
the consumer and the provider are busy accessing the same
address. Here, the same wordline is asserted in both arrays
and no bitlines conflicts occur.

V. DISCUSSION
In this section we discuss the overhead of the 3D inter-die

memory repair schemes in terms of area and delay.
Area represents a sensitive issue in memory design and the

memory cell is particulary the subject of severe scaling. SRAM
bit cell has followed Moores’s law, with an area shrinking rate
of about 1/2 for every generation, reaching 0.081 µm2 for the
22 nm technology [14]. This rate is expected to last even in
the realm of post-CMOS devices [15]. TSVs dimensions are
predicted to scale down too, but not that steep as SRAM bit
cells. The predictions from [16] suggest a gradually decreasing
trend with a shrinking ratio of about 1/4 for every 3 years,
reaching a minimum diameter of 0.8 µm and a pitch of 1.6 µm
by 2018. Nowadays manufactured TSVs have a diameter
bewteen 3 and 10 µm and a pitch of about 10 µm [17], [18],
[19]. From their large size it is clear that TSVs represent the
major contributor to the 3D memory repair area overhead.

Table I presents the TSV requirements for all the scenarios
introduced in Section III. The scenarios that have the least
number of TSVs are “idle provider” for row redundancy and
“busy provider with same access” for column redundancy. All
the other scenarios require a large number of TSVs that make
them absolutely impractical. Even for the row redundancy with
the “idle provider” scenario the practicality is problematic.
Fig. 4 depicts the area of one redundant row and its required



TABLE I: TSV REQUIREMENTS FOR PROPOSED SCHEMES

Memory access scenarios Number of TSVs
Row replacement

Idle provider 2 × spares + 2 × dw + cd bits
Busy provider with different address spares × (2 + 2 × columns)
Busy provider with same address spares × (2 + 2 × columns)

Column replacement
Idle provider 2 × spares + log2(rows)
Busy provider with different address 2 × spares + rows
Busy provider with same address 2 × spares

* dw = data width (data I/O); cd bits = column decoder input bits.

TSVs. The redundant row area is drawn for different tech-
nology nodes using memory widths varying between 128 and
2048 bits. The TSV area is independent of the technology
node and is calculated for a TSV pitch between 0.5 and 3.5
µm and a memory data width of 32 bits. Given that, inter-die
redundancy may be profitable only if the redundant row area
is smaller than the TSV area. Fig. 4 clearly suggests that for
a large TSV pitch inter-die redundancy becomes impractical.

It is interesting be to find the required TSV pitch for
which inter-die row replacement becomes advantageous. For
example, in case the column width is 512 and the data output
width is 32, the TSV pitch must be at most 534 nm. For the
worst case considered configuration, with a column width of
512 and data output width of 64, TSV pitch needs even to
scale further down to 388 nm. Therefore, current TSV sizes
in the order of 3 µm need to be shrinked severely for inter-
die redundancy to be beneficial for a wide range of memory
configurations.

The access time (TN2D) for a normal memory read
operation (Eq. (1)) is determined by: address decoding (Tdec),
wordline generation (TWL), bitlines discharge (TBL), column
multiplexing (Tmux), and data sensing (TSA). If row redun-
dancy is present and the redundant row is accessed the access
time changes to TR2D (Eq. (2)), because the access goes
through the comparator (Tcmp) instead of the decoder. For
3D row redundancy, extra time is required to transfer data
to the consumer through the TSVs (TTSV ), resulting in TR3D

(Eq. (3)). The time overhead for 3D row redundancy (DOR)
can be computed as in Eq. (4).

For 3D inter-die column redundancy, the access time in-
creases as in Eq. (6). Thus, there is always a delay overhead
(DOC) due to TSV propagation and switching time.

TN2D = Tdec + TWL + TBL + Tmux + TSA (1)
TR2D = Tcmp + TWL + TBL + Tmux + TSA (2)
TR3D = TR2D + 2× TTSV (3)

DOR =
max(TN2D, TR3D)−max(TN2D, TR2D)

max(TN2D, TR2D)
(4)

TC2D = TN2D + Tswitching (5)
TC3D = TC2D + Tswitching (6)

DOC =
Tswitching + TTSV

TC2D
(7)

As the delay of a TSV is in the order of 20 ps [20],
we expect the following to hold true: TR2D < TR3D <
TN2D. Therefore, no delay penalty for row repair is expected.
For column repair however, the following inequation holds:
TN2D < TC2D < TC3D. The overhead is determined by the
delay of switching muxes and a TSV (Tswitching + TTSV )
which is expected to be minimal.

Fig. 4: TSV area overhead vs. row area for 32-bit data I/O.

VI. CONCLUSIONS
In this paper, we presented a study of inter-die repair

schemes for TSV based 3D-SICs, i.e., of using repair in the
vertical dimension.The paper provided an overview of general
repair schemes and subsequently, proposed a memory frame-
work for inter-die redundancy based on a provider-consumer
pair scheme. Our analysis suggests that for state-of-the-art
TSV dimensions inter-die column-based repair schemes could
result in yield improvements at a reasonable area overhead. For
row repair, however, most memory configurations require TSV
dimensions to scale down at least with one order of magnitude
to be utilized in 3D memory systems.

REFERENCES
[1] P. Garrou, Handbook of 3D integration : technology and applications

of 3D integrated circuits. Weinheim: Wiley-VCH, 2008.
[2] K. Puttaswamy et al., “3D-Integrated SRAM components for high-

performance microprocessors,” TC, 2009.
[3] “ITRS - System Drivers,” Tech. Rep., 2011. http://www.itrs.net
[4] S. Rusu et al., “Trends and challenges in VLSI technology scaling

towards 100nm,” in VLSI Design / ASPDAC, 2002.
[5] S. R. Nassif, “The light at the end of the CMOS tunnel,” ASAP, 2010.
[6] R. Anigundi et al., “Architecture design exploration of three-

dimensional (3D) integrated DRAM,” in ISQED, 2009.
[7] C. Chou et al., “Yield-enhancement techniques for 3D random access

memories,” in VLSI-DAT, 2010.
[8] L. Jiang et al., “Yield enhancement for 3D-stacked memory by redun-

dancy sharing across dies,” in ICCAD, 2010.
[9] Y.-F. Chou et al., “Yield enhancement by bad-die recycling and stacking

with though-silicon vias,” TVLSI, 2011.
[10] C.-W. Wu et al., “On test and repair of 3D random access memory,” in

ASPDAC, 2012.
[11] S. Lu et al., “Yield enhancement techniques for 3-dimensional random

access memories,” Microelectronics Reliability, 2012.
[12] N. Axelos et al., “Efficient memory repair using cache-based redun-

dancy,” TVLSI, 2011.
[13] M. Horiguchi et al., Nanoscale Memory Repair. Springer, 2011.
[14] K. Smith et al., “Through the looking glass: Trend tracking for ISSCC

2012,” M-JSSC, 2012.
[15] H. Iwai, “Roadmap for 22nm and beyond,” Microelectronic Eng., 2009.
[16] “ITRS - Interconect,” Tech. Rep., 2011. http://www.itrs.net
[17] C. L. Yu et al., “TSV process optimization for reduced device impact

on 28nm CMOS,” in TVLSI, 2011.
[18] G. Katti et al., “3D stacked ICs using cu TSVs and die to wafer hybrid

collective bonding,” in IEDM, 2009.
[19] H. Chaabouni et al., “Investigation on TSV impact on 65nm CMOS

devices and circuits,” in IEDM, 2010.
[20] D. H. Kim et al., “Through-silicon-via-aware delay and power predic-

tion model for buffered interconnects in 3D ICs,” in SLIP, 2010.

http://www.itrs.net
http://www.itrs.net

