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Abstract—Automatic C-to-RTL (C2RTL) synthesis can greatly benefit
hardware design for streaming applications. However, stringent through-
put/area constraints, especially the demand for power optimization at
the system level is rather challenging for existing C2RTL synthesis
tools. This paper considers a power-aware C2RTL framework using
voltage-frequency islands (VFIs) to address these challenges. Given the
throughput, area, and power constraints, an MILP-based approach is
introduced to synthesize C-code into an RTL design by simultaneously
considering three design knobs, i.e., partition, parallelization, and VFI
assignment to get the global optimal solution. A heuristic solution is
also discussed to deal with the scalability challenge facing the MILP
formulation. Experimental results based on four well known multimedia
applications demonstrate the effectiveness of both solutions.

I. INTRODUCTION

Directly synthesizing the C-based application programs to hard-

ware, i.e., C-to-RTL (C2RTL) synthesis [1] can greatly benefit

system-on-a-chip (SoC) design by releasing the time-to-market pres-

sure and filling the gap between hardware productivity and technol-

ogy capacity. This hasled to a boom in academic and commercial

C2RTL tools [2], [3], as well as C2RTL based designs [4].

However, existing C2RTL tools face challenges in terms of synthe-

sis result quality for large C programs [5], especially under stringent

constraints from the user. An efficient architecture and high-level opti-

mization are need. Furthermore, low power consumption is essential

for SoC design, and power optimization at the system level has a

larger design space, which contributes more power reduction than

any lower level. It can be extremely beneficial if power optimization

can be considered at the C-program level using voltage-frequency

islands (VFIs) [6], which is effective to reduce power consumption

in the system.

To tackle these challenges, this paper proposes a power-aware

C2RTL framework based on VFIs. Given throughput, area, and power

constraints, a large C code is partitioned into smaller functional

blocks to be synthesized using an existing C2RTL tool. The synthe-

sized modules may also be parallelized to improve throughput. These

paralleled modules are then assigned to proper VFIs to reduce power.

We consider these three design knobs (partition, parallelization,

and VFI assignment) simultaneously with respect to three metrics

(throughput, area, and power) as one globe optimization problem. To

our best knowledge, this is the first approach with such capabilities.

Authors in [7] consider optimal partition and parallelization under

given constraints in C2RTL design flow, however, power optimiza-

tion is absent. Considering VFI optimization, previous work takes
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processing cores [8], [9] or task graphs [10], [11] as inputs and

assigns or maps them to given VFIs in an NoC architecture. However,

we study the VFI in the C2RTL design flow taking C-program as

input, which has a fine granularity. The existing work focuses on

the given NoC structure, which shares more uniform behaviors than

the streaming architecture to be designed in our work. Moreover, we

combine VFI together with partition and parallelization in the C2RTL

flow to ensure a globe optimal solution.

Our specific contributions include

• introducing a novel MILP based formulation to find an optimal

solution to synthesis C code into VFI-based hardware with HLS

tools, which simultaneously optimizes partition, parallelization
and VFI assignment under throughput, area, and power con-

straints,

• proposing a heuristic solution to handle extremely large-scale

instances when MILP takes a long time or fails, and

• validating the proposed methods through developing accelerators

for multiple streaming applications.

II. OVERVIEW

In this section, we describe our motivation and the proposed power-

aware C2RTL framework with VFIs. We then introduce the system

models used in our optimization methods.

A. Motivation

Traditional C2RTL approaches [7], [12] transform a C program

into hardware with the aim of maximizing throughput or minimizing

area while satisfying area or throughput constraints. However, power

consumption cannot be controlled or optimized. Yet, our power-aware

C2RTL framework considers utilizing VFIs to reduce power at the

C-program level and achieves considerable power savings. This is

because VFIs can fill the time slack of any block that is not the

bottleneck in a pipeline architecture. Table IV in the experiment

section proves this point.

Moreover, it is essential to incorporate power optimization at the

very beginning of the C2RTL framework, i.e., to consider power

optimizing simultaneously with partition and parallelization. Opti-

mizing in separate steps will lead to a sub-optimal solution due

to some design space missing. This is due to the fact that the

partition and parallelization will fix the hardware architecture and

leave little design space to power optimization. Our experimental

results show up to 64.3% power savings by considering power

optimizing simultaneously with partition and parallelization in the

JPEG encoder case.

B. Proposed framework

The high-level design flow of the proposed framework is shown

in Figure 1. The original C/C++ program consists of or can be



divided into N functions in a straight-line fashion. STEP 2 is the

main concern in this paper, in which we solve the three dimensional

optimization problem subject to given constraints. Three operations

are conducted, i.e. partitioning the functions into blocks, block-level

parallelization to form processing elements (PEs), and giving each

PE a VFI assignment. Voltage-frequency assignment selects the best

combination of voltage and clock frequency, which optimizes the

power consumption under given constraints.
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Fig. 1. Power-Aware C2RTL Framework using VFI.

C. System modeling

To support the exploration of the large hardware design space,

we need to carefully model a given C program. Our system model

focuses on characterizing the power, throughput and area parameters

of functions, blocks and system, as shown in Table I. The parameters

for the n-th function in a C program are listed in rows marked by

Fn. We denote a block as Bi,j , which consists of adjacent functions

of Fi, Fi+1, · · · , Fj , and its parameters are listed in rows marked

by Bi,j . The system parameters are summarized in rows marked by

system.

TABLE I
PARAMETERS FOR Fn , Bi,j , AND system

Parameters Description

Fn

N Total number of functions

T i
n/T o

n Input/output latency of Fn (cycle)

Si
n/So

n Input/output data size for Fn (byte)

Al
n/Am

n Area of logic/memory used by Fn (μm2)

CFmax
n The highest clock frequency of Fn (MHz)

Pn,k Power of Fn under (Vk ,CFk) (mW)

Bi,j

Ti,j Latency of block Bi,j (cycle)

T i
i,j /T o

i,j Input/output latency of Bi,j (cycle)

Si
i,j /So

i,j Input/output data size for Bi,j (byte)

Al
i,j /Am

i,j Area of logic/memory by Bi,j (μm2)

System

Rreq Throughput constraint (byte/us)

Areq Area constraint (μm2)

Afifo Area cost by each byte in FIFO (μm2/byte)

Preq Power constraint (mW)

Pfifo Power cost by each byte in FIFO (mW/byte)

{(Vk ,CFk)} Possible (voltage,frequency) vectors for VFI

K Number of (Vk ,CFk) vectors for VFI

III. MILP-BASED SOLUTION

A. Variable definitions

The variables used in the MILP formulation are listed in Table II.

We use {xn} to indicate the parallelization degree and partition

result. {xn} is non-zero only when Fn is the last module in a

clustered block, and in this case, its non-zero value represents the

parallelization degree of the block. {yi,j} indicates the partition

result, which equals to one only if Fi, .., Fj are merged into a block

Bi,j .

To indicate which voltage-frequency pair is adopted by each island,

we use another 2-D binary variable {cn,k}. If cn,k equals to one, it

means the k-th pair of voltage-frequency (Vk,CFk) is selected by

Fn. An example {cn,k} for Figure 1 is listed in Equation (1). Other

defined variables are listed in Table II.

{cn,k} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, 0, 0, · · ·
1, 0, 0, · · ·
0, 1, 0, · · ·
0, 1, 0, · · ·
0, 1, 0, · · ·
· · ·
0, 0, 1, · · ·

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

TABLE II
VARIABLES USED IN THE MILP FORMULATION

Name Description

xn Representing partition and parallelization

yi,j Representing partition information

cn,k Representing VFI assignment information

cfi,j Clock frequency of Bi,j (MHz)

rall Throughput of the system (byte/μs)

ri,j Rate of Bi,j after parallelization (1/μs)

al
fifo/am

fifo Total FIFO Area (μm2)

aall Total Area of the system (μm2)

pl
i,j /pm

i,j Power of logic/memory by Bi,j (mW)

pfifo/ppe Total FIFO/PE power in system (mW)

pall Total power of the system (mW)

B. MILP formulation

Using the parameters and variables in Table I and II, we have the

MILP formulation1 as follows:

obj : min pall or max rall or min aall

s.t. : rall ≥ Rreq and aall ≤ Areq and pall ≤ Preq (2)

Below we describe each type of constraints in detail.

1) Throughput constraints: Obviously, the system throughput is

determined by the bottleneck block, i.e., the slowest block. Hence,

rall = So
N ·min ri,j ∀ri,j > 0 (3)

ri,j is the rate of each PE, which is influenced by partition (yi,j),

parallelization (xi), VFI assignment (cfi,j) and block latency (Ti,j).

Therefore, we have:

ri,j = xj · yi,j · cfi,j/Ti,j (4)

where cfi,j selects a pair of voltage and frequency values from

{(Vk,CFk)}, i.e.,

cfi,j =
K∑

k=1

cj,k · CFk (5)

1 This is a multiple objective optimization using lexicographic method. For example,
when minimizing pall, we have three iterations: (i) minimize pall, (ii) minimize aall with
Preq=pall, (iii) maximize rall with Areq=aall and Preq=pall.



2) Area constraints: The total area includes two parts: the blocks

and the FIFOs (afifo) connecting adjacent blocks. Hence, we have:

aall =

N∑
i=1

N∑
j=i

(Ale
i,j +Amem

i,j ) · xj · yi,j + afifo (6)

Ale
i,j and Amem

i,j make up the area of Bi,j . They are calculated as
follow,

Ale
i,j =

⎧⎨
⎩

∑j
n=i A

le
n · (1− αle) i < j

Ale
i i = j

(7)

Amem
i,j = maxAmem

k ∀k ∈ [i, j] (8)

In Equation (7), αle is the area saving factor when functions are

clustered into a block, since some logic elements can be shared. In

Equation (8), since functions in one block work serially, they can

share one memory without conflicts. Therefore, the function with the

largest memory area determines Amem
i,j .

afifo should be proportional to the total size of input/output data.

Therefore, we have:

afifo = (Ale
fifo +Amem

fifo ) ·
i=1∑
N−1

N∑
j=i

zi,j · Sout
j (9)

3) Power constraints: The total power consumption of the system

can be calculated by Equation (10), which consists of the power of all

PEs and asynchronous FIFOs. Equation (11) shows the PE’s power,

which equals to the sum of the power consumed by the blocks (after

duplicating as indicated by xj and yi,j). In Equation (12), the FIFO

overhead is estimated by the output data size of the duplicated blocks.

pall = pfifo + ppe (10)

ppe =
N∑
i=1

N∑
j=i

xj · yi,j · pi,j (11)

pfifo = Pfifo ·
N−1∑
i=1

N∑
j=i

(xj · yi,j) · So
j (12)

In Equation (11), pi,j represents the total power consumed by block

Bi,j . pi,j can be broken down to the logic part and the memory

part in Equation (13). It computes the power consumed by the logic

part of Bi,j in Equation (14). We use cj,k to select the voltage and

frequency of this block. The power of the block is calculated by the

total energy (
∑j

n=i P
l
n,k ·Tn) divided by the block’s latency Ti,j . In

Equation (15), the memory part of the power is considered. As stated

in Area Constraints, the memory in a block can be multiplexed, and

the power is estimated by the power of the functions clustered with

the maximum memory, which is also selected by cj,k.

pi,j = pli,j + pmi,j (13)

pli,j =

⎧⎪⎨
⎪⎩

∑K
k=1(cj,k ·

∑j
n=i P l

n,k·Tn

Ti,j
) i < j

∑K
k=1(cj,k · P l

i,k) i = j

(14)

pmi,j =
K∑

k=1

(cj,k · j
max
n=i

Pm
n,k) (15)

To sum up, the entire MILP formulation consists of Equations (2)

to (15) and some connectivity constraints. We use the tool of lp solve
to solve the MILP problem in Section V.

IV. HEURISTIC SOLUTION

It is well-known that MILP based methods are unscalable. Our

experiments in Section V show that it is time consuming even when

N is small if the constraint regions are un-smooth. In this section we

propose a heuristic algorithm to tackle these challenges.

Our heuristic algorithm creatively transforms the optimization

problem into a constrained shortest path searching issue. First, we

create a directed acyclic graph DAG G=(V ,A) with parameters in

Table I. Second, we use a modified A* Search Algorithm [13] to

get the solution. We take the objective of min pall as an example to

describe the algorithm.

Creating DAG: Each possible block with each possible VFI

assignment is regarded as a node. Hence, if there are N functions

and K groups of VFI, we have C2
N+1 possible clustered blocks, and

accordingly K ·C2
N+1 nodes. The parallelization degree of each node

is the minimum number that satisfies the throughput constraint Rreq.

This is because enlarging parallelization degree increases throughput

at the cost of more power and area. Therefore, setting it as the

minimum to exceed Rreq is enough. Then two virtual nodes are added

as Source (S) and Destination (D). In the graph, arrows only connect

nodes representing adjacent blocks, i.e., nodes representing Bi,j and

Bj+1,k (∀i ≤ j < k). Each arrow is associated with two weights,

namely power and area of its source node. From the DAG we created,

any path connecting S and D represents a possible solution with the

cost of pall and aall. The problem is equivalent to finding the shortest

power path while obeying the area constraint.

Modified A* Search: First, we perform Dijkstr’s Algorithm to get

the heuristic function h(n)2. The shortest path (with power weight)

from each node to D is calculated as h(n). Second, we perform

a modified A* Search Algorithm. Different from original A*, we

use the function minFeasibleNodeInOPEN() (shown in Algorithm 1)

to pick and move nodes from OPEN set (nodes to be selected)

to CLOSED set (nodes that have been evaluated). The function

guarantees that the area constraint is satisfied whenever adding a

node to the current path.

In function minFeasibleNodeInOpen(), we first find the node V in

OPEN with the minimal estimate function f(n) (Line 2). Whether

V can be moved from OPEN to CLOSED depends on the following

three cases. In Case I (Line 4-6), if at least one child node Q of V
can make the extended path (with V and Q) obey the area constraint,

V is moved to CLOSED, and V ’s qualified child nodes are added to

OPEN. Qualified means that after adding the node to current path,

the area cost won’t exceed Areq. However, if we fail to get such a

Q and adding any of V ’s child node breaks the area constraint, we

go to Case II (Line 8-10) or Case III (Line 12). In these two cases,

the current path containing V can’t continue. We then try to find

a suboptimal path through V . If this can be found, we replace the

current path with the suboptimal one (case II) . If not, V has to

be temporarily discarded (case III). To find the suboptimal path, we

check whether V has parent nodes other than P in CLOSED (we

denote V ’s previous node as P ). If it does, we enter Case II. We

select the node P ′ with the smallest cumulative cost g(n) other than

P , and set P ′ as V ’s previous node. This makes a new path going

through V . We update the estimate f(n), the cumulative power g(n)
and cumulative area ga(n), and then restart the loop. In Case III, no

path through V could be found. Hence, V can’t exist in any path

currently (it may appear in a path in future). We remove V from

OPEN and start the loop again (Line 11). Other parts are exactly the

same as the original A* Algorithm.

The optimization of area follows the same procedure as power.

As to throughput optimization, we briefly turn each node into

2 For each node, we have the cumulative cost g(n), the heuristic function h(n), and
their sum, the estimate function f(n), as defined in [13].



Algorithm 1: Function minFeasibleNodeInOPEN()

input : {OPEN}, {CLOSED}
1 repeat
2 V =nodeWithSmallestEstimationInOPEN(OPEN);
3 for every child node (Q) of V do
4 if Q.area + V .accumulatedArea < Aref then
5 return V ; /* Case I */
6 end
7 end
8 if V has parent nodes other than P in CLOSED then
9 Set the node with the smallest g as V ’s previous node;

10 Update g(n), ga(n) and h(n); /* Case II */
11 else
12 Remove V from OPEN; /* Case III */
13 end
14 until;

several nodes representing different parallelization degrees and add a

throughput weight to each arrow. We also get f(n) as the minimum

of cumulative cost g(n) and heuristic h(n) instead of their sum. The

main procedure is still the same, so we omit detailed explanation

because of space limit.

V. EXPERIMENTAL EVALUATION

In this section, we present our experimental results based on four

real streaming programs from [14]. We use eXCite [3] for C2RTL

synthesis, Design Compiler for RTL synthesis (SMIC 0.13μm tech-

nology is used), ModelSim for back-end simulation, and Prime Time
for power measurement.

Both the MILP solution and the heuristic solution rely on the

accuracy of the model we used. Table III compares the throughput,

area and power values from the proposed models (see (3) to (12)) and

these from the synthesized hardware. We can conclude from Table III

that our models are accurate enough for high-level synthesis. The

errors mostly come from the estimation of the FIFO size. However,

such differences are tolerable for the system-level models.

TABLE III
SYSTEM MODEL VALIDATION

Benchmark
from proposed Models from Synthesized Hardware

rall aall pall rall aall pall

JPEG decoder 0.0227 1401600 15.32 0.0230 1324675 17.25

JPEG encoder 0.0563 1063400 17.29 0.0563 1054428 16.70

We evaluate the MILP based solution in Table IV. First, we

compare the result from our MILP-based solution, the heuristic

solution, and a local optimal solution under the same constraints

while optimizing power. The local optimal solution is a multi-step

optimization that minimizes area first with the method in [7], and

after that each of the PE’s voltage and frequency are set to the lowest

one while not violating the throughput constraint to minimize power.

Compared with the local optimal method, the power savings with

our globe optimization method are shown in the eighth column. The

running time of the MILP-based solution and the heuristic solution

is shown in the last column.

From Table IV we can conclude that our MILP-based solution is

effective. It meets the throughput and area constraints, and saves more

power than the solution from the local optimal method. Considering

the feature of MILP, the results from MILP-based solution is optimal.

Meanwhile, our method saves at most 64.3% power than that from the

local optimal solution. This comparison emphasizes our contribution

and also demonstrates the necessity of simultaneously considering

throughput, area, and power as a globe optimization problem.

TABLE IV
POWER OPTIMIZATION RESULTS FOR FOUR BENCHMARKS

(obj: min pall)1

Benchmark
Constraint Results2 Power time

Rreq Areq rall aall pall saving (sec.)
AES en- MILP

0.0167 2.2*106
0.0185 2068124 60.10

38.4%

7.9
cryption Heuristic 0.0185 2068124 60.10 0.001

N=7 Local opt. 0.0169 1981901 97.50 –
JPEG MILP

0.0200 1.8*106
0.0210 1721100 9.55

23.6%

62.5
decoder Heuristic 0.0210 1721100 9.55 0.003

N=8 Local opt. 0.0227 1401572 12.50 –
JPEG MILP

0.1333 1.8*106
0.1383 1691154 12.06

64.3%

108.6
encoder Heuristic 0.1383 1691154 12.06 0.005
N=10 Local opt. 0.1408 1425830 33.75 –

GSM
MILP

0.0500 1.0*106
0.0521 975293 40.58

14.4%

4291
Heuristic 0.0521 975293 40.58 0.002

N=10 Local opt. 0.0507 902510 47.41 –
1 We implement a multiple objective optimization using lexicographic method, with the preferred

sequence of pall, aall, rall .
2 There are 5 voltage-frequency pairs available to be selected, i.e., (0.8V, 10MHz), (0.9V, 20MHz),

(1.0V, 30MHz), (1.1V, 40MHz), (1.2V, 50MHz).

The results in Table IV also show that the heuristic solution is

effective, which always generates the same solution as the optimal

MILP with a much shorter running time. The results in Table IV show

about an average 400’000x speedup in running time. The speedup will

be more significant when N becomes larger.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we focus on the development of accelerators for

streaming applications with C2RTL design flow. We propose an

MILP solution to find the optimal C-code partition, block-level

parallelization and VFI assignment simultaneously as a globe opti-

mization instead of a multi-step optimization. To tackle the scalability

challenge that MILP faces, an efficient heuristic algorithm is also

proposed. Experimental results obtained from four real applications

show that both approaches are effective in exploring the throughput,

area, and power design space.
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