
Efficient and Scalable
OpenMP-based System-Level Design

Alessandro Cilardo, Luca Gallo, Antonino Mazzeo, and Nicola Mazzocca
University of Naples Federico II

Department of Electrical Engineering and Information Technologies
via Claudio 21, 80125, Naples, Italy

contact email: acilardo@unina.it

Abstract—In this work we present an experimental environ-
ment for electronic system-level design based on the OpenMP
programming paradigm. Fully compliant with the OpenMP
standard, the environment allows the generation of heteroge-
neous hardware/software systems exhibiting good scalability with
respect to the number of threads and limited performance
overheads. Based on well-established OpenMP benchmarks, the
paper also presents some comparisons with high-performance
software implementations as well as with previous proposals
oriented to pure hardware translation. The results confirm that
the proposed approach achieves improved results in terms of both
efficiency and scalability.

I. INTRODUCTION

This work addresses the adoption of OpenMP [1] for the
high-level description of applications in electronic system-level
(ESL) design. Ideally suited for medium granularity, loop-
level parallelism, OpenMP has been extremely popular in the
parallel computing community for years as a de-facto standard
for parallel programming. Interestingly, the OpenMP program-
ming model naturally meets the characteristics of current
multi-processors systems-on-chip (MPSoCs), as it provides
enough semantics to express parallelism explicitly, especially
for data-intensive applications. During the recent years, a few
works have addressed the use of OpenMP for programming
MPSoCs [2], the generation of hardware components from
OpenMP descriptions [3], [4], [5], or the integration of hard-
ware accelerators in purely software OpenMP applications [6].
While exploring some facets of the adoption of OpenMP in
non-standard computing platforms, however, none of these
works propose a mature methodology and toolchain for the
automated synthesis of heterogeneous hardware/software sys-
tems starting from an OpenMP application.

In this work, we present an experimental environment
for OpenMP-based system-level design. The environment is
fully compliant with the OpenMP standard, enabling the reuse
of a large body of OpenMP code and kernels, including
multicore applications, and it enables the integration with
ESL design [7] and high-level synthesis techniques [8]. To
demonstrate the effectiveness of our approach, we relied on
the well-known EPCC benchmark suite [9]. Comparisons with
high-performance pure software implementations show that the
overheads incurred by our environment are promisingly lower
and, importantly, they grow slower than the pure software

978-3-9815370-0-0/DATE13/ c⃝2013 EDAA

solution as the number of threads is increased. We also com-
pared our results with a previous work providing OpenMP-to-
hardware translation [3], which was not focused on a system-
level approach. Again, the comparisons show that the proposed
approach achieves much better results in terms of scalability,
a fundamental requirement in the parallel application domain.

The paper is organized as follows. Section II presents the
background of this work. Section III describes the proposed
approach and our prototypical environment. Section IV dis-
cusses the results of our work and presents some comparisons.
Section V concludes the paper with some final remarks.

II. BACKGROUND

The parallelism in OpenMP is based on the fork-join
execution model, where a program is initialized as a single
thread, the master thread, executed sequentially until the first
parallel construct is encountered. This causes the master thread
to create a team of threads executing the statements in the
parallel section concurrently. An implicit barrier at the end
of the parallel section makes the parallel threads synchronize
with each other, after which only the master thread continues
its execution. For a complete description of the constructs,
clauses, and API functions mentioned in this paper, please refer
to the OpenMP specification v3.1 [1]. Due to the popularity of
OpenMP and its powerful model allowing an easy description
of parallel high-performance applications, a few works have re-
cently addressed the generation of hardware components from
OpenMP programs, or the integration of hardware accelerators
in purely software OpenMP applications. The work in [3]
created backends that generate either synthesizable VHDL or
high-level Handel-C code from OpenMP C programs, targeting
an FPGA platform and presenting some quantitative results
from their tool. The approach is basically oriented to pure
hardware synthesis where each thread corresponds to a finite
state machine. There is no explicit memory hierarchy, limiting
the available memory to the resources available on chip and
making it difficult to support the shared memory in a scalable
and efficient way. Few details are provided on synchronization,
while nested parallelism and dynamic scheduling, a part of
the OpenMP specification, are not supported. Furthermore,
only the integer data type is available for use in the OpenMP
description. The authors of [4] presented the possibilities and
limitations of the hardware synthesis of OpenMP directives.
The work concludes that OpenMP is relatively “hardware
friendly” due to the formalisms allowing an easy description
of explicit parallelism. However, it excludes the full support



for the OpenMP standard, e.g. it drops dynamic scheduling
of threads, an essential aspect of OpenMP, dynamic loop
bounds in for loops, and typically software routines such as
those related to time. While simplifying the implementation
of approaches to OpenMP-based hardware-level design, the
restrictions assumed by the above works limit the semantics
available to parallel programmers and, even worse, they pre-
vent the reuse of already available OpenMP programs and
kernels.

Other works cannot be directly applied to the hardware
synthesis process. For example, the work in [5] presented a
methodology for transforming an OpenMP program into a
functionally equivalent SystemC description. The emphasis is
mainly on the source-to-source transformation process, as the
output code is not necessarily guaranteed to be compliant with
the OSCI SystemC Synthesizable Subset. The work in [2]
introduced the support for a subset of OpenMP in a resource-
constrained MPSoC platform. The paper is mainly focused
on the challenges of implementing OpenMP on a multi-core
system with no operating system, and does not cover the
generation of custom hardware/software architectures. Finally,
the authors in [6] present some extensions to OpenMP and
a related runtime system implementation to specify the of-
floading of tasks to reconfigurable devices and the interoper-
ability with OpenMP. Their contribution essentially relies on
a host-based model where one or more FPGA boards act as
accelerators providing functions to an OpenMP application.
The approach assumes already existing reconfigurable binary
code and mainly targets techniques to hide the details of the
configuration process and movement of data. The design of the
hardware accelerators does not involve high-level languages
nor OpenMP in itself.

As emphasized by the above review, all the previous
proposals are either focused on the integration of hardware
accelerators in essentially software OpenMP programs, or
on the pure hardware translation. In fact, the complexity
and cost of a pure hardware implementation requires drop-
ping the support for high-level features such as dynamic
scheduling and nested parallelism. This choice tends to reduce
OpenMP to a mere design-entry language for newly devel-
oped, small-scale hardware projects, inhibiting the support for
real-world OpenMP applications, possibly developed with no
hardware requirements in mind. A few additional limitations
in hardware-oriented OpenMP solutions include the use of
centralized mechanisms for controlling interactions among
threads, causing scalability issues as the number of threads
is increased, limited support for external memory infrastruc-
tures and efficiency-critical mechanisms such as caching, and
unsupported runtime library routines whose parameters cannot
be evaluated statically at compile time.

III. AN ENVIRONMENT FOR OPENMP-BASED
ELECTRONIC SYSTEM-LEVEL DESIGN

Most limitations of the previous hardware-oriented
OpenMP solutions [3], [4] derive from the fact that they target
the generation of purely hardware components, identifying a
subset of OpenMP as a design-entry language in a high-level
synthesis flow. We aim at overcoming the above restrictions
and envision a scenario where OpenMP is fully supported and
adopted as a mature formalism for system-level design. The

essential aspect of the proposed methodology is the generation
of heterogeneous systems, including one or more processors
and dedicated hardware components, where OpenMP threads
can be mapped to either software threads or hardware blocks.
The control-intensive facets making the full OpenMP difficult
to implement in hardware are managed in software, while the
data-intensive (and performance critical) part of the OpenMP
application is addressed by dedicated software/hardware paral-
lelism. Hardware threads are generated by means of standard
high-level synthesis tools that perfectly fit the structure of an
OpenMP program, where the application logic is still described
by means of plain C code. On one hand, this approach provides
full support for standard-compliant OpenMP applications, as
well as fundamental “general-purpose” characteristics such
as memory hierarchies and management. On the other hand,
it naturally meets the emerging trends for heterogeneous
hardware/software MPSoC and embedded systems, where the
presence of one or more instruction processor cores is now
mainstream.

The proposed environment targets the integration with stan-
dard flows for system-level design of heterogeneous systems.
Such flows normally include a hardware/software partition-
ing stage [10], either performed manually or supported by
automated tools, resulting in the definition of the physical
architecture and providing inputs to two concurrent branches
covering the software compilation and the high-level hardware
synthesis. These re-join together on the system composition
step, where the whole system is built, usually assembling
hardware/software library components and application-specific
components generated by the previous steps, followed by the
low-level hardware synthesis. The proposed methodology is
used to automate the stages following the hardware/software
partitioning choices, as it covers the transformation of the
C/OpenMP code as needed by the subsequent high-level
synthesis step, and the extension of the application code –
both hardware and software– with structures enabling the
interaction of the different components.

A. Reference system architecture

The parallel heterogeneous architecture is defined in such
a way as to orchestrate its hardware/software components in
a distributed fashion, avoiding centralized hardware elements.
Figure 1 exemplifies the main components of the architectural
model adopted by the proposed environment. Each subsystem
represents an OpenMP thread, executing a certain portion of
the original OpenMP code. Software subsystems are processors
for which a portable C code (derived from the OpenMP appli-
cation) can be compiled. Hardware subsystems are generated
with HLS in order to execute parts of the original parallel code,
or they can be ordinary peripherals such as timers, non-volatile
memory blocks containing boot code, or ad-hoc arithmetic
components [11]. The OpenMP main thread is mapped to a
software subsystem, while the other threads can be mapped
to either hardware or software subsystems. Currently, we only
support one thread per subsystem, but as a natural extension we
envision a scenario where several OpenMP threads share the
same processor using a multithreaded OS kernel. The figure
also depicts the memory infrastructure. The memory compo-
nents may be implemented in a different technology and indeed
they may be mapped to FPGA internal RAM blocks or off-chip
SDRAM memory, enabling the synthesis of real-world systems



Fig. 1. Architecture of a heterogeneous hardware/software system generated
from an OpenMP program

working on large amounts of data. Shared memory areas are
accessed by all subsystems (currently, the environment does
not provide memory protection mechanisms). Each hardware
subsystem has its own local memory corresponding to the
synthesized registers, while software subsystems can also have
a local memory corresponding to the processor cache levels of
the memory hierarchy. The atomic registers, accessible on a
particular address by all subsystems, allow the implementation
of read-only-after-write primitives: if a read is performed
without a previous write, an error value is returned. This device
acts as the basic building block for implementing synchroniza-
tion directives. The number of instantiated atomic registers is
equal to the number of barrier, atomic, and critical
constructs plus the numbers of calls to omp_init_locks()
(that creates a lock) found in the original OpenMP code.
Special emphasis was put on the support for the shared and
private clauses, which are essential in OpenMP because of
its shared memory model. Shared variables are detected by
tracking each access and replacing it with suitable memory
operations accessing the appropriate local/remote areas.

Hardware subsystems generated by HLS are memory
mapped, have each their own thread id (tid), have DMA mas-
ter access capabilities, and include a Start/Done synchro-
nization port. A natural approach for connecting Start/Done
signals would rely on a centralized scheme, where the master
thread sends and receives all signals. This scheme preserves
design simplicity but may easily compromise scalability. To
overcome this problem, we exploited a fully distributed ap-
proach where the OpenMP threads involved in a fork-join
structure form a tree. Each node in the tree, i.e. a thread,
forwards a Start signal to its subtrees before starting its
own computation, and forwards a Done signal to its parent
node only after receiving all the subtrees’ Done signals and
completing its own task. As a consequence, the implicit barrier
at the end of OpenMP work-sharing constructs takes a time
corresponding to the worst-case propagation delay through
the tree, which is logarithmic in the number of threads. The
same mechanism described above is used to implement explicit
barrier constructs.

B. OpenMP constructs and API functions

Due to the lack of space, we will not provide here the full
technical details of the implementation of each OpenMP clause
and API function. We will only give a couple of examples.
The first one is the implementation of the firstprivate

clause that deals with variable scoping and data initializa-
tion. Below is the algorithm used for the master thread and
the other threads to support the #pragma omp parallel
firstprivate (var) construct:

Master thread:
- Copy the values of variables listed as firstprivate

to the shared memory to a predefined offset
- Send the Start signal to the child threads
- Parallel section
- Wait for the Done signal from child threads

Other threads:
- Wait for the Start signal from the parent thread
- Send Start signal to the children threads
- Take values from shared memory and initialize private vars
- Parallel section
- Wait for the Done signals from the children threads
- Send the Done signal to the parent thread

The additional overhead caused by the firstprivate
clause only depends on the number of listed variables and
does not increase with the number of threads, preserving the
application scalability. Another example is the support for
dynamic scheduling. Following is the code each thread needs
to execute to dynamically parallelize a for cycle.
index=0;
while (index < total_iterations_number){

temp = iter; // lock on ’iter’
if (temp != index ){

index = temp;
}
if (temp != error_code && temp < total_iterations_number){

prev_iter = temp;
iter = prev_iter+chunkSize; // unlock on ’iter’
for (i=prev_iter; i<=prev_iter+chunkSize; prev_iter++){

// original code of for iterations
}
index = temp+chunkSize;

}
}

where iter is an atomic memory location (see Sec-
tion III-A) and prev_iter, temp, and index are local
variables. As can be seen, the support is completely distributed.
Consequently, the threads execute a number of iterations
determined at run time according to the computational power
of the unit they are allocated to and the different load they
happen to handle, fully implementing the semantics of the
dynamic clause. A further example is the support for the
omp_get_thread_num() function. To support its imple-
mentation, the thread identifier tid is passed to the subsystem
along with the Start signal, so that each call to the above
function can be directly replaced with the value of tid.

C. Implementation details

The main element of our prototypical environment is an ad-
hoc lightweight compiler dealing with source-to-source trans-
formation. The compiler, built on top of a standard C grammar
with OpenMP extensions, was implemented in C/C++ and
relied on the well-known Flex and Bison tools [12] for the
generation of the lexical scanner and the parser, respectively.
The compiler takes C source code with OpenMP #pragma
statements as input, generating source files suitable for high-
level synthesis and for the compilation on the target embedded
microprocessors. Furthermore, it extends the code with suitable
software structures used to manage the communication and
the synchronization between subsystems, based on the tech-
niques introduced in the previous subsections. Concerning the
HLS, we relied on Impulse CoDeveloper [13], while for the



platform-based system composition we adopted the Embedded
Development Kit (EDK) [14]. Currently, our prototypical en-
vironment only supports Xilinx FPGA devices and Microblaze
processors for the implementation of the software subsystems.

IV. RESULTS

This section provides some quantitative results to assess
the effectiveness of the proposed approach. The evaluation
of experimental results was focused on measuring the over-
head related to the implementation of the OpenMP constructs
rather than the absolute execution times, which are mainly
depending on the underlying technology. Precisely, we mea-
sured the overhead/execution time ratio, i.e. the normalized
overhead. To this aim, we relied on the well-known EPCC
benchmarks [9], designed to provide performance comparisons
between OpenMP implementations and measure the overheads
of OpenMP constructs, including parallel regions, synchro-
nization, loop scheduling, and data scoping. We compared the
normalized overhead with an OpenMP implementation for a
Windows 7 OS on an Intel i7 processor at 1.8 GHz running
the same benchmarks. The first table below summarizes the
overhead trends for some constructs, giving the normalized
overhead average value over 2 to 10 threads along with its
average slope, i.e. the additional overhead per thread. The
important clue is that, for every construct we consider, in
addition to being low in its absolute values, the overhead grows
very slowly, confirming both the efficiency and the scalability
of the proposed approach. Some constructs like #pragma
omp single and #pragma omp master are supported
with a zero overhead because they are eliminated in the code
transformation phase as they do not correspond to any run-time
mechanism. To further emphasize the impact of our approach,
we also compared our results with [3], which in fact is the
only solution for OpenMP-to-hardware translation presenting
a working tool and some performance figures, used here for
comparisons. These include the speed-up for the Sieve of
Eratosthenes algorithm (comparisons are given in the second
table below) and the clock frequency for an Infinite Impulse
Response (IIR) filter (comparisons are given in the third table
below in terms of the average frequency and the average
frequency loss per thread in MHz). The tables confirm that our
approach achieves considerably improved levels of scalability,
impacting both the application speed-up and the complexity of
the generated system, which sustains higher frequencies as the
number of threads is increased.

EPCC: Normalized Overhead (Average value / Slope), 2 to 10 threads
Construct FPGA Intel i7 Gain
Private 9.7% 0.6% 61.6% 12.1% 6.35 20.2

Firstprivate 70.1% 0.6% 84.1% 14.7% 1.2 24.5

Dynamic 28.3% 3.3% 89.5% 8.2% 3.16 2.5

Static 6.9% 1.6% 72.6% 13.0% 10.5 8.1

Critical 2.8% 0.8% 7.4% 1.8% 2.64 2.25

Sieve of Eratosthenes: Speed-up, 2 to 8 threads
Threads here [3] Gain
2 1.97 1.32 1.49

4 3.85 2.19 1.76

6 5.40 2.03 2.66

8 6.64 2.38 2.79

IIR: Average Frequency / Frequency loss per thread, 2 to 8 threads
here [MHz] [3] [MHz] Gain
166 1.29 56 8.6 2.96 6.67

V. CONCLUSIONS

The paper described an experimental approach to elec-
tronic system-level design based on the OpenMP programming
paradigm. The ad-hoc compiler we developed covers the full
OpenMP specification and introduces several new techniques
at the architectural level matching the requirements of the
parallel OpenMP constructs. The work presented some details
of our prototypical environment and provided efficiency and
scalability results obtained from well-established benchmarks.
The results proved that OpenMP may represent a promising
path to system-level design for the emerging class of hetero-
geneous system-on-chip architectures.

ACKNOWLEDGMENT

The authors would like to thank Impulse Accelerated
Technologies for providing access to the Impulse CoDeveloper
high-level synthesis tool.

REFERENCES

[1] OpenMP Architecture Review Board. (2011) OpenMP application
program interface, v3.1. [Online]. Available: www.openmp.org

[2] W.-C. Jeun and S. Ha, “Effective OpenMP implementation and transla-
tion for multiprocessor System-on-Chip without using OS,” in Proceed-
ings of the 2007 Asia and South Pacific Design Automation Conference
- ASP-DAC ’07, Jan. 2007, pp. 44–49.

[3] Y. Leow, C. Ng, and W. Wong, “Generating hardware from OpenMP
programs,” in IEEE International Conference on Field Programmable
Technology (FPT 2006), Dec. 2006, pp. 73–80.

[4] P. Dziurzanski and V. Beletskyy, “Defining synthesizable OpenMP
directives and clauses,” in Proceedings of the 4th International Con-
ference on Computational Science - ICCS 2004, ser. LNCS, vol. 3038.
Springer, 2004, pp. 398–407.

[5] P. Dziurzanski, W. Bielecki, K. Trifunovic, and M. Kleszczonek, “A
system for transforming an ANSI C code with OpenMP directives into a
SystemC description,” in Design and Diagnostics of Electronic Circuits
and Systems, 2006. IEEE, apr 2006, pp. 151–152.

[6] D. Cabrera, X. Martorell, G. Gaydadjiev, E. Ayguade, and D. Jimenez-
Gonzalez, “OpenMP extensions for FPGA accelerators,” in Interna-
tional Symposium on Systems, Architectures, Modeling, and Simulation,
2009 - SAMOS ’09, Jul. 2009, pp. 17–24.

[7] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification. A
Prescription for Electronic System-Level Methodology. Elsevier Inc,
2007.

[8] P. Coussy and A. M. (Eds.), High-Level Synthesis from Algorithm to
Digital Circuit. Springer, 2008.

[9] EPCC. (2012) EPCC OpenMP benchmarks. [Online]. Available:
http://www.epcc.ed.ac.uk/software-products/epcc-openmp-benchmarks/

[10] A. Cilardo, P. Durante, C. Lofiego, and A. Mazzeo, “Early prediction
of hardware complexity in HLL-to-HDL translation,” in International
Conference on Field Programmable Logic and Applications (FPL
2010), Aug. 2010, pp. 483–488.

[11] A. Cilardo, “A new speculative addition architecture suitable for two’s
complement operations,” in Design, Automation and Test in Europe
Conference DATE’09, Apr. 2009, pp. 664–669.

[12] V. Das, Compiler Design Using FLEX and YACC. Prentice-Hall of
India Pvt.Ltd, 2007.

[13] Impulse Accelerated Technologies. (2012) Impulse CoDeveloper.
[Online]. Available: http://www.impulseaccelerated.com

[14] Xilinx. (2012) Platform studio and the embedded development kit
(EDK). [Online]. Available: http://www.xilinx.com/tools/platform.htm


