
Probabilistic Timing Analysis
on Conventional Cache Designs

Leonidas Kosmidis†,∗, Charlie Curtsinger‡, Eduardo Quiñones†, Jaume Abella†, Emery Berger‡, Francisco J. Cazorla?,†
† Barcelona Supercomputing Center (BSC). Barcelona, Spain
‡ University of Massachusetts (UMass). Amherst, MA, USA
∗ Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

? Spanish National Research Council (IIIA-CSIC). Barcelona, Spain

Abstract—Probabilistic timing analysis (PTA), a promising alter-
native to traditional worst-case execution time (WCET) analyses,
enables pairing time bounds (named probabilistic WCET or
pWCET) with an exceedance probability (e.g., 10−16), resulting
in far tighter bounds than conventional analyses. However, the
applicability of PTA has been limited because of its dependence on
relatively exotic hardware: fully-associative caches using random
replacement. This paper extends the applicability of PTA to
conventional cache designs via a software-only approach. We show
that, by using a combination of compiler techniques and runtime
system support to randomise the memory layout of both code
and data, conventional caches behave as fully-associative ones with
random replacement.

I. INTRODUCTION

Hard real-time systems depend on computing worst-case
execution times (WCET) that upper-bound the amount of time
a given computation may take. Static and measurement-based
timing analysis techniques [10], [16], [15], [19] have been
shown to have significant limitations when used in processors
equipped with caches because WCET estimates may be largely
overestimated or guarantees on the trustworthiness of the WCET
bound cannot be provided [11].

Recently, probabilistic timing analysis (PTA) has emerged
as an alternative family of solutions [8], [7]. Unlike standard
WCET estimates, PTA yields probabilistic WCET or pWCET
estimates: time bounds together with an associated exceedance
probability (e.g., 10−16). PTA can be applied in either a
static context [7] (SPTA) or in measurement-based context [8]
(MBPTA). This paper considers MBPTA techniques since they
pose fewer requirements to the user.

PTA depends on appropriate hardware designs that allow
obtaining probabilities by limiting the dependence of execution
time on previous execution history. For example, the state of
a least recently used (LRU) cache depends on the address of
every object that has been recently accessed. This dependence
impedes to predict the likelihood that any given access is a hit
or a miss without almost full knowledge of previous accesses,
so it is incompatible with PTA. Instead fully-associative cache
designs with random replacement (FA-RR) are compatible with
PTA since each access has a known hit/miss probability1 of
occurrence [7]. This feature allows execution times to be mod-
elled with random variables that are independent and identically
distributed (i.i.d.) [12], a characteristic that PTA depends upon.
Unfortunately, FA-RR caches are relatively rare because they are
power hungry and costly, thus limiting the potential usefulness
of probabilistic timing analyses.

1Note that this probability is different from frequency
∗978-3-9815370-0-0/DATE13/ c©2013 EDAA

The key contribution of this paper is to extend the appli-
cability of PTA to conventional hardware, including direct-
mapped and set-associative caches with deterministic placement
and replacement policies such as modulo and LRU respectively.
We show that the use of randomising compiler techniques that
place object code and data in random locations in memory
suffices to provide i.i.d. execution times as needed by PTA.
We demonstrate empirically that this randomisation comes at
an affordable cost, thus making MBPTA practical for the first
time on conventional hardware.

II. BACKGROUND

PTA provides a probabilistic WCET or pWCET distribution
that upper-bounds the execution time of the program under
analysis. The probability of exceeding a given pWCET is called
exceedance probability. Among the two PTA approaches (SPTA
and MBPTA) this paper focuses on MBPTA as it has been
shown to have higher potential impact in real-time industry [8].
MBPTA generates the pWCET distribution by applying extreme
value theory (EVT) [14], [8] for a collection of observed
execution times of the program under analysis.

MBPTA requires that the execution time can be modelled
as a i.i.d. random variable: observations are independent across
different runs and a probability can be attached to each potential
execution time. To that end, those events that may introduce
variation in the execution time of a program (e.g. memory
operations) must be random events. To do so, the processor ar-
chitecture must guarantee the timing behaviour of each proces-
sor instruction to be represented with Execution Time Profiles
(ETPs). An ETP defines the different latencies of an instruction
and its associated probabilities of occurrence, represented by the
pair of vectors (

→
l ,
→
p ) = {l1, l2, ..., lk}{p1, p2, ..., pk}, where pi

is the probability the program/instruction taking latency li [7].
MBPTA, therefore, requires that each memory access has an

associated ETP. The existence of the ETPs for each instruction
ensures that the execution times are probabilistic and therefore
MBPTA can be applied [8]. Thus, MBPTA simply needs those
ETPs to exist in order to satisfy its requirements (i.i.d. execution
times), and unlike SPTA, there is no need to actually compute
them.

Previously, MBPTA has only been shown to work with FA-
RR caches [8]. In a FA-RR cache, on an access resulting in a
miss, each cache line can be selected as victim for replacement
with probability 1

N , where N is the number of cache lines
(ways). As a result, the timing behaviour of each cache access
can be represented with an ETP, a probability of hit and miss.
Other conventional cache designs, e.g. modulo placement and
LRU replacement caches, are deterministic by nature, making
impossible to attach a hit/miss probability to each memory



operation, precluding the use of PTA techniques. This paper
extends the applicability of PTA to conventional caches by
means of compiler and runtime techniques that make execution
time to be i.i.d. We verify this using standard statistical tests
of independence and identical distribution, and via an informal
argument that randomly placing objects in memory guarantees
the existence of an ETP for every memory operation.

III. COMPILER AND RUNTIME SUPPORT FOR MBPTA

A memory object refers to a memory entity, normally stored
in consecutive memory addresses (e.g., functions, basic blocks,
data structures), which is manipulated by a software component.
These objects can be created off-line by the compiler and the
linker, or on-line by the program loader and runtime memory-
related libraries.

We define a cache layout as the result of mapping all memory
objects that form a program into the N cache sets of the cache.
Under each cache layout of a program, memory objects conflict
in a different manner in cache, which, in combination with the
replacement policy, may potentially result in different execution
times for the program.

Given a set of memory objects and a fixed sequence of
memory accesses, deterministic cache designs generate a single
cache layout due to deterministic placement, mapping objects
into the exact same cache sets on every execution, and the same
sequence of accesses in each cache set due to deterministic
replacement. As a result, the execution time does not vary across
program invocations 2 as long as (i) objects are always placed
in the same memory location and (ii) the same input data set
is used, under which a single path in the program is exercised.

Therefore, forcing randomised timing behaviour on conven-
tional caches, requires the assistance from a specialised com-
piler and runtime system that randomises the location of objects
in memory, and so the cache layout, before execution begins.
For the sake of clarity, we first assume that caches are direct-
mapped with modulo placement, so there is no replacement
policy. We next generalise our approach by considering set-
associative caches implementing a replacement policy.

A. Random Location of Memory Objects

The location of memory objects in random memory positions
has the effect of leading deterministic direct-mapped caches to
behave as random ones. The reason is that randomised layouts
lead the cache set to be randomly selected at every new memory
allocation, mimicking the behaviour of a random placement
policy and so generating random cache layouts across program
invocations.

Consider a program formed by a loop in which two leaf
functions are called: fa and fb, each composed of sequential
code. Assume that we execute this program on a processor
with a direct-mapped cache implementing a modulo placement
policy, and that the total size of the two functions is smaller
than the cache size.

Figure 1 shows three different possible cache layouts. In
Figure 1(a) the two functions are placed in consecutive memory
positions that do not collide with each other, thereby having no
cache conflicts among objects (inter-object conflict). However,
if they are placed in memory positions such that the modulo
function makes two pairs of addresses from the two functions

2We consider that other activities, e.g. OS noise, is not considered at WCET
analysis but at system integration.

Fig. 1. Different cache locations of functions fa and fb in a direct-
mapped cache implementing a modulo placement policy. Red (shaded) locations
correspond to cache conflicts among the two functions.

collide into the same cache set, the effectiveness of the cache
will be decreased because of inter-object conflicts, as shown
in Figures 1(b) and 1(c). Randomly mapping memory objects
results in random cache layouts, each leading to potentially
different execution times.

Note, however, that cache conflicts within memory objects
(intra-object conflicts) are deterministic. For instance, if the
size of fa size exceeds the size of the cache, some of its
cache lines would be mapped into the same cache set and
would conflict. MBPTA requires execution times collected to
capture the behaviour of the program under analysis. Such
behaviour can manifest in only two ways: (i) constant or
(ii) probabilistic, because deterministic non-constant behaviour
cannot be modeled with probabilities. If memory objects are
defined at a granularity (e.g., function code, stack data) so that
their internal layout cannot change, all runs of the program
will have identical intra-object conflicts and so variation on
execution time will be only produced due to random placement
of objects in memory.

B. Formal Justification for Applicability of MBPTA
MBPTA requires the existence of an ETP for each instruc-

tion [8]. We now argue why randomised layouts guarantee the
existence of an ETP for each instruction i accessing to a given
cache line, i.e. ETP (i) = {lhit, lmiss}{1− Pmissi , Pmissi}.

A memory operation i accessing cache line ca belonging
to object a will conflict in the cache if there exists another
cache line cb belonging to another object b that is mapped
into the same cache set. A modulo placement policy uses some
index bits of the memory address to identify the cache set. This
approach logically divides the address space into M

N different
chunks, where M is the total memory size divided by the cache
line size. Within each chunk, memory addresses are mapped to
the N cache sets in the same manner. Therefore, the memory
chunk in which a memory object is placed is not relevant, but
the offset within the chunk. Thus, if we randomly place those
objects with respect to memory chunk boundaries (either in
a new chunk or in an already in-use chunk if objects do not
overlap), inter-object conflicts will occur randomly, and each
object will have exactly 1

N different placements with respect
to the cache (memory objects must be aligned to cache line
boundaries, which is usually the case).

Hence, assuming an arbitrary sequence of memory ac-
cesses to cache lines ca, cb1 , cb2 , · · · cbm , ca belonging to objects
a, b1, b2, · · · bm, a respectively, the probability that the second
access to ca is a miss is Pmiss(i) = 1−

(
N−1
N

)m
, where N−1

N
is the probability that a particular cache line is not placed into a
particular cache set and m is the number of unique cache lines
accessed in between the two accesses to the cache line ca.



Fig. 2. Cache locations and layouts of functions fa and fb in a deterministic
two-way set-associative cache. Red regions denote the cache way conflicts
between the two functions.

C. Effect of Replacement Policy

A cache with a deterministic replacement policy can be made
to behave as if it was using random replacement by randomising
the order of memory accesses to each particular cache set.
Random layout changes the mapping of objects to sets on each
execution, thus randomising the order of accesses to each cache
set in a random (and thus probabilistic) way.

This effect is illustrated in the following example. Figure 2(a)
shows the cache layout of placing fa (left) and fb (right)
into a two-way set-associative cache. None of the functions
has a sequential structure and so they allocate two lines in
some cache sets, and only one or zero lines in other sets. This
example reflects the cache utilisation of the dynamic invocation
of functions when some parts of the code can be skipped due
to jump instructions.

When the two functions are co-located in the same cache
(Figures 2(b) and (c)), cache lines belonging to fa and fb may
conflict in some cache sets. Such conflicts will depend on where
functions have been randomly placed. Thus, if functions are
located as shown in (b), there will be conflicts in 3 cache sets
(marked in red), as 3 or 4 different cache lines are candidates
for only two ways. This is not the case for the last cache set,
in which cache lines belonging to fa and fb fit. Instead, if
functions are located as shown in (c), there will be conflicts in
only 2 cache sets (marked in red), different from the ones that
occur in (b).

As shown, random layout of memory objects randomises the
cache lines from each object colliding into each set, so the
accesses to each cache set (those determining the behaviour of
deterministic replacement policies such as LRU) will be de-
termined by random events (the particular random layout). This
ensures that inter-object conflicts do not occur deterministically,
and their effects can be captured by ETPs.

Note that using a hybrid solution, combining randomised
layout with hardware random replacement, would also cause
both inter- and intra-object conflicts to occur probabilistically
but would increase the degree of randomisation [2], [13].

D. Randomising Compiler and Runtime System

We evaluate the effectiveness of software randomisation using
Stabilizer [9]. Stabilizer comprises both a compiler transforma-
tion (using LLVM [1]) and a runtime system that randomises
the layout of functions and stack frames. Stabilizer uses the
DieHard memory allocator [3] as the basis of its runtime system
to perform efficient (O(1)) dynamic layout randomisation.

IV. RESULTS

A. Experimental Setup
All measurements presented here are conducted on a

PowerPC-compatible cycle-accurate execution-driven simulator
based on the SoCLib simulation framework [20], modelling a
memory hierarchy composed of separate instruction and data
caches and main memory. Both caches model a 4KB set-
associative cache with 8 ways, 32 sets and 16-byte line size,
implementing a modulo placement policy with LRU or random
replacement policy. We use a subset of the EEMBC Autobench
benchmark suite [18] for evaluation: a2time01, cacheb01 and
puwmod01. To compute pWCET estimates, we use the method
in [8].

B. Independence and Identical Distribution Tests
In order to test independence and identical distribution, we

use the Wald-Wolfowitz independence test [6] and the two-
sample Kolmogorov-Smirnov identical distribution test [5] as
described in [8]. We have evaluated i.i.d. properties for the three
benchmarks under analysis considering two cache configura-
tions implementing modulo placement and LRU replacement
policies (labelled as mod+lru) and modulo placement and
random replacement policies (labelled as mod+rr). For all cases,
the p-values obtained (not shown due to space constrains) pass
the tests (p − value > 0.05 for identical distribution and
p− value < 1.96 for independence), indicating that both cache
configurations provide i.i.d. execution times when we randomise
function and stack layout.

C. pWCET Estimates
Figure 3 shows the pWCET estimates obtained with MBPTA

[8] for a2time (a), cacheb (b) and puwmod (c), considering our
two cache configurations. In all cases, we require less than 1,000
runs to project the tail.

The effect of using a random replacement policy instead
of LRU replacement policy depends on the program. If we
consider the pWCET estimates at an exceedance probability
of 10−16, random replacement increases the pWCET estimate
of puwmod by 5% over LRU. However, for a2time, random
replacement reduces the pWCET estimate by 2% over LRU.
For cacheb, there is almost no variation in pWCET estimates
between random and LRU replacement policies (less than 1%).

These results support the analysis of Section III: software ran-
domisation makes it possible to apply MBPTA without requiring
additional hardware support such as a random replacement
policy. Nonetheless, the use of a random replacement policy
remains desirable as it further randomises inter-object and intra-
object conflicts.

D. Overhead
Our software randomisation approach introduces some over-

head due to the relocation of functions and stacks. The former
copies each function to a new location. The latter causes each
function call to move the stack to a new location.

In order to understand the impact on pWCET estimates, we
repeat the same experiment as in the previous section but on top
of a FA-RR cache, where software randomisation has no effect
on timing behaviour. As a result, the pWCET estimate increment
observed with respect to not applying software randomisation is
only due to the overhead. We have designed a specific synthetic
benchmark consisting of a loop which contains calls to four
distinct functions. This structure is very similar to EEMBC.



(a) a2time01 (b) cacheb01 (c) puwmod01

Fig. 3. pWCET estimations of caches implementing modulo + LRU and modulo + random replacement (labelled as mod+lru and mod+rr respectively).

When considering the pWCET estimate increment at an ex-
ceedance probability of 10−16 of the synthetic benchmark when
applying both function and stack random memory location,
we observe that, as we increase the number of iterations, the
compiler overhead is reduced, as the relative impact of the
initialisation part is reduced. Executing only 100 iterations,
the software approach increases pWCET estimates by almost
10x. Such an increment is reduced to 2x when executing 1,000
iterations and only 66% when executing 10,000 iterations.

V. RELATED WORK

Bhatkar et al. [4] introduce stack randomisation as a method
for thwarting stack-smashing based security exploits. Berger and
Zorn’s DieHard system [3] randomises the layout of objects
on the heap to provide probabilistic memory safety, tolerating
memory management errors. Mytkowicz et al. [17] show that
the memory layout may degrade a program’s performance by
as much as 300%, and propose a random function layout
in memory, varying the link and the size of environmental
variables. Quiñones et al. [11] explored the effect of memory
layout in the WCET of a program and showed that a random
replacement policy can lead to less performance variation com-
pared to other policies, while it has acceptable average case
performance. Based on this observation, PTA techniques have
been developed [8], [7] with the assumption that the underlying
architecture uses fully associative caches with random replace-
ment policy. In this paper we provide means to apply PTA on
top of conventional cache designs.

VI. CONCLUSIONS

This paper presents an approach that extends the applicability
of MBPTA to conventional cache designs, e.g. implementing
modulo placement and both LRU and random replacement
policies, via a software-only randomising compiler and runtime
system. Placing functions and stack frames in random memory
locations causes deterministic modulo placement policies to
exhibit the same behaviour as a random placement policy, yield-
ing observed execution times that satisfy the independent and
identically distributed (i.i.d.) properties required by MBPTA.
We provide a formal argument explaining how software ran-
domisation enables the derivation of execution time profiles
(ETPs) for each memory operation. Finally, we empirically
show that software-only randomisation causes deterministic
caches to behave as if they were random, making it possible
to use MBPTA on top of conventional hardware.

ACKNOWLEDGMENTS

This work has been supported by the PROARTIS FP7 Project
(grant 249100) and by the Spanish Ministry of Science and
Innovation (grant TIN2012-34557) and HiPEAC. Leonidas Kos-
midis is also funded by the Spanish Ministry of Education (FPU
grant AP2010-4208). Eduardo Quiñones is also funded by the
Spanish Ministry of Science and Innovation (Juan de la Cierva
grant JCI2009-05455).

REFERENCES

[1] LLVM. http://dragonegg.llvm.org/.
[2] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-

NGMP-DRAFT - Data Sheet and Users Manual, 2011.
[3] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory

safety for unsafe languages. In Proceedings of the 2006 ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI), pages 158–168, New York, NY, USA, 2006. ACM Press.

[4] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques
for comprehensive protection from memory error exploits. In the 14th
USENIX Security Symposium - Volume 14, 2005.

[5] Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell. O’Reilly
Media, Inc., 2008.

[6] J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall, 1968.
[7] F.J. Cazorla, E. Qui nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,

E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,
C. Lo, and D. Maxim. Proartis: Probabilistically analysable real-time
systems. Technical Report 7869(http://hal.inria.fr/hal-00663329), INRIA,
to appear in ACM TECS, 2012.

[8] L. Cucu, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,
J. Abella, E. Mezzeti, E. Qui nones, and F.J. Cazorla. Measurement-based
probabilistic timing analysis for multi-path programs. In ECRTS, 2012.

[9] Charlie Curtsinger and Emery D. Berger. Stabilizer: Statistically sound
performance evaluation. to appear in ASPLOS 2013, UMCS-TR-2012-
012, Department of Computer Science, University of Massachusetts
Amherst, 2012.

[10] Christian Ferdinand et al. Reliable and precise WCET determination for
a real-life processor. the 1st EMSOFT, 2001.

[11] Quinones Eduardo et al. Using Randomized Caches in Probabilistic Real-
Time Systems. In 22nd ECRTS, pages 129–138, 2009.

[12] W. Feller. An introduction to Probability Theory and Its Applications.
John Willer and Sons, 1996.

[13] http://www.arm.com. ARM Cortex-R4 processor manual.
[14] Samuel Kotz and Saralees Nadarajah. Extreme value distributions: theory

and applications. World Scientific, 2000.
[15] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Wcet analysis of

multi-level set-associative data caches. the 9th WCET Workshop, 2009.
[16] Frank Mueller. Timing analysis for instruction caches. Real-Time Systems

- Special issue on WCET analysis archive, 2000.
[17] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.

Sweeney. Producing wrong data without doing anything obviously wrong!
In Proceedings of the 14th ASPLOS, pages 265–276, 2009.

[18] Jason Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[19] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of
cache replacement policies. Real-Time Systems, 37:99–122, 2007.

[20] SoCLib. -, 2003-2012. http://www.soclib.fr/trac/dev.


