
Software Enabled Wear-Leveling for Hybrid PCM
Main Memory on Embedded Systems

Jingtong Hu1, Qingfeng Zhuge3, Chun Jason Xue2, Wei-Che Tseng1, and Edwin H.-M. Sha1,3
1Dept. of Computer Science, University of Texas at Dallas, Richardson, TX, 75080, USA

2Dept. of Computer Science, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
3College of Computer Science, Chongqing University, Chongqing, China.

jthu@utdallas.edu, jasonxue@cityu.edu.hk, qfzhuge@cqu.edu.cn, {wxt043000, edsha}@utdallas.edu

Abstract—Phase Change Memory (PCM) is a promising
DRAM replacement in embedded systems due to its attractive
characteristics. However, relatively low endurance has limited
its practical applications. In this paper, in additional to existing
hardware level optimizations, we propose software enabled wear-
leveling techniques to further extend PCM’s lifetime when it
is adopted in embedded systems. A polynomial-time algorithm,
the Software Wear-Leveling (SWL) algorithm, is proposed in
this paper to achieve wear-leveling without hardware overhead.
According to the experimental results, the proposed technique
can reduce the number of writes on the most-written bits by
more than 80% when compared with a greedy algorithm, and
by around 60% when compared with the existing Optimal Data
Allocation (ODA) algorithm with under 6% memory access
overhead.

I. INTRODUCTION

Phase Change Memory (PCM), a type of Non-volatile
memories (NVMs), has many appealing characteristics, such
as low-cost, shock-resistivity, non-volatility, high density, and
power-economy (extreme low leakage power), to be used as
main memory in embedded systems. PCM, however, has two
drawbacks that hinder its practical adoption as main memory
in embedded systems. First, the endurance of PCM is still
relatively short compared with DRAM. Second, the write to
PCMs is relatively expensive in terms of both energy and time.

Many embedded systems, such as the ARM Cortex-M3
Processor, AVR by Atmel Corp, Freescale’s MPC5xx series,
etc., adopt Scratch Pad Memory (SPM), software-controlled
SRAM, as their on-chip memories due to their small area,
low power consumption, time-predictability. SPMs also grant
compilers the capability to analyze data access patterns. With
profiled data access information, an optimizing compiler can
smartly manage data placements and movements. Several
works have optimized programs to extend the lifetime of PCM
and improve the memory access efficiency. Hu et al. [1], [2]
proposed task scheduling, data recomputation, data migration,
and dynamic data allocation techniques to reduce the total
number of writes to NVMs. However, the lifetime of PCM

This work is partially supported by NSF CNS-1015802, Texas NHARP
009741-0020-2009, HK GRF 123609, NSFC 61173014, National 863 Pro-
gram 2013AA013202 and grants from the Research Grants Council of the
Hong Kong Special Administrative Region, China [Project No. CityU 123811
and 123210].

is not directly proportional to the total number of writes on
PCM. The lifetime depends on the address that is written
most frequently. Once the number of writes to any part of
the PCM exceeds the endurance limit, the whole PCM is
considered worn-out. In the Optimal Data Allocation (ODA)
algorithm proposed in [1], the addresses in PCM are treated
indiscriminately. The first available space will always be
allocated to a variable. Therefore, it is possible that the total
number of writes to PCM is reduced, but the largest number
of writes on an address may not be reduced. Thus, the PCM’s
lifetime is still limited. In this paper, we keep track of the
number of writes to each address in PCM. When a variable is
allocated to PCM, an appropriate address is carefully picked
so that the writes to PCM can be evenly distributed to all
the addresses-while keeping the total memory access cost
minimized. Therefore, even with the same total number of
writes to PCM, the number of writes to the mostly written
address can be greatly reduced, and the lifetime can be
extended accordingly. The technique proposed in this paper
can be combined with all previous software write reduction
techniques to further improve the lifetime of PCM.

In this paper, a polynomial-time algorithm, the Software
Wear-Leveling (SWL) algorithm, is proposed to obtain the
minimal overhead wear-leveling. The proposed software wear-
leveling technique has the following advantages compared
with existing wear-leveling techniques: 1) It has low run-
time execution and memory overhead. All the optimizations
are accomplished in compile-time. 2) It has no hardware
overhead since it does not need OS or hardware support. 3) It
has finer granularity. The proposed techniques operate at the
variable level, while existing software techniques operate at the
memory page level. Therefore, the proposed techniques can
achieve better wear-leveling. 4) It is not hardware dependent,
which means that the software wear-leveling is applicable to
all NVMs with with properties similar to PCM.

The major contributions of this paper include:
• We propose a polynomial-time software wear-leveling

algorithm to achieve near-optimal results.
• We developed a simulator with hybrid PCM main mem-

ory to evaluate the proposed algorithms.
The rest of this paper is organized as follows. Related works

are discussed in Section II. Section III presents the hardware978-3-9815370-0-0/DATE13/ c⃝2013 EDAA



and software models used in this paper. The SWL algorithm
is presented in Section IV. The experiments are presented in
Section V. Finally, Section VI concludes this paper.

II. RELATED WORKS

Previous works [3], [4], [5], [6], [7] have confirmed that
an NVM main memory can achieve significant energy sav-
ing with comparable performance to that of a DRAM main
memory. However, as mentioned before, there are still two
main drawbacks of PCMs that need to be addressed before
they can be practically applied as DRAM replacement. Plenty
of research has been performed. Zhou et al. [5] and Lee et
al. [6] proposed hardware design optimizations. They are all
orthogonal to the technique proposed in this paper. Dhiman et
al. [3] and Park et al. [8] proposed hybrid PCM and DRAM
main memories. In these works, DRAM is used to “absorb”
the writes to PCM and wear-leveling techniques for PCM are
also proposed. Ferreira et al. [9] also worked on hybrid PCM
main memories and proposed writeback minimization with
new cache replacement policies, unnecessary write avoidance,
and PCM-aware swap algorithm for wear-leveling. Shi et
al. [10] proposed a smart victim cache to reduce writes on
non-volatile main memory. These works differ from this work
in the following three aspects: 1) They assume that hardware-
controlled caches are used as the on-chip memory. 2) They
need additional complicated hardware enhancements in the
memory controller. 3) Most of them need OS support. Since
many embedded systems employ software-controlled SPM
as their on-chip memories, cannot afford additional complex
hardware, and do not have OS running, all these works are
not effective for these embedded systems.

Software compiler optimization is an inexpensive and ef-
ficient approach for embedded systems that adopt software-
controlled SPM. Many software optimization techniques have
also been proposed [1], [2], [11], [12], [13], [14], [15]. They
only consider reducing the total number of writes on NVM.
In this paper, we propose software wear-leveling techniques
for hybrid PCM and DRAM main memory. Wear-leveling
distributes writes to the PCM more evenly over all the address-
es. The techniques proposed in this paper can be combined
with all previous software-level write reduction techniques to
further improve the lifetime of PCM.

III. HARDWARE AND SOFTWARE MODEL

In this section, the hardware model and software model used
in this paper will be described.

A. Hardware Model

The targeted system hardware architecture is shown in
Figure 1. As shown, the targeted architecture employs pure
SRAM-based SPM as its on-chip memory. The data movement
and allocation of SPM is purely controlled by software. These
kinds of processors normally have explicit instructions to move
data among different memory components. The main memory
consists of DRAM and PCM. SRAM, DRAM, and PCM are
all in the same memory address space. Examples of such

Fig. 1. System Architecture. Fig. 2. Example of Program Re-
gions.

architecture include the ARM Cortex-M3 Processor, the AVR
by Atmel Corp, and Freescale’s MPC5xx series.

B. Software Model and Problem Definition

Under the dynamic SPM data allocation scheme, the pro-
gram code is divided into regions that are delineated by
program points: 1) the start and end of each procedure,
and 2) the start and end of every loop. Before starting the
execution of each region, data allocation code is executed to
generate a data allocation which is suitable for this region.
Data allocation instructions are inserted into the program either
by the programmer or the compiler. During the execution of
each region, the data allocation remains the same. Figure 2
shows an example of dividing a program into regions.

Formally, the problem is defined as following: assuming that
the number of reads and writes for each variable is known,
what is the data allocation for each program region such that
the memory access cost is minimized and that the number of
writes to each address in the PCM is less than or equal to a
given threshold θ?

IV. SOFTWARE WEAR-LEVELING ALGORITHM (SWL)

In this section, we propose the Software Wear-Leveling
(SWL) Algorithm, a heuristic that runs in polynomial time.

Hu et al. [1] proposed a dynamic data allocation technique,
the Optimal Data Allocation (ODA) algorithm, to reduce
the writes on NVM part in hybrid SPM with SRAM and
NVM. From the point of view of programs, the hybrid SPM
architecture in [1] is the same as the targeted architecture
since all the different memory components are in the same
memory address space. The difference lies in the physical
implementation. Therefore, even though the data allocation
algorithm is designed for hybrid SPMs, it is also applicable for
the targeted architecture of this paper. As mentioned before,
ODA only considers reducing the total number of writes to the
PCM. In this paper, rather than reducing the total number of
writes, we are focusing on evenly distributing the writes to all
addresses of the PCM. Since wear-leveling incurs extra data
movement costs, we also want the overhead to be minimized.

The idea of SWL is to use the ODA algorithm to generate
the data allocation for each region first. Therefore, the ODA
algorithm is used as a pre-processing algorithm. Then we know
the variables that are allocated into PCM in each region. We



build up an array to record the number of writes on each
address of the PCM. With the help of this array, we find
an address assignment in PCM for each variable so that the
number of writes on each address is less than or equal to θ
and the total moving cost is minimal.

The first step of the SWL algorithm is to build an array W
to record the number of writes on each address of PCM. Then
for each region ri, we divide all the data that are allocated to
PCM into two groups. The data that were in PCM in previous
region are in the first group and the rest are in the second
group.

For each data Dj of the first group, we use its address addrj
to look up the number of writes on this address in W . Then
we add the number of writes on this address with the number
of writes on data Dj in this region. If the summation is less
than or equal to θ, this data will stay in address addrj in this
region. The corresponding value in W is updated. Otherwise,
find the address in W with the least number of writes. We
check if the summation of the least number of writes in W
and the number of writes on Dj in this region is less than or
equal to θ. If it is true, then Dj is moved to that address. The
corresponding writes count in W is updated. If the summation
is greater than θ, there is no feasible address to assign to Dj .
Therefore, this is θ is too small, the user needs to increase the
value of θ.

For each data Dk of the second group, we directly find the
smallest number of writes in W and check if the summation
of this smallest number and the number of writes on Dk is
less than or equal to θ. If it is true, then Dk is moved to that
address. The corresponding writes count in W is updated. If
the summation is greater than θ, there is no feasible address
to assign to Dk. The user needs to increase the value of θ.

In the experiments, the total number of writes to the PCM
is divided by the size of PCM to get the lower bound of θ.
The lower bound is used as the initial value for θ. Once it is
not big enough, the value is increased. Experiments show that
θ close to the lower bound can almost always be achieved.

The complexity of the SWL algorithm is O(n × m × p),
where n is the number of variables, m is the number of
regions, and p is the size of PCM.

V. EXPERIMENTS

In the section, experimental results are presented. First, the
experimental setup is presented in Section V-A. Then the
experimental results of the SWL algorithm are presented in
Section V-B.

A. Experiments Setup

In the experiments, a Simplescalar [16] based custom simu-
lator is implemented. The system specification used to evaluate
the proposed algorithm is shown in Table I. CACTI and NVsim
[17] are used to used to obtain the parameters for DRAM,
SRAM, and PCM. The obtained parameters are integrated into
the custom simulator. Mibench [18], a set of commercially rep-
resentative embedded programs, is used for the experiments as
benchmarks. The memory access information is first statically

TABLE I
TARGET SYSTEM SPECIFICATION

Component Description
CPU Frequency: 1.0 GHz

On-chip SRAM Size: 16 KB, access latency: 1.41 ns, access
energy: 0.004 nJ, leakage power: 29.28 mW

DRAM Main Memory DDR SDRAM, Size: 16KB, Access latency: 1.78 ns
access energy: 0.147 nJ, leakage power: 3.4 mW

PCM Main Memory

Size: 64 KB, read latency: 6.82 ns, write latency
(SET/RESET): 152.20/12.20 ns, read energy: 0.064 nJ,
write energy(SET/RESET): 0.07/0.876 nJ,
leakage power: 0.713 mW

profiled. Then, SWL is used to generate the data allocation
and wear-leveling instructions. After that, the instructions are
inserted into the program. The new programs run in the custom
simulator to obtain the results.

B. Evaluation of the Software Wear-Leveling Algorithms

Experiments with three different algorithms are conducted
and compared. The first algorithm is the greedy algorithm,
in which data are sorted according to the access time and
allocated to first available address. The second algorithm is the
ODA algorithm proposed by Hu et al. [1]. The third algorithm
is the SWL algorithm proposed in this paper.

TABLE II
NUMBER OF WRITES ON MOST-WRITTEN BIT.

Benchmarks Greedy ODA SWL
Writes Writes Writes (G-S)/G (O-S)/O

basicmath 3349 1374 538 83.94% 60.84%
bitcount 15 3 2 86.67% 33.33%
CRC32 4924 434 59 98.80% 86.41%
dijkstra 3800 1254 555 85.39% 55.74%
FFT 553 446 339 38.70% 23.99%
patricia* 1300 662 382 70.62% 42.30%
qsort* 4421 1557 405 90.84% 73.99%
rijndael* 962 577 210 78.17% 63.60%
sha 2559 327 98 96.17% 70.03%
stringsearch 177 92 53 70.06% 42.39%
susan* 598 170 28 95.32% 83.53%
Average 81.33% 57.83%

The lifetime of PCM is directly related to the most written
bit. If the writes to that bit exceeds the endurance limit,
the PCM is considered worn-out. An error occurs for all
the following writes to that bit. In the experiments, we
also recorded the number of writes to the most written bit
under different techniques. Since most existing PCMs already
incorporated bit-level write avoidance technique [6], [5], we
also implemented it in our PCM simulator. Table II shows the
results under different algorithms. From the table, we can see
that even with hardware optimization presented, the software
wear-leveling algorithms can still reduce the writes by more
than 80% on average compared with the greedy algorithm, and
by almost 60% on average compared with the ODA algorithm.

As mentioned above, the lifetime of PCM is directly related
to the bit that is most written. Therefore, as the number
of writes on the most-written bit is reduced, the lifetime
of PCM is extended. In this paper, we are assuming the



TABLE III
PCM LIFETIME IN DAYS.

Benchmarks Greedy ODA SWL
Lifetime Lifetime Lifetime S/G S/O

basicmath 262.80 640.56 1635.93 6.22 2.55
bitcount 3229.03 16145.15 24217.72 7.50 1.50
CRC32 24.58 278.93 2051.76 83.46 7.36
dijkstra 5.76 17.47 39.47 6.85 2.26
FFT 152.40 188.96 248.61 1.63 1.32
patricia* 101.91 200.12 346.80 3.40 1.73
qsort* 16.80 47.70 183.36 10.92 3.84
rijndael* 726.03 1210.46 3325.89 4.58 2.75
sha 9.33 73.05 243.74 26.11 3.34
stringsearch 18.75 36.07 62.61 3.34 1.74
susan* 96.34 338.87 2057.45 21.36 6.07
Average 15.94 3.13

endurance of PCM is 109 rewrites [5]. Let Endurancepcm
be the endurance of PCM, Numbermost be the number of
writes on the most-written bit of the PCM, Timeexe be the
programs’ execution time, and Timememory be the memory
access time. The lifetime of the PCM for each benchmark is
computed according to Eq. (1).

Lifetime =
Endurancepcm
Numbermost

× (T imeexe + Timememory) (1)

With the greedy algorithm, the lifetime of PCM is around
422 days on average. With the ODA algorithm, the lifetime
of PCM is extended to around 1743 days on average. With
the proposed software wear-leveling algorithm, the lifetime of
PCM can be extended to around 3130 days on average, which
is about 8 years. On average, the lifetimes obtained with SWL
are more than 16 times as long as those obtained with the
greedy algorithm and more than three times as long as those
obtained with ODA.

TABLE IV
TIME OVERHEAD.

Benchmarks Greedy ODA SWL
Time(µs) Time(µs) Time(µs) (G-S)/G (O-S)/O

basicmath 16306.83 11713.96 12694.42 22.15% -8.37%
bitcount 2482.19 2105.71 2131.40 14.13% -1.22%
CRC32 13906.36 7365.64 7800.21 43.91% -5.9%
dijkstra 9250.19 6635.87 6820.35 26.27% -2.78%
FFT 12158.66 5150.79 5586.55 54.05% -8.46%
patricia* 20617.70 13237.28 14484.24 29.75% -9.42%
qsort* 9620.64 8203.77 8962.62 6.84% -9.25%
rijndael* 34487.54 18959.06 19935.45 42.20% -5.15%
sha 14375.63 7171.12 7336.05 48.97% -2.3%
stringsearch 4672.28 2745.30 2786.48 40.36% -1.5%
susan* 13738.92 4852.91 5128.07 62.67% -5.67%
Average 13783.36 8012.86 8515.08 35.57% -5.46%

Extra reads and writes are caused by the wear-leveling.
Table IV shows the memory access cost overhead of the
SWL algorithm. Since the SWL algorithm adds the additional
wear-leveling instructions into the ODA algorithm, the bench-
marks incur longer memory access time under SWL than the
memory access time obtained under ODA. On average, the
SWL algorithm can still reduce the memory access cost by

35.57% compared with the greedy algorithm. However, the
memory access cost increased by 5.46% on average when
compared with the ODA algorithm. Considering the lifetime
improvement, such a small memory access cost overhead is
acceptable.

VI. CONCLUSIONS

This paper proposed a software enabled wear-leveling tech-
nique to extend PCM’s lifetime when it is adopted in em-
bedded systems. According to the experimental results, the
proposed technique can reduce the number of writes on most-
written addresses by more than 80% when compared with a
greedy algorithm, and by around 60% when compared with
the existing ODA algorithm with under 6% memory access
overhead.

REFERENCES

[1] J. Hu, C. Xue, Q. Zhuge, W.-C. Tseng, and E.-M. Sha, “Towards energy
efficient hybrid on-chip scratch pad memory with non-volatile memory,”
in DATE ’11, march 2011, pp. 1–6.

[2] J. Hu, C. J. Xue, W.-C. Tseng, Y. He, M. Qiu, and E. H.-M. Sha,
“Reducing write activities on non-volatile memories in embedded cmps
via data migration and recomputation,” in DAC ’10, 2010, pp. 350–355.

[3] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: a hybrid pram and dram
main memory system,” in DAC ’09, 2009, pp. 664–469.

[4] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA ’09, 2009, pp. 24–33.

[5] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA ’09,
2009, pp. 14–23.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in ISCA ’09, 2009, pp. 2–13.

[7] C. Xue, Y. Zhang, Y. Chen, G. Sun, J. Yang, and H. Li, “Emerging
non-volatile memories: Opportunities and challenges,” in CODES+ISSS
2011, pp. 325 –334.

[8] H. Park, S. Yoo, and S. Lee, “Power management of hybrid dram/pram-
based main memory,” in DAC ’11, june 2011, pp. 59–64.

[9] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mosse,
“Increasing pcm main memory lifetime,” in DATE ’10, 2010, pp. 914–
919.

[10] L. Shi, C. J. Xue, J. Hu, W.-C. Tseng, and E. H.-M. Sha, “Write activity
reduction on flash main memory via smart victim cache,” in GLVLSI ’10,
2010, pp. 91–94.

[11] J. Hu, C. J. Xue, W.-C. Tseng, Q. Zhuge, and E. H.-M. Sha, “Minimizing
write activities to non-volatile memory via scheduling and recomputa-
tion,” in SASP ’10, 2010, pp. 7–12.

[12] J. Hu, W.-C. Tseng, C. Xue, Q. Zhuge, Y. Zhao, and E.-M. Sha, “Write
activity minimization for nonvolatile main memory via scheduling and
recomputation,” IEEE TCAD, vol. 30, no. 4, pp. 584–592, april 2011.

[13] W.-C. Tseng, C. J. Xue, Q. Zhuge, J. Hu, and E. H.-M. Sha, “Optimal
scheduling to minimize non-volatile memory access time with hardware
cache,” in VLSI-SOC ’10, 2010, pp. 131–136.

[14] T. Liu, Y. Zhao, C. Xue, and M. Li, “Power-aware variable partitioning
for dsps with hybrid pram and dram main memory,” in DAC ’11, june
2011, pp. 405–410.

[15] M. Qiu, M. Guo, M. Liu, C. J. Xue, L. T. Yang, and E. H. M. Sha,
“Loop scheduling and bank type assignment for heterogeneous multi-
bank memory,” J. Parallel Distrib. Comput., vol. 69, no. 6, pp. 546–558,
Jun. 2009.

[16] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, Feb.
2002.

[17] X. Dong, N. P. Jouppi, and Y. Xie, “Pcramsim: System-level perfor-
mance, energy, and area modeling for phase-change ram,” in ICCAD
’09, 2009, pp. 269–275.

[18] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in WWC-4, dec. 2001, pp. 3–14.


