
Adaptive Reduction of the Frequency Search Space
for Multi-Vdd Digital Circuits

Chandra K. H. Suresh

New York University Abu Dhabi

Ender Yilmaz & Sule Ozev

Arizona State University

Ozgur Sinanoglu

New York University Abu Dhabi

Abstract— Increasing process variations, coupled with the need
for highly adaptable circuits, bring about tough new challenges
in terms of circuit testing. Circuit adaptation for process and
workload variability require costly characterization/test cycles for
each chip, in order to extract particular Vdd/fmax behavior of
the die under test. This paper aims at adaptively reducing the
search space for fmax at multiple levels by reusing the information
previously obtained from the DUT during test-time. The proposed
adaptive solution reduces the test/characterization time and costs
at no area or test overhead.

I. INTRODUCTION

Increasing process variations result in increasing statistical
diversity of manufactured devices. A 9.7nm gate (projected
for 2020) contains less than 20 silicon atoms between its
source and drain, which limits accuracy in the formation of
the channel length and dopant control in the channel. The
2007 International Technology Roadmap for Semiconductors
(ITRS) projects that by 2020 variability in performance will
rise from 51% in 2010 to 69% in 2020, variability in power
will rise from 68% in 2010 to 121% in 2020, and variability
in leakage power will rise from 229% in 2010 to 325% in
2020. For future products to be viable, circuit adaptation and
tuning strategies will need to be an integral part of the design
process.

Most high-end digital circuits include some form of adap-
tation either due to process variations or due to operating
conditions. To increase profits, it is often desirable to separate
the manufactured devices into power/performance bins. For
instance, for the microprocessor industry, chips manufactured
with the same design and by the same manufacturing tech-
nology may be sold with different maximum frequencies at
different prices. A well-known circuit adaptation approach,
particularly for power conscious designs, is dynamic voltage
scaling (DVS) [1], [2], where the supply voltage of the device
and its frequency is reduced whenever possible to save power.
Dynamic voltage scaling has been an effective in-field adaptive
computational approach for adjusting performance in return
for power savings, and thus, extended battery life.

However, such adaptation capabilities bring about tough
new challenges in terms of circuit testing. Circuits must go
through potentially iterative testing/tuning cycles, increasing
the test cost to an unmanageable level. Both performance
binning and dynamic voltage scaling require a costly charac-
terization/test for each chip, in order to extract the particular
Vdd-fmax behavior of the die under test. For every Vdd mode
that the design supports, a time-consuming search is conducted

on expensive tester equipment (ATE) so as to identify the
maximum frequency (fmax) that the die under test can operate;
the Vdd-fmax information is stored on chip for the applica-
tion/software layer to refer to in exploiting the performance-
power tradeoff. A binary-search like procedure is employed to
apply delay patterns, which can be quite a few in number, to
the die under test at different voltage levels, and the frequency
at which all the patterns pass is the “measured” fmax for the
die under test at that voltage. Apparently, the granularity in
which the fmax search is conducted determines the cost and
the accuracy of these measurements. The accuracy in turn
dictates how efficiently the power-performance tradeoff can
be explored in mission mode; fmax measurements that are off
from the actual fmax values translate into power/performance
waste, defeating the purpose of voltage scaling.

Architectural solutions [3] may be in place to monitor,
during runtime, deviations in the operation frequency from
the fmax measured during the characterization process. If a
deviation is detected, the Vdd-fmax information is updated
on-chip. Such interventions in mission mode incur significant
performance penalties, however, due to pipeline flushes, etc,
underlining from another perspective the importance of the
accuracy of fmax measurements during characterization/test.

This paper aims at adaptively reducing the search space for
fmax at multiple Vdd levels using the previous information
obtained from the DUT during test-time, an approach that is
being explored for the first time to the best of our knowledge.
This information can stem from multiple sources, such as
scribe-line readings, readings from simple auxiliary circuits
embedded with the original design, and previous readings
from the original design itself. In this paper, we focus on the
responses from the DUT, both from ring oscillators embedded
with the original circuit and previous fmax measurements
from the original design. For each Vdd level that the circuit
needs to be characterized at, we use a statistical mapping
technique to predict the maximum frequency with which the
circuit can work. We also predict a viable search space so
more efficient search can be conducted with this statistical
information. Once the maximum frequency is determined for
that Vdd level, this measurement becomes another point of
information for the next fmax search at the next Vdd level.
Thus, we can iteratively reduce the search space for fmax as
the testing progresses. Most importantly, the adaptive multi-
level fmax search we propose is performed non-intrusively to
the test process, reducing the test/characterization time and
costs without incurring any area or test overhead.
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II. PRIOR WORK

Increasing process variations have prompted researchers to
adapt to the changing characteristics of the devices that come
from the production lines. In [4], the authors use known test
compaction mechanisms to reduce the overall test time while
adaptively changing this test set from one production lot to
another. In [5], the authors propose to adapt the test set with
respect to the statistical characteristics of each device under
test (DUT). They use the online information obtained from
each DUT to determine which tests would ideally identify
that device as good or bad in the shortest time. They show
that compared with static test decisions, test quality and test
time can be improved at the same time.

In the digital domain, adaptive test has been widely used
for parametric testing. The most common form of statistical
adaptation comes in the form of adjusting pass/fail decision
criteria for parametric measurements, such as supply current
or minimum supply voltage. In, [6]–[10] the authors use
tester-based post-processing and neighborhood information to
adaptively set the pass/fail limits for parameteric tests. Using
neighborhood information reduces the effect of global process
variations to that of local process variations within a small
location in the wafer. When the variance of the test param-
eter is reduced with such neighborhood information, smaller
deviations in supply current and/or minimum supply voltage
can be detected, increasing the overall test quality. Various
techniques [11] have been proposed to perform manufacturing
test in a process variation aware manner.

The cost of frequency binning [12], and fmax/Vdd search in
terms of testing has been a known problem for some time. The
cost of the fmax search can be alleviated by the use of on-chip
monitors (ring oscillator). Structures within ring oscillators are
subject to the same die-to-die process variations and hence
their frequencies can be correlated to the frequency with which
the DUT works. A quick reading of the frequency of the ring
oscillator provides some information about the process corner
that the die under test belongs; the ring oscillator frequency
can then be correlated to a predicted fmax for the die, nar-
rowing down the fmax search [13], [14]. The accuracy of this
correlation analysis and the fmax predictions determines how
quickly the fmax search will converge and terminate, and thus,
the costs. Other forms of process monitors can also be used for
the same purpose [15]. Measurements from neighboring dies
based on the speed clustering expectation [16] and the use
of surface response models to map the measurements from
test structures onto predicted performance [17] have also been
proposed to lower the cost of speed binning.

Another method to narrow down the search space for fmax

search is to use the information from structural tests and
correlate their response to functional tests. In [18], structural
tests are used to initiate the search process. The assumption
here is that structural tests are faster to conduct, thus result
in lower test time. The close correlation between structural
tests, in particular transition and path delay patterns, and
system fmax has been shown for industrial designs [19], [20].

This correlation can be further strengthened by data learning
methods [21].

While using auxiliary circuit readings to predict the DUT
response provides a very effective reduction in the fmax search
space, it has been shown [22], [23] using large scale industry
data that the correlation between the ring oscillator behavior
and the circuit behavior also depends on which process cor-
ner the device falls; different ring oscillators have different
sensitivities to process parameters. Hence, once there is a
process shift (abrubt or gradual), the correlation information
becomes invalid and thus needs to be updated. And, within-
die variations are also increasing, particularly for the threshold
voltage [24], rendering the correlation between ring oscillator
response and the circuit response even less reliable.

Two important aspects of prior work in this domain are (a)
the readings from the paths that are tested are not utilized
in subsequent searches even though this information would
capture the within-die variations, and (b) there has been no
systemic way that can track and adapt with respect to process
shifts, which can occur from lot to lot, but also from wafer to
wafer. This work aims to address these two missing pieces.

III. PROPOSED METHOD

Our goal in this work is to facilitate the use of information
from multiple sources to narrow down the fmax search range
for a given supply voltage level and to provide a mechanism
for tracking and adapting with respect to process shifts.

To achieve this goal, we need to develop a statistical formu-
lation to model the correlation between a set of measurements
that have been conducted (i.e. ring oscillator frequencies, or
fmax measurement from other circuits or other supply levels)
to a set of measurements that have not yet been conducted.

In this multi-variate model, we propose to incorporate any
measurement taken from the circuit under test so as to make
use of all the clues that the circuit provides. This adaptive
approach is demonstrated in Figure 1. Initially, we use the
information from on-chip sensors (e.g. a ring oscillator), as
proposed by other researchers [22], [23], to narrow down the
original search space (Figure 1(a)). After the fmax search at
the first supply voltage, this information is included and the
search space for the second fmax search is narrowed further.
In this manner, it is possible to reduce the search overhead for
each subsequent datapoint (Figure 1(b)).

Figure 2 provides the results of the proposed multivari-
ate statistical framework on an ISCAS-85 benchmark circuit
c1908, visually illustrating the fmax (the figure provides the
ranges for Tmin, which can be reciprocated to compute fmax

values) search range reduction delivered by the proposed
method. The original search span (blue solid line) is first
shifted right once the RO measurement data is fed in, moving
the search range closer to the actual fmax value for the fast
Vdd level (vertical line). This range gradually narrows down
upon the use of measurements from the slow Vdd level (dashed
green line) at first, and subsequently from the measurements
of the nominal Vdd level (dash-dotted purple line).



Fig. 1. Proposed concept for fmax search space reduction.
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Fig. 2. Adaptive reduction of search space via reuse of previous
measurements.

An important challenge in any such correlation technique
is that the characterization process, within which we learn
the statistical correlations among the parameters of interest,
is a snapshot of the manufacturing process. Unfortunately,
regardless of how much information is collected on the sta-
tistical characteristics of the devices initially, this information
eventually becomes invalid, at least partially, due to changes in
the underlying process parameters. In order to maintain a high
test efficiency and quality level, characterization data should
be maintained up-to-date.

Nom DtD WD
Leff 50nm 15nm 1.5nm
Vth 180mV 78mV 8mV

TABLE I
NOMINAL VALUES AND VARIATION AMOUNTS FOR THE PROCESS

VARIABLES

Our proposed statistical mapping tools based on the concept
of growing neural networks and reproducing Hilbert kernel
space formulation (RHKS) [25], [26]. The RHKS method is
commonly used in information theory to map a nonlinear
multi-parameter space to a high dimensional linear space
through function, h(x). In this new linear space, estimation
can be performed easily with a number of linear transforma-
tions [25], [26]. This statistical tool is able to grow with very
small overhead as new data points become available.

IV. EXPERIMENTAL RESULTS

A. Process Model

We have used Synopsys Hspice Monte Carlo simulations
(MCS). The process parameters are assigned based on the
45nm predictive model [27]. Length (Leff ) and Threshold
Voltage (Vth) were varied globally and locally to depict the
die-to-die (DtD) and within-die (WD) variations. The nominal
values and variations in length and threshold voltage are given
in Table I. The circuits are characterized for three supply
voltage levels. The nominal supply level corresponds to 1V
whereas the slow Vdd level corresponds to 0.82V and the fast
Vdd level corresponds to 1.19V.

Critical path delay for ISCAS-85 circuits and ring oscillator
period were measured for each MCS; to compute the passing
frequency (fmax), we have used path delay patterns generated
by Synopsys Tetramax (ATPG tool) for the longest paths
identified by Synopsys Primetime (static timing analysis tool).
The ring oscillator that we used has a NAND gate, followed
by 2n inverter stages. MCS were done for three levels of
Vdd: nominal, slow and fast. The estimated speed of the
circuit was calculated by a Matlab code, which implements
our statistical framework, based on the ring oscillator data and
previous readings from MCS. Actual speed from MCS and the
estimated speed are used to compute the RMS error.

B. Results

In this section, we present the search range reduction results
delivered by the proposed adaptive technique that can reuse
information from the previous measurements. We have picked
a few ISCAS-85 combinational benchmark circuits, and ran
extensive Hspice Monte Carlo simulations, some of which
resulted in convergence problems and prolonged the exper-
imentation even further; we utilized the results of 90 MCS
for training our statistical tool and 10 MCS for computing
the results that we present herein. For the final version of the
paper, we are planning to extend our experimentation to a
larger set of benchmark circuits and provide more results.

We present the results in Table II. The first column provides
the benchmark circuit name, while the second and the third
columns provide the RMS error in the predictions by the



Circuit Linear Fit [23] Proposed Reduction
c432 29 16 1.8x

c1908 51 27 1.9x
c3540 60 16 3.8x

TABLE II
RMS ERROR IN PREDICTING MAX DELAY (PS) AND REDUCTION IN

SEARCH SPACE.

commonly used linear fit approach [23] and the proposed
progressive search method, respectively, for the fast Vdd level.
The results are presented for the maximum delay in terms
of ps, which can be reciprocated to compute the RMS error
for fmax. Finally, the last column provides the reduction in
search range offered by the proposed progressive method over
the linear fit method.

It should be noted that the errors in predicting fmax,
however large, do not result in incorrect characterization of
the circuit. However, a large error results in longer iterations
for the fmax search, thus longer test times. For the benchmarks
whose results we have evaluated, the proposed statistical
model based on multiple readings from the CUT consistently
presents with smaller RMS error compared with a linear fit.
This improvement is almost 2x for the smaller c432 and
c1908, and 4x for our largest benchmark c3540. Note that the
proposed method becomes more effective for larger benchmark
circuits, which bodes well for cost savings on much larger
industrial designs. Most importantly, this benefit can be reaped
free of any overhead in test development/application or area.

V. CONCLUSIONS

We propose an adaptive approach where previously col-
lected readings and measurements are reused to predict the
fmax value of the same part. For this purpose, we have de-
veloped a multi-variate statistical framework that is capable of
taking in the information regarding readings and measurements
from the previous Vdd levels, and performing the statistical
mapping via the RHKS method. The proposed framework runs
in the background without incurring any test overhead.

We show that the proposed cost-free flow-nonintrusive
approach is capable of narrowing down the search range,
providing commensurate savings in test time/cost for binning
the tested parts or for computing the Vdd/fmax information
for circuits that support DVS. We expect even higher savings
for larger-sized industrial designs. Furthermore, the proposed
framework supports a quick removal of outdated information,
and is thus capable of recovering from process shifts.
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