
Reducing Writes in Phase-Change Memory
Environments by Using Efficient Cache Replacement

Policies

Roberto Rodrı́guez-Rodrı́guez, Fernando Castro, Daniel Chaver, Luis Pinuel and Francisco Tirado
ArTeCS Group

Complutense University of Madrid
Email: {robalrr, fcastror, dani02, lpinuel, ptirado}@pdi.ucm.es

Abstract—Phase Change Memory (PCM) is currently pos-
tulated as the best alternative for replacing Dynamic Random
Access Memory (DRAM) as the technology used for implementing
main memories, thanks to its significant advantages such as
good scalability and low leakage. However, PCM also presents
some drawbacks compared to DRAM, like its lower endurance.
This work presents a behavior analysis of conventional cache
replacement policies in terms of the amount of writes to main
memory. Besides, new last level cache (LLC) replacement al-
gorithms are exposed, aimed at reducing the number of writes
to PCM and hence increasing its lifetime, without significantly
degrading system performance.

I. INTRODUCTION

Although DRAM has been the prevalent building block for
main memories during many years, current research is focused
on exploring other technologies for designing future memory
systems in response to the scaling constraints observed when
DRAM is used with small feature sizes. Among these tech-
nologies, PCM is one of the prime contenders.

This kind of low-cost and non-volatile memory avoids
the need of refreshing the content of the cell, reducing also
the static power consumption. Furthermore, it provides higher
density than DRAM and therefore much higher capacity for the
memory system within the same budget. Nevertheless, several
obstacles restrict the adoption of PCM as main memory: long
write access latency, high write power and limited endurance.
Endurance is related with the amount of writes that a cell is
likely to sustain, and in PCM cells this number is significantly
reduced compared to DRAM, so the write traffic must be cut
in order to extend the lifetime of PCM-based systems. For this
purpose, several architectural techniques have been proposed
recently [1]–[4].

In this work, we deal with this problem by focusing on
the LLC replacement policy. The goal is to efficiently design
a policy that retains in the LLC the most frequently written
blocks and therefore to reduce the amount of writebacks to
main memory. Thus, in this context, the LLC replacement
policy is not just oriented to provide a low miss rate and to
increase system performance, but also to reduce the amount of
writes to main memory. We analyze the behavior of classical
and current cache replacement policies [5]–[7] regarding the
amount of writes to main memory, and we propose new poli-
cies in order to reduce this write traffic without significantly

impacting performance.

The rest of the paper is organized as follows: Section 2
describes the work related to our research. Section 3 presents
the algorithms proposed to increase the lifetime of PCM-based
memory systems. Sections 4 and 5 detail the experimental
framework used and the obtained results respectively. Finally,
Section 6 concludes.

II. RELATED WORK

A. Techniques for reducing writes to PCM

• Eliminating redundant bit writes [1], [8]: As reads are
much faster and less power consuming than writes in
PCM, every write is preceded by a read and a bitwise
comparison, writing only those bits that change.

• Flip-N-Write [9]: Before performing a write to PCM,
both the data to write and its bitwise inverse are
compared with the data stored in the row, writing the
one that involves less bit flips.

• Wear Leveling [8]: These techniques try to even out
the number of writes performed to each PCM cell.

• Hybrid memory [4]: The idea here is to avoid writes
to PCM by inserting an extra memory level that filters
most of such accesses, and which is built on a memory
technology not so sensible to writes.

• Write-back impact reduction [10], [11]: The amount
of writebacks to PCM is reduced extending [12] by
including this goal in the proposed LLC partitioning
algorithm and changing the LRU policy in order to
consider also dirtiness information [10]. The write-
backs impact is also reduced by evenly distributing
them among write queues.

B. Cache replacement policies used in this work

• LRU (Least Recently Used): It discards the least
recently used block, under the philosophy that, due
to temporal locality, it is also the block that will not
be required for the longest time in the future.

• PeLIFO (Pseudo Last In First Out) [7]: It builds on
a LIFO (Last In First Out) replacement policy [5],
in which, making use of a Fill Stack, the block that
entered the cache in the last place is the candidate for978-3-9815370-0-0/DATE13/ c© 2013 EDAA



replacement. In PeLIFO the bottom part of the Fill
Stack is reserved for long-term reuses as LIFO does.
However, unlike LIFO, which performs all the replace-
ments at the head of the stack, PeLIFO dynamically
selects for replacement intermediate positions (called
Escape Points) that guarantee that short-term reuses
are also fulfilled.

• SRRIP, BRRIP and DRRIP (Static, Bimodal and Dy-
namic Re-Reference Interval Prediction respectively)
[6]: The recency stack is thought of as a Re-Reference
Interval Prediction (RRIP) Stack that represents the or-
der in which blocks are predicted to be re-referenced.
The block at the head is predicted as near-immediate
(i.e. the block will be re-referenced sometime soon)
while the block at the tail is predicted as distant (i.e.
the block will be re-referenced in the distant future).
SRRIP uses M bits per cache block to store one of
2
M possible RRPVs (Re-Reference Prediction Val-
ues). On cache fills SRRIP predicts, following its
insertion policy, that the missing block will have
an intermediate state denoted as long re-reference
(RRPV=2M -2). On re-reference, SRRIP may employ
two different promotion policies, HP (Hit Priority)
and FP (Frequency Priority): SRRIP-HP updates the
RRPV of the associated block to zero while SRRIP-FP
just decrements it. On a cache miss, SRRIP randomly
selects the block (victimization policy) with a distant
RRIP (RRPV=2M -1). If it does not exist, SRRIP
increments the RRPVs of all blocks in the set and
repeats the search.
SRRIP can cause thrashing under some circumstances.
To avoid it, the authors propose BRRIP, that inserts
most cache blocks with a distant RRIP and a few of
them with a long RRIP. In order to be robust across all
cache access patterns, a third policy (DRRIP) proposes
to use Set Dueling [13] to identify which insertion
policy is best suited for the application, choosing
between SRRIP and BRRIP as Fig. 1 illustrates.

• CLean-Preferred victim selection policy CLP [10]: It
implements a modified LRU policy that gives prefer-
ence to clean blocks (vs dirty ones) when choosing a
victim. Among the different configuration options it
offers, in this paper we evaluate the one reporting the
highest write reduction.

Set Dueling
Highest hit-rate

SRRIP BRRIP

Inserts majority
of cache blocks
with a distant

RRIP

Infrequently
inserts cache
blocks with a
long RRIP

Fig. 1. Insertion of a new block under DRRIP.

III. PROPOSED POLICIES

The replacement policy determines how to manage inser-
tion, promotion, and victimization of blocks in cache. Usually,
decisions are only performed with the goal of increasing hit
rate. However, when the LLC is backed up with a PCM,
decreasing the amount of LLC writebacks may become even
more important than reducing the number of misses. Hence,
we propose several modifications to the insertion, promotion
and victimization policies that incorporate this objective. In-
formation such as the block dirtiness state or the kind of
access performed (read or write), are used by our policies for
predicting whether the block will generate future writebacks.

In some cases a hybrid mechanism is employed, that
combines two or more replacement policies, and it selects
in each replacement which one should be used. The most
common mechanism employed for making this decision is the
Set Dueling technique proposed in [13]. Usually, the decision
is guided only by hit rate information. However, in the case of
a PCM-based system, the Set Dueling mechanism should also
consider information concerning the amount of writebacks that
the LLC will generate.

Next, we describe the replacement policies proposed in
order to reduce the amount of PCM writes. Although we have
tried many different options, we only explain and evaluate
those that report interesting results from any point of view.
To denote them, we add a W to the acronym of policy they
are based on:

• DRRIPW4: This policy modifies DRRIP as follows:
the Set Dueling mechanism selects the replacement
policy that reports the lowest number of writebacks
to main memory, instead of the one that achieves the
highest hit rate.

• DRRIPW7: This policy operates like DRRIPW4, but
instead of using a static promotion policy it uses a
dynamic one: when the Set Dueling mechanism selects
the SRRIP component, HP is employed, whereas when
BRRIP is selected, FP is used.

• DRRIPW8: Like the previous policy, it operates as
DRRIPW4 and changes the promotion policy to a
dynamic one: clean blocks are promoted with FP while
dirty blocks use HP. This way, dirty blocks (which
generate writebacks), are given more opportunities to
stay in the cache than clean blocks.

• DRRIPW9: This algorithm combines the two previous
policies. It operates like DRRIPW4, and changes the
promotion policy as follows: when the Set Duel-
ing mechanism selects the SRRIP component, HP is
employed for dirty blocks and FP for clean blocks,
whereas when BRRIP is selected, FP is always used.

• DRRIPW10: This algorithm modifies the victimization
policy of DRRIPW8: Among all blocks with a distant
RRIP, it selects a clean one; if not found, a dirty block
is victimized. Like in the original DRRIP policy, if no
blocks with a distant RRIP exist, it increments RRPV
of all blocks and repeats the process.

• DRRIPW11: In this case, the victimization policy of
original DRRIP is modified: When a replacement is



required, this algorithm looks for a candidate satisfy-
ing two criteria: 1) RRPV with the maximum value,
2) clean block. If such a block is not found, the RRPV
of all blocks in the cache set is augmented by one and
a new search starts. If the RRPV of all blocks are set
to the maximum values and no clean block exists, the
algorithm evicts the first block in the array.

• DRRIPW12: This algorithm is very similar to the
previous one, but with an important difference: during
the first stage, like before, the clean block with the
highest RRPV is victimized, but in this case without
changing the RRPV state of the blocks. During the
second stage, a common search is performed.

IV. EXPERIMENTAL FRAMEWORK

As simulation infrastructure we use Pin [14] for obtaining
the memory trace and MultiCacheSim [15] to model the
cache hierarchy. The cache hierarchy is based on an Intel
Atom, which provides two cache levels, being the LLC a
non-inclusive (also non-exclusive) cache. The size of the
first level (L1) is 24KB, with 4-ways and 64-byte line size,
whereas the size of the second level (L2, and in this case
also LLC) is 512KB, with 8-ways and 64-byte line size. Since
we target a processor in the frontier between embedded and
general purpose, we use both the MiBench [16] and the SPEC
CPU2006 [17] suites with large and train entries respectively.
All applications are executed until completion.

Regarding the energy model employed, we use CACTI 6.5
[18] to determine the energy consumption per access in each
cache level, whereas for computing the energy consumption
associated with accesses to main memory we follow [11],
employing 1J/GB and 6J/GB per PCM read and PCM write
respectively. In Table I we show data regarding latencies and
energy consumption per memory level.

TABLE I. LATENCIES AND ENERGY CONSUMPTION

Level Latencies (cycles) Energy (Read/Write/Tag) (nJoules)
L1 1 0.092/0.066/0.001
L2 15 1.102/1.166/0.010

PCM read 200 59.604
PCM write 4000 357.627

Finally, it is worth to note that we employ the Average
Memory Access Time (AMAT) in order to estimate the per-
formance of each evaluated algorithm. Although AMAT just
considers the latencies of each level and not the overlapping
between memory accesses, it is commonly accepted as a valid
metric to estimate system performance. Next we show the
equations employed to determine the memory hierarchy energy
consumption (1) as well as the AMAT (2):

Energy =
2∑

i=1

(RHLi ∗RELi +WHLi ∗WELi+

+(RMLi +WMLi) ∗ (TELi +WELi))+

+RPCM ∗REPCM +WPCM ∗WEPCM (1)

where RHLi and WHLi denote read and write hits in cache
level i, RMLi and WMLi denote read and write misses in
cache level i, RPCM and WPCM correspond to the amount of

reads and writes to PCM, REPCM and WEPCM denote the
energy consumption per read and write to PCM and finally
RELi, WELi and TELi correspond to the energy consumption
of a read, a write and a tag array consult in cache level i.

AMAT =
HL1 ∗ LL1 +RHL2 ∗ LL2 + RPCM ∗ LRPCM

AccL1

(2)

where HL1 and AccL1 denote the total number of hits and
accesses to L1, LLi refers to the latency of i cache level and
LRPCM denotes the latency in the access to PCM.

V. EVALUATION

In this section we present a detailed experimental study of
the different LLC replacement policies described. We report
results about the number of writebacks, the LLC miss rate, the
AMAT and the involved energy consumption in the memory
hierarchy. Note that in all the figures and for each evaluated
policy, we show the arithmetic mean of the normalized metrics
respect to LRU, considering all the selected applications of
each suite (MiBench and SPEC 2006). It is worth noting that
L1 always employs the LRU algorithm, whereas the policies
under evaluation are used in the L2. Note also that results
shown for original DRRIP and for our proposed DRRIP-
based algorithms that do not specifically change the promotion
policy, are derived from using an HP promotion policy.

Fig. 2(a) and 3(a) illustrate the average number of writes
from LLC to PCM that generate the different policies. Fo-
cusing on MiBench suite, we can state that the best results
are achieved with DRRIP-based policies and CLP, being
DRRIPW11 the one that gets the highest reduction with around
37%. In the SPEC 2006 scenario, DRRIPW12 exhibts the
highest reduction (around 13%), followed by CLP (almost 12%
reduction), and DDRIPW10 that achieves a 10% reduction.
Note that the percentage of avoided writes is higher in the
MiBench suite due to the lower amount of writes that take
place in this scenario (between 2 and 3 orders of magnitude
compared to SPEC 2006 scenario).

Being writeback reduction to PCM the main objective
of this work, we should not neglect performance. Fig. 2(b)
and 3(b) and Fig. 2(d) and 3(d) illustrate the LLC miss
rate and the AMAT respectively for the different policies
evaluated. In some policies a high write reduction comes at the
expense of a significant miss rate increment and consequently
a performance drop. Although in the MiBench scenario this
AMAT degradation may be tolerable, like occurs with DR-
RIPW11 and CLP algorithms, in the SPEC 2006 scenario this
performance drop turns unacceptable, invalidating this kind of
proposals (DRRIPW11, DRRIPW12 and CLP). Nevertheless,
DRRIPW10 (or other policies like DRRIPW4 and DRRIPW7),
achieves a significant write reduction (28% and 11% for
MiBench and SPEC 2006 respectively in DRRIPW10), main-
taining a reduced miss rate and therefore without significantly
impacting performance.

Finally, Fig. 2(c) and 3(c) illustrate energy consumption on
the memory system for the different evaluated policies. In the
case of MiBench, all policies reduce the energy consumption
of an LRU, being CLP and DRRIPW11 the less consuming
ones (around 20% energy reduction). Instead, in the case
of SPEC 2006, these two policies and DRRIPW12 exceed



(a) (b) (c) (d)

Fig. 2. Results normalized to LRU for the MiBench suite: (a) Amount of writes, (b) LLC Miss Rate, (c) Memory energy consumption, (d) AMAT.

(a) (b) (c) (d)

Fig. 3. Results normalized to LRU for the SPEC CPU2006 suite: (a) Amount of writes, (b) LLC Miss Rate, (c) Memory energy consumption, (d) AMAT.

the consumption of the others due to the high miss rate
they exhibit. For this suite, most remaining policies oscillate
between 5 and 10% reduction.

In summary we can conclude that the optimal policy de-
pends on the particular requirements of the system and the user.
For our configuration, DRRIPW10 (and other DRRIP-based
policies) constitutes a good trade-off, showing a considerable
PCM endurance improvement without degrading performance
in both scenarios. Besides, in the case of SPEC 2006, most
DRRIP based and peLIFO policies achieve a good trade-off
between impact on PCM write traffic and performance.

VI. CONCLUSIONS

In this paper we deal with the endurance constraint of
phase-change memories –one of the most promising memory
technologies to replace conventional DRAM– by means of
the last level cache replacemenet policy. For this purpose of
extending PCM lifetime, we evaluate the operation of classical
replacement algorithms in terms of writes to main memory and
we propose new policies with the main goal of minimizing this
number without degrading performance significantly.

The obtained results show that most of our policies manage
to significantly reduce the amount of writes to PCM. In
the evaluated configurations, DRRIPW10 postulates as the
best alternative for obtaining a good trade-off between write
traffic reduction (28% and 11% for MiBench and SPEC 2006
respectively) and performance degradation (0.1% and 0.4%
for MiBench and SPEC 2006 respectively) respect to LRU.
Furthermore, the energy reduction achieved reaches 18% and
4% for MiBench and SPEC 2006 respectively.

ACKNOWLEDGMENT

This work has been supported in part by the Spanish gov-
ernment through the research contract CICYT-TIN 2008/508,
TIN2012-32180, Consolider Ingenio-2010 CSD2007-0050,
and the HIPEAC-3 European Network of Excellence.

REFERENCES
[1] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy

efficient main memory using phase change memory technology,” ACM
SIGARCH Computer Architecture News, vol. 37, no. 3, p. 14, Jun. 2009.

[2] W. Zhang and T. Li, “Characterizing and mitigating the impact of pro-
cess variations on phase change based memory systems,” Proceedings
of the Micro-42, pp. 2–13, 2009.

[3] M. Qureshi and M. Franceschini, “Morphable memory system: a
robust architecture for exploiting multi-level phase change memories,”
Computer Architecture, 2010.

[4] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using PCM technology,” ACM SIGARCH
Computer Architecture News, vol. 37, no. 3, pp. 24–33, Jun. 2009.

[5] C. Kim, “LRFU: A spectrum of policies that subsumes the least
recently used and least frequently used policies,” IEEE Transactions
on Computers, vol. 50, no. 12, pp. 1352–1361, 2001.

[6] A. Jaleel, K. Theobald, S. Steely Jr., and J. Emer, “High performance
cache replacement using re-reference interval prediction (RRIP),” ACM
SIGARCH Computer, 2010.

[7] M. Chaudhuri, “Pseudo-lifo: the foundation of a new family of replace-
ment policies for last-level caches,” in MICRO, 2009, pp. 401–412.

[8] B. C. Lee et al., “Phase-change technology and the future of main
memory,” IEEE Micro, vol. 30, no. 1, p. 143, 2010.

[9] S. Cho, “Flip-n-write: a simple deterministic technique to improve
PRAM write performance, energy and endurance,” Proceedings of
MICRO-42, pp. 347–357, 2009.

[10] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and
D. Mossé, “Increasing PCM main memory lifetime,” Proceedings of
DATE, pp. 914–919, 2010.

[11] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé, “Writeback-
aware partitioning and replacement for last-level caches in phase change
main memory systems,” ACM TACO, vol. 8, no. 4, pp. 1–21, Jan. 2012.

[12] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches,” in MICRO, 2006, pp. 423–432.

[13] M. Qureshi, A. Jaleel, Y. Patt, and S. Steely, “Adaptive insertion policies
for high performance caching,” ACM SIGARCH, 2007.

[14] C.-K. Luk et al., “Pin: building customized program analysis tools with
dynamic instrumentation,” SIGPLAN Not., vol. 40, no. 6, pp. 190–200,
Jun. 2005.

[15] B. Lucia, “https://github.com/blucia0a/ MultiCacheSim.”
[16] M. R. Guthaus et al., “Mibench: A free, commercially representative

embedded benchmark suite,” in Proceedings of WWC, 2001, pp. 3–14.
[17] “http://www.spec.org/cpu2006/.”
[18] “http://www.hpl.hp.com/research/cacti/.”


