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Abstract—This paper presents a new flexible quadratic
and partitioning-based global placement approach which
is able to optimize a wide class of objective functions,
including linear, sub-quadratic, and quadratic net lengths
as well as positive linear combinations of them. Based on
iteratively re-weighted quadratic optimization, our algo-
rithm extends the previous linearization techniques. If l is
the length of some connection, most placement algorithms
try to optimize l1 or l2. We show that optimizing lp with
1 < p < 2 helps to improve even linear connection lengths.
With this new objective, our new version of the flow-
based partitioning placement tool BonnPlace [25] is able to
outperform the state-of-the-art force-directed algorithms
SimPL, RQL, ComPLx and closes the gap to MAPLE in
terms of (linear) HPWL.

I. INTRODUCTION

In large-scale placement, one looks for overlap-free
positions to modules while their interconnect (net) length
is minimized. This key step in physical design has been
of ongoing interest for more than two decades and is
still being subject of research and improvement in both,
industry and academia.

Due to typical instance sizes (millions of modules and
interconnects) and the separate, later routing step, the tra-
ditional objective for large-scale placement is the linear
half-perimeter wirelength (HPWL) [14]. Though linear
wirelength (or its approximations) is of particular interest
for routability [15], [7], [9], [24] and power consumption
(assuming fix wire widths and voltage) [1], for timing
itself, super-linear functions are of major importance.
In fact, the well-known RC-delay is a positive linear
combination of a quadratic and a linear function of the
wire length (assuming constant wire width) [22]. It is
hence necessary to be able to optimize combinations of
linear and super-linear functions, including the quadratic
ones. Here, the linear objective imposes a particular
difficulty due to its non-differentiability. Another issue
are the negative consequences by loss of the strictly-
convex property in the (purely) linear case.
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Modern placement tools either optimize quadratic
net length instead (and use implicit linearization of
force-directed approaches [21], [20]) or partitioning
with terminal propagation [16], [4], or circumvent the
non-differentiable linear function by approximating
the linear interconnect lengths by some other smooth
mapping [2], [5], [6].

State-of-the-art placement algorithms [19], [8], [11],
[10] use the B2B net model [19] in order to minimize
linear HPWL. The B2B net model is motivated by
two ideas. Once the leftmost and rightmost (lowest
and highest) modules of a net are determined (e.g.
by an existing placement or by quadratic clique/star
minimization [20]), the internal connections which do
not contribute to the HPWL are canceled. The second
idea is the iterative re-weighting, already proposed
in [18], to cover the gap between quadratic and the
non-smooth linear net model.
However, it should be mentioned that iterative re-
weighting has indeed a much longer history. Actually
Weiszfeld studied a particularly easy “placement”
problem: he asked for a position of one “module”
minimizing the Euclidean length of its “interconnects”
to a set of given fixed “modules“ [23].

We argue that the iterative linearization has to be
seen in a much broader concept of iterative least-
square methods. Such a point of view allows then the
optimization of a much broader class of functions in
a quadratic placement framework. While intuition says
that iterative re-weighting allows to optimize linear net
length of some net and a quadratic of some other net,
it is by far not evident for which class of functions
such an iterative re-weighting converges in general. It
turns out, that for a wide class of objective functions
that are interesting for placement, convergence of this
method can be guaranteed under certain circumstances,
extending the results of [17].



The non-smoothness of the linear wirelength is not
the only matter in placement. Given a connected netlist
with at least one preplaced module, recall that the strict
convexity of the quadratic function leads to a unique
optimal solution for each module, which is no longer
true for the linear case. Moreover, the strict convexity
tends to spread the modules across the area, but these
(still highly-overlapping) placements contain much more
relative position information than placements obtained
from explicit combinatorial (by solving the dual of a
minimum-cost-flow-problem) linear length optimization.
The latter tends to group on discrete points (cf. [1], p.
334). Hence, for a connection length l we propose to
minimize lp with 1 < p < 2.

The key contributions in this paper are:
• We show that iterative re-weighting of quadratic

functions minimizes linear, super-linear and sub-
quadratic objective functions. We embed these into
the concept of iterative least-squares methods which
generalizes the approaches previously used in place-
ment.

• We extend this result to a wide class of func-
tions, including the positive linear combination
of quadratic, sub-quadratic, super-linear and linear
functions.

• We show that focusing on a super-linear objective,
linear HPWL of legal placements can be improved
in a partitioning-based placement tool.

• We evaluate our partitioning-based placement algo-
rithm on the well-known benchmarks and demon-
strate its effectiveness.

• In particular, we show that a sub-quadratic objective
combined with a reliable partitioning is able to close
the gap to state-of-the-art force-directed algorithms.
We are able to to produce several best results in
terms of HPWL.

This paper is organized as follows. In Section II we
introduce the notation and formalize the objective func-
tions. Section III provides some theoretical background
on iterative re-weighted approaches. Section IV focuses
on re-weighting in placement and while V describes
our placement scheme. In Section VI we present the
experimental results and finally we conclude by the
summary and the outlook in Section VII.

II. NOTATION AND OBJECTIVES

Given a netlist N = (V,E) with movable modules V
and interconnecting nets E, the placement objective is
to find positions (xi, yi) for each module i ∈ V (some
of the module positions may have already been fixed),

in such a way that the weighted interconnect lengths are
minimized. We use the notation we to denote a non-
negative net weight, and wij for a non-negative module
pair interconnection weight. The functions that are con-
sidered here are separable (the horizontal and vertical
coordinates can be optimized independently), so we will
focus on the horizontal part only. Let x = (xi)i∈V .

Then, the weighted HPWL is:

HPWLN (x) =
∑
e∈E

we(max
i∈e

xi −min
j∈e

xj). (1)

Now, let 1 ≤ p. Then, the p-clique reads:

CLp
N (x) :=

∑
e∈E

CLp
e(x) =

∑
e∈E

∑
i,j∈e

wij |xi − xj |p. (2)

In particular, in this notation the 2-clique is the tradi-
tional clique which can be replaced by a sparse model,
the star.

Several placement algorithms use the B2B net model,
which requires an initial placement x(0). Given such
a placement, let us call the modules which do not
contribute to the HPWL inner modules. Then the B2B
model of a connection e ∈ N in the k-th iteration
k = 0, 1, . . . uses the placement x(k) and is defined as

B2Be(x)(k) =
∑
i,j∈e

w
B2B,(k)
ij (xi − xj)2, (3)

and B2BN (x) :=
∑

e∈E B2Be(x). The weights are

w
B2B,(k)
ij =

{
0 if i and j are inner modules in x(k)

wij

|x(k)
i −x

(k)
j |

else.
(4)

Then, the next placement iteration is computed via
x(k+1) = argminxB2BN (x)(k) as long as ||x(k+1) −
x(k)||∞ is significant. Finally, B2Be := B2B(k)

e is set
for some sufficient large k ∈ N. However, no conver-
gence proof is possible as the denominator may vanish
or a cyclic behavior can occur even for the simplest case
of one movable module [26].
To simplify the considerations, we restrict ourselves to
two-terminal nets: then the iteratively re-weighted clique
and the B2B model coincide. It should be noted that this
is not a real restriction at all: the choice of the net model
(clique, star or B2B) itself corresponds to a mapping of
multi-terminal into two-terminal nets. We consider a re-
weighting of two-terminal connections which does apply
to both models.



Let M be an module-net incidence matrix, i.e.:

M = (mei)e∈E,i∈V with mei =


−1 if e enters i
1 if e leaves i
0 else.

Now, given non-negative net weights in a diagonal
matrix form W = diag(we), minimizing CL1

N (x) turns
out to be:

min
x
CL1
N (x) = min

x
||WMx− b||1 (5)

for some vector b encoding connection offsets. If M has
full rank and we > 0 ∀e ∈ E (what we assume in
the following), then the placement problem to minimize
the 2-clique can be interpreted as a least-square solu-
tion to the Euclidean version of (5): minxCL

2
N (x) =

minx ||WMx− b||2. This problem is easy to solve as:

x∗ = argminxCL
2
N (x) iff MTWMx∗ = MT b (6)

and MTWM is positive definite.
III. ITERATIVE RE-WEIGHTING IN THEORY

Here, we recall briefly the theory of iterative re-
weighted least squares and extend the results of [17].
The two cases of CL1

N and CL2
N can be seen as special

cases of a much wider class of functions. Let {ϕe}e∈E

be a set of differentiable functions of its arguments and
ϕ′e their derivates. Given a placement x, let r = Mx− b
be the residuum and re its e-th component. Then (5) and
(6) are special cases of minx F (x) with

F (x) :=
∑
e∈E

ϕe(|re|) (7)

where for some length value l the summands consist of
functions ϕe(l) = wel in the linear and ϕe(l) = wel

2 in
the quadratic case. One option to minimize F is to use a
sequence of least-squares, where given a placement x(k)

we set r(k) := Mx(k) − b and

F (k)(x) =
∑
e∈E

ϕe(|r(k)
e |)

|r(k)
e |2

r2e , (8)

x(k+1) = argminxF
(k)(x). (9)

It is easy to see that fix points of (9) are indeed
minimizers of (7) for

ϕe(l) = wel
p with 1 < p. (10)

Under certain circumstances it is possible to show that
this method converges [17]. To guarantee convergence
for the general case (including the linear case p = 1)
one has to postulate strong assumptions like boundedness

from below which basically guarantees that no denomi-
nator of (8) vanishes for k = 1, 2, . . . [17]. The authors
of [17] also show that iterative re-weighted least squares
work also for another class of {ϕe(l)}e∈E , namely if
{ϕ′e(l)/l}e∈E are positive for l ≥ 0 and non-increasing
(cf. [17], pp. 252ff). The reader should note that the
original proof in [17] made the (unnecessary) assumption
that ϕe ≡ ϕ for e ∈ E. The proof in [17] can be adapted
to a much broader class of functions, in particular to
”individual“ {ϕe}, e ∈ E. Iterative re-weighting of these
{ϕ}e∈E makes use of strict convex quadratic functions
G(k) with

G(k)(x) =
∑
e∈E

ϕ′e(|r
(k)
e |)

|r(k)
e |

r2e + const (11)

which can also be seen as iterative least-squares with
weights

ϕ′e(|r(k)
e |)/|r(k)

e | for e ∈ E. (12)

Although the convergence is slow in general, there are
methods to accelerate it by applying - for example -
Newton-like methods [13]. It can be shown that the
convergence speed is highly dependent on the exponent
p. The more p tends towards 1, the slower the conver-
gence process [13], [17]. Thus, using p > 1 does not
only have positive effects like strict convexity and hence
uniqueness of the solution, but also helps to reduce the
number of iterations.

IV. NON-LINEAR OBJECTIVE IN PLACEMENT

Translating these results back to placement yields
several consequences:
• To minimize CLp

N (x) for 1 ≤ p one should
minimize the sequence of re-weighted functions

F (k)(x) =
∑
e∈E

∑
i,j∈e

wij

(|x(k)
i − x

(k)
j |)(2−p)

(xi − xj)2.

(13)

as already proposed by [12]. In particular p = 1 and
p = 2 cover the currently most popular objectives.

• For a net e and 1 ≤ q ≤ p ≤ 2 and weights αe, βe ∈
R+ (12) allows the minimization of αeCL

p
e(x) +

βeCL
q
e(x). In particular, for the interesting case of

RC-delay minimization [22] with p = 2 and q = 1,
(12) yields the sequence

F (k)(x) =∑
e∈E

∑
i,j∈e

wij

(
2αe + βe

1

|x(k)
i − x

(k)
j |

)
(xi − xj)2

(14)



of easily computable quadratic programs.
• For different nets, different objectives can be ap-

plied. In particular it is possible to optimize linear
length of one connection, and a super-linear length
of some other simultaneously. This is interesting in
order to address congestion (more linear objective)
for most nets while being able to focus on timing
criticality/optimal repeater chain placement (more
quadratic objective) on others.

V. PARTITIONING-BASED PLACEMENT

We have implemented iterative re-weighting in
our quadratic flow-based partitioning global placement
scheme [25], which used to minimize quadratic cliques
and stars. In each step in which a quadratic net length
minimization of the clique/star model was computed
before, we now compute (i) a quadratic clique followed
by (ii) up to 3 iterations of a modified B2B model:
instead of using linear iterative re-weighting as in (4)
in the k-th iteration, k = 1, 2, . . . , we rather use the
weights:

w
B2B,(k),p
ij =

{
0 if i and j are inner modules in x(k)

wij

|x(k)
i −x

(k)
j |2−p

else.
(15)

This corresponds to minimizing CLp
e for each net

e ∈ E without connections between inner modules of e,
which is nothing else than a super-linear version of the
B2B for two-terminal nets. Unlike Kraftwerk2 [19],
ComPLx [11], SimPL [8], in each step k = 1, . . . the
ordering, thus the external/internal modules of a net
are computed from scratch. Once a global placement is
computed, we use the legalization algorithm of [3] to
compute the final positions.
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Figure 1. Relative (linear) HPWL of legal placements (y-axis) for
different objective functions lp (x-axis), p = 1.1, 1.2, . . . , 2 relative
to l2 for selected chips (adaptec4, bigblue2, bigblue3)

VI. EXPERIMENTAL RESULTS

We use the ISPD2005 benchmarks [14] for our
tests. In the first experiment we compare the HPWL
of legal placements depending on the exponent p of
our objective. Figure 1 shows a typical behavior of
our partitioning-based placement tool, exemplary for
adaptec4, bigblue2 and bigblue3: the best net lengths
are achieved for p = 1.5 or p = 1.6. While the net
length increases for p → 2 is expected due to higher
focus on quadratic length than a linear one, there is
a much more dramatic impact for p → 1. This has
two reasons. The first one, as already mentioned, is the
fact that linear net length minimization leads to much
higher overlaps. The high amount of overlaps amplifies
the impact once more due to our partitioning-based
algorithm itself. Partitioning decisions are made based on
module positions. The more the modules overlap before
a partitioning step is computed, the more arbitrariness is
added to the partitioning decision. We use p = 1.6 in
the following experiments.

Although we did not focus on runtime (yet) in our
implementation and there is a lot of space for further
acceleration, our algorithm already has reasonable run-
time. We ran mPL6 [5] and our tool on an Intel Xeon
X5690 with 3.46 GHz and show the runtimes in Table
I. We did not have access to MAPLE, but an indirect
comparison with mPL6 shows comparable runtimes to
MAPLE [10], too. However, it should be noted that
MAPLE used clustering which reduced the instance size
by the factor of 2 with BestChoice, our results were
obtained without clustering. Further acceleration of our
tool is not only possible by a more efficient matrix
construction which currently dominates the runtime, but
more sophisticated methods to iterative re-weighted least
squares minimization can also be applied [13].

Finally we compare our tool to mPL6 [5], SimPL [8],
ComPLx [11], RQL [21] and MAPLE [10] and present
the (linear) HPWL of legal placements. As we did not
have access to RQL, MAPLE nor to SimPL/ComPlx,
we cite the results for RQL and MAPLE from [10] and
take the numbers from [8] for SimPL and from [11] for
ComPLx. All these results are summarized in Table II.
The results show that the flow-based partitioning based
tool BonnPlace is able to outperform the currently best
published results on adaptec2, adaptec3 and bigblue3.
Moreover, the net lengths of our tool are shorter on
average than the HPWL reported for any other tool.
We have an advantage of more than 2.1% and 2.5%
on SimPL and RQL and more than 1.7% on ComPLx
and finally 5.3% on mPL6. Comparing to the currently



best tool w.r.t. the linear HPWL, MAPLE, we produce
slightly better net lengths on average.

Wall clock runtimes in minutes
our mPL6

adaptec1 18.28 100.00% 20.20 90.51%
adaptec2 26.40 100.00% 21.88 120.64%
adaptec3 48.50 100.00% 63.68 76.16%
adaptec4 41.12 100.00% 58.17 70.69%
bigblue1 26.22 100.00% 26.28 99.75%
bigblue2 43.13 100.00% 78.85 54.70%
bigblue3 114.68 100.00% 99.03 115.80%
bigblue4 258.68 100.00% 203.48 127.13%

577.01 100.00% 571.58 99.06%

TABLE I
WALL CLOCK RUNTIMES ON ISPD2005 BENCHMARKS

VII. SUMMARY AND OUTLOOK

In this paper we have generalized the iterative
re-weighting for linearization purposes in quadratic
placement to a much broader class of functions.
Combined with the flow-based partitioning placement
tool BonnPlace [25] and the B2B model we are able
to close the gap to modern force-directed approaches.
We argue that instead of focusing on extremes such
as linear net length optimization (good for routing
but highly-overlapping and slow in convergence) or
a quadratic one (good for timing, unique solution,
improved spreading and fast computation), choosing
an intermediate exponent balancing the pros and cons
of both objectives should be taken into consideration.
Our results show that in a partitioning-based placement
scheme for a connection length l optimizing l1.5 leads
to significantly better results than optimizing l1 or l2. It
would be interesting to know whether such effects can
be confirmed with partitioning-free (e.g. force-directed)
tools using the B2B model.

Our experiments suggest that even if focusing on
the linear HPWL as the overall placement objective,
the purely linear objective in quadratic programs is
significantly worse even than the purely quadratic one.
It is also an interesting open question whether such
effects are dominated by the higher amount of overlaps
in the linear case or result from the higher arbitrariness
in position-based partitioning decisions.

Another vast field of research opens when applying
the generalized re-weighting approaches in entire timing
and congestion-driven flows. To decide, whether one still
should focus on quadratic net length optimization for

some (e.g. timing-critical) nets, while for others (e.g.
for routability reasons) a more linear objective might be
meaningful is an open task for the future. Iterative re-
weighting combined with an quadratic placement pro-
vides the flexibility to do both in a common, single
and easy to optimize, quadratic objective function. In
our strong belief, such individual objectives will play a
crucial role in the future.
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