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Abstract—This paper presents an agile hierarchical synthesis frame-
work for analog circuit. To acknowledge the limitation for a given topology
analog circuit, this hierarchical synthesis work proposes a performance
exploration technique and a non-uniform-step simulation process. Apart
from spec targeted designs, this proposed approach can help to search the
solutions better than designers’ expectation. A parallel genetic algorithm
(PAGE) method is employed for performance exploration. Unlike other
evolution-based topology explorations, this is the first method that regards
performance constraints as input genome for evolution and resolves
the multiple-objective problem with the multiple-population feature.
Populations of selected performance are transfered to device variables
by re-targeting technique. Based on a normalization of device variable
distribution, a probabilistic stochastic simulation significantly reduces the
convergence time to find the global optima of circuit performance. Exper-
imental results show that our approach on radio-frequency distributed
amplifier (RFDA) and folded cascode operational amplifier (Op-Amp) in
different technologies can obtain better runtime and higher quality in
analog synthesis.

I. INTRODUCTION

Nowadays, analog circuit block in a SoC design is often critical.
Analog components are heavily influenced by nonlinear physical
effects, which create a great barrier for analog automation. Overall,
the analog synthesis process consists of topology generation [1], [2],
[3], circuit sizing [4] and layout synthesis. As topology generation
are fully illustrated in [1], [2], [3], the circuit sizing methodologies
also take the indispensable role. Comparing to digital system, the
development for analog design automation is still in development.
Either topology selection or circuit sizing methodologies are consid-
ered in time complexity and the accuracy caused by process variation,
parasitics effect and operation conditions.

There are plenty of works which are already well-developed on
how to find optimal design parameters for a prior selected topology.
However, as many performance specifications need to be considered,
finding the optima solution for multi-objective performance at sizing
stage as a priori problem is still uncertain. It seems that deterministic
optimization for circuit sizing still has space to improve. Since
deterministic optimization keeps the efficiency and full-circuit SPICE-
based simulation maintains the accuracy, selecting methodology for
analog circuit sizing is beyond trade-off.

It is therefore essential to have an agile multi-objective synthesizer
which explores the limitation towards required technology. Moreover,
it is capable of searching the performance space and re-targeting to
design parameters with accuracy and efficiency for analog circuit
design perspectives.

A. Previous Works
State-of-the-art analog synthesis methodologies were formulated

as a numerical problem which relies on macro-modeling. Usually
a complete circuit schematic and the circuit’s performance spec are
given, then the sizes and biasing value of all devices have to be
determined. As a result, the optimal values meet the specs of the
required circuit. This kind of optimization engine determines these
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Fig. 1. While traditional sizing strategy iteratively search the solution
beyond the fixed spec, a performance constraints exploration approach unfolds
the utmost of performance space. Moreover, an evolutionary methodology
application elaborates exploration faster and more precise.

optimal values and there exists an evaluation engine to assess the
performance. It is very likely that the initial sizing result in a near-
optimal design, therefore, a further fine-tuning follows for improving
yield and design robustness [5].

In algorithm of [6], a numerical simulation has been employed
successfully, while deterministic optimization are developed in [4],
[7]. At the same time, methods to acquire accurate yet interpretable
analytic formulation as design equations in posynomial forms have
been proposed intensively in [8], [9]. Analog/RF design problems
can be described as posynomial form in order to be fed as standard
input for convex optimization problem. Thus, the convex problem
is certainly solved efficiently with accurate design equation [10].
These approaches attempt to generate the mapping from device
models to performance metrics, and then utilize the numerical solvers
or optimization engines to re-target the corresponding device-level
parameters. Although the process of such limited-scaled device
modeling is efficient and accurate, the circuit design equations are
imprecise and hardly express the global nonlinearity. Another kind
of approach [11], [12] shows that the performance space can be
modeled in posynomial form for system-level design and trade-
off analysis. It directly maps the device-level design variables to
performance metrics. Such approach can improve the precision but
requires iterations on time-consuming full-sized circuit simulation
for optimality. However, it restricts to small-scaled circuit since the
execution time depends on the circuit complexity, and usually grows
exponentially.

In all, due to the requirement for more probability on performance
metrics, we believe that it is important to have mechanism at the



early design stage in exploring the performance limitation before
optimization. Meng et al.[13] provide a hierarchical performance
Pareto-front mapping methodology to acquire performance metrics
before circuit optimization stage. [13] first traverse the performance
specs as constraints in a set of convex problem. Therefore, a combina-
tion of performance space is generated. Moreover, the corresponding
design variables can be obtained according to the design equation.
Labrak et al. [14] perform a hybrid optimizer with a multi-objective
optimization problem(MOOP) for a CMOS Op-Amp. Our method
integrates the hierarchical synthesis strategy with a performance
mapping methodology and a non-uniform circuit simulation approach
to meet the multi-objective performance requirement wisely.

B. Our Contributions
According to the trade-off among performance specs on analog

designs, it is rarely possible to find an optimal solution for all metrics.
Therefore, it is practical to search the performance limitation with
agile and accurate synthesis procedure. Referring to [13], Meng et
al. attempt to search the performance space by re-targeting back to
the corresponding design variables, in iterative manner. Nevertheless,
the strategy which costs time complexity up to O(SK)(S stands
for the performance range in discrete number and K represents
the number of performance specification), which is time-consuming
and will lose the effective prediction of performance metrics. To
our best knowledge, genetic algorithm is well developed for many
analog synthesis topics in [15], [3], [16], [17]. On the contrary,
the proposed work employs a parallel genetic algorithm (PAGE) for
traversing performance space as optimization constraints. A parallel
genetic algorithm like [18], [19] can divide the target population
into several sub-populations with particular performance specs and
reunion after evolution. The obtained populations resulted from PAGE
can be re-targeted to the non-uniform stochastic circuit simulation.
Fig. 1 illustrates the comparison among the traditional optimization
on performance specification, the iterative performance exploration
by [13] and our methodology with novel parallel genetic algorithm
engine. The proposed work achieves three principle contributions as
follows:
• Hierarchical synthesis architecture. This synthesis demon-

strates a bi-direction search approach for device model fitting
to performance metrics through circuit-level domain. After
obtaining the corresponding performance space, it re-targets to
feasible device level design parameters with a good prediction.

• Parallel genetic algorithm based multi-objective perfor-
mance exploration. A multi-objective evolutionary methodol-
ogy like parallel genetic algorithm (PGA) not only performs
evolution in parallel for diverse performance metrics, but
also migrates chromosome by interleaving among populations.
PAGE brings out a population of potential solution for selected
performance among metrics. Such population is also projected
to the feasible design parameters so that we affirm the global
optimal solution is located nearby this optimization result by
exploration.

• Non-uniform stochastic circuit simulation. This work inte-
grates each design variables to analyze the possibility distribu-
tion. Other than uniformly swapping the values of design vari-
ables in stochastic searching, a interval with higher possibility
earns more searching resources. A non-uniform step searching
for circuit SPICE simulation is proposed.

The rest of this paper is organized as follows, Section II first define
the identity of circuit performance, and exploration objective in this
paper. Section III elaborates the flow of our hierarchical synthesis with
PAGE. In Section IV, we apply our approach to a radio-frequency
distributed amplifier (RFDA) and another operational amplifier (Op-
Amp) with different technologies for demonstration. Finally, we draw
a conclusion in Section V.

II. PROBLEM DESCRIPTION

State-of-the-art acknowledges a collection of Pareto-fronts which
sketch the perforamnce sapce, later an optima point is selected

Fig. 2. Originally, a performance space for analog circuit is chaotic
without regulation. After transformation to quantized values and performing an
evolutionary process, the correlation among performance metrics is explored
and converges to a set of populations, which provides guideline for stochastic
simulation.

for local search problem which didn’t mention that how to define
optima point among the space. Instead of collecting the performance
space information, this paper aggresively define performance limit as
exploration main objective:

Definition 1: Circuit Performance: A circuit performance is con-
sisted of multiple values, such as DC voltage gain, 3dB gain band-
width and power consumption. Different circuit has different circuit
performance target.

Definition 2: Performance limit exploration for global search
problem: Given a circuit design equation in posynomial forms with
a set of feasible circuit-level design variables and a set of circuit
performance constraints, perform convex optimization with different
performance value to traverse the utmost performance space of the
given circuit.1

Definition 3: Stochastic simulation for local search: A set of
feasible performance is re-targeted to corresponding design variables.
The local search practices a stochastic SPICE simulation w.r.t. these
selected design variables.

III. OVERALL HIERARCHICAL PERFORMANCE EXPLORATION
FLOW

This section proposes a framework for analog circuit sizing via
resolving multi-objective optimization problem, which can be divided
into two major search problems: a global search and a local search
process. Fig. 2 shows the overview of our hierarchical methodology.

A. PAGE Methodology Overview
In order to elaborate the advantages of both deterministic optimiza-

tion and circuit simulation, this framework tends to integrate parallel
genetic algorithm and convex optimization for such global search
problem. The framework of PAGE is summarized in Fig. 3. The
global search first collect technology information by Device Fitting to
Circuit-level Variables. As soon as collecting technology information
is done, the device variables are mapped into corresponding circuit-
level variables, and the non-feasible values of variables are exclusive.

1Here, the maximum and minimum performance values are investigated
whether feasible or not. Therefore, it can tell that the global search process
generates a space of feasible performances and each represents a set of optimal
design variables. Although the global search obatins a space of performance,
it is not the exact optimal solution. The global search is a preparation for later
local search. This work proposes a flexible non-uniform stochastic simulation
as local search for optimal sizing solution.



Fig. 3. The Complete Performance Exploration Flow.

Later, Utmost Performance Space Generation via PAGE implements
parallel genetic algorithm to obtain performance limit as population
networks. These populations are evolved by particular fitness function
according to each performance spec. Therefore, each population
has better performance on particular spec respectively. The local
search procedure follows the populations to re-target back to a set
of corresponding design variables. According to the distributions,
the Probabilistic Stochastic Simulation stage implements an efficient
simulation procedure. A probabilistic swap strategy is employed on an
SA-based simulation, which earns runtime in convergence for optimal
solution. In the end, each optima of required specs is found. Moreover,
we can tell that the global optimal is close to such optimization result.

B. Device fitting to Circuit-level Variables
At the begin of synthesis framework, we have an abstraction

from device model to circuit-level variables is performed. Given the
required device of the target circuit design, the foundry device models
provide such device characteristics with SPICE modeling. Inspired
by [13], a set of analytical design equations are capable to map
device-level variables into circuit-level design variables by modeling
techniques such as symbolic analysis or curve fitting like [8], [9],
[20]. Two steps of technique accomplish the abstraction for design
variables. First of all, it is necessary to discover feasible variable
values for each attendant device. In other words, all design variable
values which cause device failed should be exclusive at this stage. By
SPICE simulator, a matrix of accessible device level variable value are
generated. Secondly, such matrix of device-level variables are further
mapped into circuit-level variables by curve fitting. An vivid example
for design variable mapping is shown in Fig.4.

Given a set of attendant devices M = {mk|1 ≤ k ≤ |M |}, a
set of device-level variables V D = {vDk|1 ≤ k ≤ |V D|} and
a set of circuit-level variables V C = {vDk|1 ≤ k ≤ |V D|}. A
set of feasible device-level variables are constructed in a table T,
which T = {ta,b|1 ≤ a ≤ |V D|, 1 ≤ b ≤ |V D

1 | × |V D
2 | . . . |V D

1 |}.
Each VD consists of a range of variable value. All training pairs
of the extracted circuit-level variables from previous transformation
and device-level variables are then formulated as least-square error
problem in analytical posynomial form design equations to acquire
fitting parameters.

C. Utmost Performance Space Generation via PAGE
From previous step, the design equations of the devices, along

with the parasitic effects and mapping parameters are integrated into
circuit-level design equations for the circuit. Note that the parasitic

Fig. 4. Mapping device-level variables of one NMOS(number of fingers,
device channel width/length and current) to circuit-level variables (Gm, Ro,
CD , CG and Σ)

effects of the devices are included so as to explore the trade-off
between each aspect of performance combination. An optimization
problem in Eq.(1) describes a unit performance optimization step.

V ariables : vi
C |1 ≤ i ≤ |V C | V C : circuit variables

pk|1 ≤ k ≤ |P | P : parasitics
fk|1 ≤ k ≤ |F | F : fitting parameters
rk|1 ≤ k ≤ |R| R : performance result

minimize fOBJ(vi
C , pk, fk)

subject to r1 = Perf1(V C , P, F ) ≥ z1
r2 = Perf2(V C , P, F ) ≥ z2
...
rk = Perfk(V C , P, F ) ≥ zk

(1)

Each optimization result in a set of performance value (r1, . . . , rk)
corresponding to the given specification of performance(z1, . . . , zk).
Therefore, according to the same design equation for optimization,
it is a one-by-one mapping relationship from spec to result of
performance and the corresponding circuit-level design variables. As a
result, it is similar to a set of chromosome. An evolutionary computing
with genetic algorithm for traversing solution space is employed. A set
of performance boundaries, {[Zmin, ZMAX ] = {zkmin, zkmax|1 ≤
k ≤ K}, on the performance are swept as the constraints for an
optimization problem in [13]. Here we expand the performance space
as an S×N matrix in Eq.(2). Moreover, each performance spec from
constraints is is encoded as chromosome G from maximal to minimal
in a set of G = {gk|1 ≤ k ≤ |G|}. For example, gi ∈ G randomly
obtains value of the kth spec from zk,1 to zk,S .

ZK×S =


z11 z12 . . . z1S
z21 z22 . . . z2S

...
...

...
...

zK1 . . . . . . zKS

 (2)

where
• K: the number of performance specification types. (eg: Av,

BW,...,etc.)
• [Zmin, ZMAX ]k, k = 1, . . . ,K is the kth type specification

range of the performance space.
• S is the sampling number for each ZS between Zkmin and

ZkMAX .
• ∀zki ∈ ZK×S , if i = 1, zki = ZSmin and if i = S, zki =

ZSMAX

Our PAGE approach is summarized as shown in Algorithm1. As
described in Input, a set of performance space matrix ZK×S is
given. At the beginning of PAGE, a major population is constructed



Algorithm 1 PAGE(ZK×S , NP , NS , S, k, T, C)

Input:

ZK×S : Performance Space Matrix,
NP : Number of Individuals in major population.
NS : Number of sub-populations.
S: Sampling number for each performance spec zk
k: Number of Performance spec type
T: Technology type.
C: Circuit type.

Output: RK×S : The result performance space
P : The population of performance specs after PAGE

1: for i = 1→ NP do
2: for j = 1→ k do
3: Gi ← RandGetSpec(Zj×S) {Randomly generate spec value from Z}
4: end for
5: P ← Gi

6: end for
7: for i = 1→ NS do
8: Pi ← Partition(P, i)
9: end for

10: while Convergence criterion satisfied do
11: for all i = 1→ NS do in parallel
12: Ri ← Evaluate(Pi, T, C)
13: Pooli ← Reproduction(Pi, F itness(T,C, k,Ri))
14: Pi ← Crossover(Pi, Pooli)
15: Pi ←Mutation(Pi)
16: end for
17: for all i = 1→ NS do in parallel
18: Migration(Pi, exclusive(P, Pi))
19: end for
20: end while
21: P ←Merge(P1, P2, . . . , PNS

)
22: return P,RK×S

according to ZK×S . Line 1 to Line 6 illustrates the process to
assign performance specs as chromosome for each individuals of
the major population iteratively. Therefore, a major population P
is generated. According to the size of sub-population NS , master
processor allocates individuals to each slave processor uniformly as
sub population P1 . . . PNS . A evolution is executed between Line 10
and Line 20. Because the Evaluate, Reproduction, Crossover and
Mutation part are independent, the parallel parts start from Line 11
to Line 16. Hence, in each sub-population, each location of gene in
one individual is fed into Evaluate(P, T, C) as target constraints
for performance to the design equation(shown in Eq.(1)) and a
corresponding result Riis obtained. However, if one combination of
performance metrics sketch out the space which is not convex, such
individual would be failed by Evaluate. Then, a random generated
individual replaces and redo Evaluate again until each chromosome
G has its corresponding result R = {rk|1 ≤ k ≤ |R|}.

Fig. 5 shows the flow of the parallel genetic evolution from
random performance space matrix(ZK×S) to convergence. Each sub-
population experience a evolution with Evaluate, Reproduction,
Crossover and Mutation. Between Line 12 to Line 15, PAGE
utilizes a fitness function to determine the suitability for each Gi.
According to our requirement, we tend to specialize the particu-
lar spec, such as voltage gain(Av). A set for fitness function is
given, Fitness = {fitnessi|1 ≤ i ≤ NS} as kind of objective
function to determine how important does each individual is with
the Evaulate result. Each sub-population Pi applies one particular
fitness function which is related to the required performance result
Rk of Evaluate value. Therefore, the fitness function determines
the qualified individuals to be preserved to the crossover pool in a
weighted ratio, and the others should be extinct. In Crossover of
Line 14, the Crossover step selects each two genes Gi and Gj

,where {Gi, Gj ∈ Pool; 1 < i < j < N} for copulation. Since each
individual has K types of spec, these two individuals exchange c
specs and reserve K− c specs with each other. In the end of parallel
sub-level evolution, the Mutation step picks up one individual with
mutation rate and then replaces one gene value by one slot of ZK .

For each sub-population Pi, we perform Mutation and obtain an
updated Pi. Migration in Line 18 of Algorithm 1 aims to exchange
individuals in the population network shown in the bottom of Fig. 3.
According to [19], our approach selects the coarse-grained parallel
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Fig. 5. The Coarse-grained parallel genetic approach from major population P
to partitioned population Pi for parallel evolution. The migration step benefits
each sub-population on diversity every iteration.

genetic algorithm (CoPGA) in order to increase the diversity for each
sub-population. We use the ring-shape population network illustrated
in Fig.3. Therefore, each Pi should operate Migration with the
others. In each Migration between Pi and Pj , Pi exchanges its
best individual with respect to fitnessj , and vise versa. After all the
Migration executed, the composition of each Pi is updated with
higher diversity. After all, while the termination condition meets, all
the sub-populations are merged for next step re-targeting.

To consider the complexity of PAGE, it is considerable to check
the dimension of ZK×S . According to line 12 in Algorithm 1,
Evaluate(Pi, T, C) is the most critical. Each Evaluate for Pi

need to resolve NP
NS

convex optimization problems in serial, which
is O(NP

NS
). Comparing to the exhaustive approach, the complexity

is restricted to K and S. That is, we need to traverse every
combination from specification space in ZK×S for O(SK) com-
plexity. For example, if a circuit require two performance specs
(Av and BW ) with 4 sampling steps (Av = {5, 10, 15, 20},
BW = {3MHz, 5MHz, 8MHz, 10MHz}). Therefore, the overall
combination of specs need to be checked is 42 = 16. Obviously,
we can observe the gap with more specs(K ↑) and greater precision
in sampling(S ↑). To sum up, a genetic-based approach can reduce
the complexity by controlling population number and a parallel
enhancement further reduce the timing complexity vi parallel number.
However, the accuracy is also sacrificed as trade-off.

D. Performance Metrics to Design Variables via Re-targeting

After generating specialized populations by parallel genetic algo-
rithm evolution, this step is a reverse interpolation from a series of
performance specifications through circuit-level design variables to
device-level design variables. Hence, K groups of optimal-potential
performance spaces of the circuit under chosen technology are
traversed. Since a set of performance metrics directly represents the
limitation of specifications, such group of optimal performance speci-
fication is locked from optimal performance. Ideally, the optimization
engine should be capable of directly finding the geometry-biasing-
level design variables.

Next, we want to find the optimal candidates of device-level design
variables. From previous stage, the circuit-level design variables are
obtained. Here the distribution of the device-level design variables



Fig. 6. Given merged populations of performance specs, a reversed process
is to retrieve the corresponding design variables of each device (PMOS) in
the circuit for optimal sizing values.

are also obtained through this design re-targeting stage. As Eq.(3)
illustrated, since each device has its particular device variables, all of
them should be considered for optimization. |M | stands for a set of
attendant devices in the circuit. Thus, NV D collects the number of
all device variables type. A set of overall device level variable values
Ψ are collected from populations as shown in Fig.6.

M = {mk|1 ≤ k ≤ |M |}
D = {dk|1 ≤ k ≤ |D|}

NV D =

|M|∑
i

|V D
i |

Ψ = {V D
i,j |1 ≤ i ≤ |D|, 1 ≤ j ≤ NV D}

(3)

E. Probabilistic Stochastic Circuit Simulation

The final step performs a full-circuit stochastic simulation. In-
stead of analyzing all possible value of each device’s variables, a
probabilistic approach for circuit simulation is proposed. Since these
design variables are transformed from performance populations by
PAGE, each population of performance metrics directly projects to
a set of variable distribution. Given a set of value of variables,
a normalized distribution for such design variables is obtained by
calculating the mean value and standard deviation. In other words, it
represents the probability distribution function (PDF) for that device-
level variable. Thus, a set of PDF for each device-level variable is
generated. PDF = {pdfk|1 ≤ k ≤ |Ψ|}

We assign a maximum and minimum values for each V D from
technology design rules, and apply stochastic circuit simulation
among these variable boundaries with an SA-based search. Each
V D is uniformly divided into step values from V D

max to V D
min.

While performing stochastic simulation, each swap is determined
according to the pdf of such VD . In other words, pdfk(V D

K ) effects
the possibility to simulate such variable values.

A hierarchical synthesis for circuit sizing strategy is accomplished
after the optimal solution is converged in that stochastic simulator or
the termination requirement is met.

IV. EXPERIMENTAL RESULTS

As demonstration of our methodology, we obtain a radio-frequency
distributed amplifier(RFDA) in [13] and another folded cascode op-
erational amplifier to be synthesized automatically by our framework
through three technology processes: umc 65nm, umc 90nm and tsmc
90nm. Table I shows the statistics of the two circuits, including the
components of each and the original performance specifications. Our
methodology is implemented by GCC version 4.3.4, Matlab R2011a,

Fig. 7. Given a set of device variables distribution Ψ, each variable V D

transforms to a normalized probability distribution function (PDF), and then
a probabilistic full-chip stochastic simulation performs swapping strategy
according to these PDFs

TABLE I. DEVICE STATISTICS OF RFDA AND OPAMP

Device Number
circuits MOS Capacitor Resistor Inductor Total
RFDA 12 30 0 30 72
Spec Av( v

v
) Pdc(µW ) Pout(mW ) Fcent(GHz) BW (GHz)

≥ 5 ≤ 0.5 ≥ 2 ≥ 5 ≥ 10

Op-Amp 18 1 0 0 19
Spec Av( v

v
) Pdc(µW ) Pout(µW ) BW (MHz) Phase Margin

≥ 40 ≤ 100 ≥ 0.1 ≥ 60 ≥ 50

and the cvx optimization package. Since we rewrite the Matlab
cvx package with our design equations of RFDA and OP-Amp into
our c++ based PAGE, the interpretation is accomplished by Matlab
Runtime Compiler 4.15 on Intel Xeon E5620 2.4GHz with 72GB
memory. The parallel computation threads we utilize here are 4 to 8
threads for evaluation in this PGA-based exploration.

Here we implement frameworks for performance exploration as
follows:

1) Meng et al. in [13], an exhaustive performance exploration
method with a basic stochastic circuit simulation.

2) AGE, a genetic algorithm based performance exploration
method with basic stochastic circuit simulation framework.

3) PAGE, a parallel genetic algorithm based performance explo-
ration method with probabilistic stochastic circuit simulation
framework.

Table II shows the comparison among above three frameworks for
analog circuit synthesis. The first column denotes 2 curcuits, RFDA
and Op-Amp. In RFDA case, we only apply umc 65nm technology,
wchich is the same as previous work. In addition, three technologies,
umc 65nm, umc and tsmc 90nm are applied for Op-amp circuit.
The left third and 4th column show the overall runtime and improve
percentage, and the right five represent the performance values of one
optimal point in each methodology.

By definition, PAGE can search the limitation of performance
metrics and also find the performance Pareto-fronts with particular
populations. Since genetic algorithm has ability to traverse different
combination with crossover and mutation wisely, our approach can
collect a bunch of potential spec combinations as a population,
and transfer them to re-target back to the desired design variables.
Not only obtaining a good initial performance metric population is
important, also a design equation which can precisely sketch out
the circuit characteristic is necessary. However, we tend to keep the
stochastic simulation for a final search, but also using an evolutionary
methodology to reduce the convergent resource. As we can see, AGE
already earns runtime improvement at umc65-RFDA, umc65-OPAmp,
umc90-OpAmp and tsmc90-Opamp with 398% , 227%, 174% and
224% than the exhaustive way respectively. Moreover, the PAGE
earns even better quality by simultaneously explore the performance



TABLE II. THE PERFORMANCE RESULTS FOR RFDA AND OP-AMP CIRCUIT WITH UMC 65NM, UMC 90NM AND TSMC 90NM TECHNOLOGIES ON [13],
AGE AND PAGE FRAMEWORK

RFDA Algorithm Runtime(s) Improv.(%) Av( v
v

) Pdc(µW ) Pout(mW ) Fcent(GHz) BW (GHz)

[13] 38880 - 6.4322 0.23 2.65 9.85 17.48
umc 65nm AGE 9756.02 398% 7.38 0.175 23.3 20.9 40.2

PAGE 6300.15 617% 8.505 0.183 18.8 22.5 40.4
Op-Amp Algorithm Runtime(s) Improv.(%) Av( v

v
) Pdc(µW ) Pout(µW ) BW (MHz) Phase Margin

[13] 19432 - 45.73 102 0.21 144 45.7
umc 65nm AGE 8568 227% 44.88 93.76 0.428 102 67.84

PAGE 3424 568% 44.17 93.94 0.527 102 67.7
[13] 15285 - 33.16 95.6 1.72 78.58 65.872

umc 90nm AGE 8797 174% 44.247 96.36 0.38 111 74.45
PAGE 3583.6 427% 44.981 95.11 0.763 110 74.4
[13] 19488 - 38.42 111 1.2 284 50

tsmc 90nm AGE 8703 224% 40.46 100.1 0.27 100 82
PAGE 4651 419% 41.36 99.62 0.22 87 82.1

space with 617%, 568%, 427% and 419% than [13] respectively.
The runtime report from each GA-based experiment shows the good
quality in efficiency.

For the target performance result, in umc 65nm RDFA, all per-
formance requirements have better quality than the exhaustive way.
AGE explores the unprecedented results on BW and Pout, while
PAGE has obvious improvement on Av and Fcent. On first umc65
folded cascode Op-Amp, although [13] has good quality on Av and
BW , the PM and Pout are sacrificed. On the other hands, AGE
and PAGE come to the quality on each performance target. We can
tell that genetic-algorithm based approach can balance the multi-
objective optimization via evolution. For umc90-Opamp case, [13]
generated the results far from optimal region with Av and BW to
earn the better output power Pout. As well as the tsmc90-Opamp
case, Av , Pdc and PM are poor while such approach searched
into optimal region of Pout and BW . The quality for exhaustive
methodology is uncertain and time-consuming. On the contrary, as
the lower part of Table II, AGE successfully searches the optimal
region of all target performances. Moreover, PAGE reaches the better
quality on Av , Pdc and Pout for umc90-Opamp case respectively.
Likewise, PAGE also explores new limitation for Av , Pdc and PM
at tsmc90-OpAmp as different technology implementation. As a
result, the exhaustive approach for performance exploration needs
more timing resource to explore the Pareto-fronts but the uncertainty
is indispensable. In contrast, the parallel genetic-algorithm based
approach for performance exploration with the probabilistic stochastic
simulation resolves the problem efficiently and effectively.

V. CONCLUSION

In this paper, we have proposed a performance utmost exploration
framework for analog synthesis framework with a parallel genetic al-
gorithm based approach to efficiently explore a potential performance
space for optimal solution. Unlike exhaustive search the performance
space which is time-consuming, this work first transforms the problem
set as chromosome and then implements a parallel evolutionary algo-
rithm to resolve multi-objective performance optimization. After a re-
targeting transformation between performance and design variables,
we also implement a probabilistic stochastic simulation with respect
to the design variable distribution. Our methodology also minimizes
time to converge the global optima with accuracy. As demonstration
for our methodology, a RFDA circuit and an Op-Amp are practiced
via 3 different technologies to show that our proposed performance
exploration approach and probabilistic stochastic simulation are ef-
fective and efficient for analog circuit synthesis.
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