
Shared Memory Aware
MPSoC Software Deployment∗

Timo Schönwald†, Alexander Viehl††FZI Forschungszentrum Informatik
Haid-und-Neu-Str. 10-14

76131 Karlsruhe, Germany
[schoenwald,akoch,viehl]@fzi.de

Oliver Bringmann†‡, Wolfgang Rosenstiel†‡‡Universität Tübingen
Sand 13

72076 Tübingen, Germany
[bringmann,rosenstiel]@informatik.uni-tuebingen.de

Abstract—In this paper we present a novel approach for
mapping interconnected software components onto cores of
homogenous MPSoC architectures. The analytic mapping pro-
cess considers shared memory communication as well as the
routing algorithm controlling packet-based communication. The
software components are mapped with the constraints of avoiding
communication conflicts as well as access conflicts to shared
memory resources. The core of the elaborated approach consists
of an algorithm for software mapping which is inspired by
force-directed scheduling from high-level synthesis. Experimental
results show that the presented approach increases the overall
system performance by 22% while reducing the average commu-
nication latency by 35%. For presenting the major advantages
of the developed solution, we optimized an advanced driver
assistance system on the Tilera TILEPro64 processor.

I. INTRODUCTION

As the computational performance of single microprocessor
cores cannot be further increased by higher frequencies due
to deep submicron and thermal problems, the design paradigm
shifted towards multicore architectures for general purpose and
embedded processors. Recent SoC platforms containing more
than one core, like the NVIDIA Tegra 3 or the TI OMAP
5 are available and integrated into mainstream products on
the market. As the number of cores further increases their
interconnection becomes a bottleneck.

The scalability of the communication infrastructure between
the cores of a processor declines with their number. Bus-based
communication becomes the bottleneck as the number of cores
connected to the bus increases. Packet-based communication
infrastructures proposed as network-on-chip (NoC) [3] repre-
sent a promising approach to handle the growing scalability
problems of bus-based communication.

In contrast to bus-based architectures, packet-based com-
munication architectures have the advantage that packets of
temporally overlapping communication instances can take
different paths through the network for data transmission and
thereby access conflicts mainly impacting the communication
performance can be reduced or avoided. The routing algorithm
e.g. [8] determines the path the data are transmitted between
cores. It has a significant impact on the communication and
the performance of the entire system.

Besides the communication infrastructure especially shared
memory access becomes a bottleneck as the number of cores
increases. Further, the local cache size of the cores decline
with increasing core numbers. Therefore a lot of data has to
be held in off-chip memory and software components have
to communicate using shared memories. Because of these
implications, the shared memory becomes a significant factor
for the performance of multicore and manycore architectures.
An explicit consideration of memory properties is getting even
more into the task of architecture optimization.

Using novel NoC-based MPSoC architectures, such as the
Tilera TILEPro64 [22] and Tile-Gx8000 [21] with separate
on-chip-networks for functional and memory communication
raises new design challenges for embedded system architects.

∗This work was partially supported by the BMBF project RESCAR 2.0
under grant 01M3195E and the BMBF project EFA2014/2 under grant
13N11945.

One of these challenges is the integration of the new platforms
into the design flow. In present design flows the mapping
of software processes of parallelized algorithms onto the
cores of the NoC-based MPSoC architectures and also the
architecture and hierarchies of memories are not taken into
account sufficiently. Hence new approaches for the mapping of
processes onto the cores of NoC-based MPSoC architectures,
considering shared memory as well as the communication
infrastructure, are needed.

In this paper we present extensions to the so-called force-
directed mapping (FDM) [18] [17]. FDM determines the
mapping of software processes onto the cores of NoC-based
MPSoC architectures with an algorithm inspired by force-
directed scheduling (FDS) from high-level synthesis. FDS
considers the effects of a scheduling and binding decision for
subsequent operations to be scheduled and bound on functional
units. Scheduling and binding of operations to functional units
have some similarities to the mapping of software processes
onto the cores of MPSoC architectures. For this reason a
FDS inspired algorithm is well-suited for mapping software
processes onto the cores of MPSoC architectures.

The starting point of the design flow is a homogeneous
MPSoC architecture with a regular communication structure.
This implies that every process of the software application
can be computed on every core of the MPSoC architecture.
For simplification we assume that respectively one process is
mapped on one core of the MPSoC architecture.

The extension we present in this paper is called shared
memory aware force-directed mapping (smFDM). Shared
memory access is a crucial factor that limits the entire system
performance which has not yet been addressed sufficiently
by related approaches so far. Therefore it is of particular
importance to consider the memory architecture and shared
memory during the mapping of software process onto the cores
of MPSoCs. The approach presented in this paper is the first
one, that takes shared memory in conjunction with the routing
algorithm of the communication infrastructure into account.
We show, how the extension can be integrated into the FDM
algorithm and that the extension has a quite positive impact
on the communication latency as well as on the overall system
performance. For process mapping, smFDM takes

• the degree of freedom on which core a process is mapped,
• functional communication,

– the route for functional communication,
– the communication distance between the cores the

software processes are mapped on,
• shared memory communication,

– the route for shared memory communication,
– the communication distance between cores an mem-

ories according to the architecture,
• the communication network architecture,

– separate communication networks for functional
communication and memory communication

into account. smFDM places the processes in such a way
that communication conflicts and memory access conflicts are
reduced or even avoided. Thereby the smFDM:

• reduces the communication latency,
• increases the throughput
The paper is structured as follows. In Section II we re-

view existing approaches for the mapping of tasks onto NoC

978-3-9815370-0-0/DATE13/ c©2013 EDAA

architectures. Section III presents our approach for mapping
processes onto NoC-based MPSoC architectures. A short
introduction to the Tilera TILEPro64 architecture which we
used for obtaining the results can be found in Section IV-A. In
Section IV-B we present the application we used for obtaining
the results presented in Section IV-C.

II. RELATED WORK

Approaches used for mapping tasks onto cores of NoCs
can be used or adapted for mapping processes onto the cores
of MPSoC architectures. The usage of these approaches is
possible in the case the MPSoCs uses packet-based commu-
nication like NoC architectures. In [4] an approach for the
synthesis of NoCs is presented, which uses the SUNMAP tool
[16] for mapping. The SUNMAP tool maps a core graph with
annotated edge weights onto the NoC architecture. In a first
step, an initial mapping is found using a greedy algorithm
by placing the tasks with the highest communication demand.
In a second step, a pair wise swapping of all placed tasks is
performed and the costs for the mappings are calculated. In
[15] different optimization functions for the calculation of the
mapping costs in the SUNMAP tool are presented.

The approach presented in [10] maps tasks on mesh-based
NoC architectures. For this, the approach uses an application
characterization graph to map the tasks onto an architecture
characterization graph. The goal of that approach is the
reduction of the communication energy consumption while
preserving the performance of the NoC. Another approach,
that performs a power-aware mapping concerning bandwidth
and latency constraints is presented in [24]. In [11] an ILP
approach is used for the reduction of the energy consump-
tion. An approach for multi-objective optimization concerning
energy an temperature is presented in [13].

In [14] an approach is presented that uses a branch and
bound algorithm for mapping and physical planning of NoC
architectures. For the mapping a directed graph of communi-
cating tasks and a NoC topology graph is used. The mapping
is done based on bandwidth constraints of the NoC topology
graph. Another approach that performs mapping and physical
planning is presented in [5]. That approach uses bandwidth
information for the mapping of the tasks on the cores of the
NoC architectures.

Only a few approaches consider shared memory communi-
cation during the mapping determination. One of these map-
ping algorithms is presented in [12]. This approach optimizes
the order of read and write accesses to the shared memory. The
limitations of this approach are that only one shared memory
bank in the NoC architecture is allowed, as well as the routing
algorithm for the communication is not considered. Another
approach taking shared memory into account is presented in
[7]. This approach is limited due to the fact, that it only
considers the distance between communication partners for
improving the data locality. That approach do not consider
the routing algorithm of the used architecture.

The drawback of all previously mentioned approaches is that
they do not take the routing algorithm into account sufficiently.
Either they do not take the routing algorithm into account
or they only consider deterministic routing algorithms. The
approaches, which take the routing algorithm into account,
do not consider that packets routed through the network
can conflict with each other by using the same link at the
same time. Our approach is feasible for different kinds of
routing algorithms as well as for different kinds of topologies.
Our approach is more precise, it considers shared memory
communication also as the routing algorithm and it is feasible
for different kinds of routing algorithms.

In [9] a force-directed approach for optimizing the dynamic
power is presented. Another force-directed approach for power
optimization is presented in [2]. In [19] a force-directed
approach for architecture optimization, using multi local port
routers, is presented. This approach tries to optimize the
communication architecture by connecting more than one pro-
cessing element to one router. The optimization goals of these

approaches differ from the goal of the approach presented in
this paper. The presented approach reduces communication
conflicts and thereby the communication latency.

III. MAPPING ALGORITHM

In this section we present the developed extension to
the FDM [18] [17] algorithm called shared memory aware
force-directed mapping (smFDM). The starting point of the
developed approach is a homogeneous NoC-based MPSoC
architecture with a specification of the memory architecture.
This means that every process can be computed on every
processor core resulting in the same execution time character-
istics. As the processes of the envisaged application domain
are typically strongly connected and have huge amounts of
inter-process data communication, the considered architecture
class is communication centric. The pipeline of the concurrent
functional software processes is dominated by the computation
characteristics of the slowest process in the pipeline. For
simplification of the mapping problem we abstract from the
computation characteristic of the processes. All communi-
cation instances between the concurrent software processes
are pessimistically considered as potentially simultaneous and
hence as overlapping which might lead to access conflicts.
However the general approach can be simply extended to
consider the computation characteristics using approaches like
[20] and [1].

Major adaptions and extensions were made to the original
FDS algorithm for aligning the basic principles with the setting
of mapping software processes to memories and cores. The
developed mapping algorithm uses a distribution graph as a
representation of conflicting communication on links of the
MPSoC topology. Self forces are calculated from the values of
the distribution graph regarding that links are connected to a
route and that a data communication can last some timeslots.
The degree of freedom for mapping a process onto a core
is huge. However, mapping a process to a particular core
can effect the mapping of other processes and thereby the
communication distance. Therefore our approach calculates
successor forces and predecessor forces for processes effected
by the current mapping. The total force is calculated out of the
self forces for all data communication instances assigned to a
valid route by mapping a process to a core and the successor
and predecessor forces. The mapping with the smallest total
force is chosen and the distribution graph is updated.

A. Basic Definitions
smFDM uses an extension of the application character-

ization graph (APCG) [10] consisting of communicating
processes which are mapped onto a MPSoC architecture.
The extended application characterization graph (EAPCG) is
defined as follows:

Definition 1: The EAPCG〈P,D〉 is a non-cyclic directed
graph, where:

• P is the set of processes pa in the EAPCG
• D is the set of communications da,b between the pro-

cesses pa, pb ∈ P
• time (pa) : P → R

3
+ denotes the best-, average, and

worst-case execution time of a process pa ∈ P
• data (da,b) : D → R+ denotes the amount of data a

communication da,b ∈ D transmits �
For describing the topology of the MPSoC architecture we
use an extension of the architecture characterization graph
(ARCG) [10]. The extended architecture characterization
graph (EARCG) is defined as follows:

Definition 2: The EARCG〈C,M,Lc, Lm, N〉 is a di-
rected graph, where:

• C is the set of cores ci of the architecture
• M is the set of memories mj of the architecture
• Lc ⊆ C ×C is the set of links li,j between cores of the

architecture
• Lm ⊆ C ×M is the set of links li,j between cores and

memories

• L = Lc ∪Lm is the set of all links li,j ∈ Lc ∪Lm in the
architecture

• N is the set of communication networks nk of the
architecture

• band (li,j) : L → R+ denotes the bandwidth of a link
li,j ∈ L

• net (li,j) : L → N denotes the association of a link
li,j ∈ L to a communication network nk ∈ N

• cache (ci) : C → N+ denotes the cache size of a core
ci ∈ C

• mem (ci) : C → M denotes the association of core ci ∈
C to a memory mj ∈ M �

Definition 3: The function map, that maps the processes
pi ∈ P on the cores cj ∈ C is defined as follows:

map (pi) : P → C, |P | ≤ |C| �
Definition 4: The set Pmappable contains all processes that

are mappable in the current iteration of the algorithm.
Pmappable = {pm | pm ∈ P \ Pmapped,

∃da,m ∈ D : pa ∈ Pmapped}
Where Pmapped is the set of already mapped processes. �

The data communication between two processes mapped
onto different cores of the MPSoC architecture takes place
by packet-based communication. The path between two cores
the data is transmitted over is called a route. A route ri,j is
a non-cyclic end-to-end connection from core ci to core cj
consisting of links la,b ∈ L.

The route over which the data of a communication is
transmitted through the network is determined by the routing
algorithm. Routing algorithms prohibit certain routes for e.g.
deadlock avoidance like presented in [8]. Only a subset of all
possible routes between two cores are valid.

Definition 5: The set Ri,j =
{
r1i,j , ..., r

n
i,j

}
contains all

routes between the cores ci and cj . The subset Vr (Ri,j) ⊆
Ri,j contains all valid routes ri,j between the cores ci and cj .
In this formulation r is the routing algorithm applied to the
MPSoC architecture. �
The presented approach is also able to handle adaptive routing
algorithms, which allow multiple valid routes between two
cores. This is taken into account during the computation of
the total force.

For complexity reduction coarse grained timeslots instead
of clock cycles are used.

Definition 6: A timeslot t is defined as the time interval a
link la,b ∈ ri,j is used for transmitting data. �

Definition 7: The probability Prob that a link la,b is used
in timeslot t for a data communication di,j between the cores
ci and cj is defined as follows:

Prob (la,b, t) =

{
0 �ri,j ∈ Vr (Ri,j) : la,b ∈ ri,j

1
|Vr(Ri,j)|∗|Cfree| ∃ri,j ∈ Vr (Ri,j) : la,b ∈ ri,j

Where Cfree is the set of free cores. �
The distribution graph shows the concurrency of data com-

munication instances using a particular link in a timeslot.
Therefore the distribution graph is defined as follows:

Definition 8: The summation of the probabilities for each
link la,b ∈ L for each timeslot t is denoted as the distribution
graph DGla,b

given by:

DGla,b
(t) =

∑
d∈D

Prob (la,b, t)
�

Definition 9: The force f exerted onto a link la,b ∈ L in a
timeslot t is defined as follows:

f (la,b, t) = DGla,b
(t) ∗ x (la,b, t)

Where x (la,b, t) is the change of the probability that the link
la,b ∈ L is used in the timeslot t.

x (la,b, t) =

{
0− Prob (la,b, t) la,b not used in t
1− Prob (la,b, t) la,b used in t �

A negative value of force f results, if a link la,b ∈ L is
not chosen for communication in timeslot t as the probability
x (la,b, t) is negative in that case.

In the presented approach, the self force is associated with
the mapping of a process onto a core and thereby with the
assignment of a valid route to a data communication. Therefore
the self force is a measure of conflicting communication
instances on a route.

Definition 10: The self force sf is associated with each
route ri,j ∈ Vr (Ri,j). The self force is calculated as follows:

sf (ri,j) =
∑

∀la,b∈ri,j

f (la,b, t) (1)
�

If the mapping of a process onto a core of the NoC-based
MPSoC architecture and thereby the assignment of a valid
route to a data communication has effects on the mapping
costs of other processes and data communications successor
forces and predecessor forces have to be calculated.

Definition 11: The predecessor predf force is calculated
like the self force (Eq. 1). Predecessor forces are calculated
for processes pp ∈ Ppred which can be mapped in the current
iteration of the algorithm and are not equal to the currently
mapped process pm.

Ppred = {pp | pp ∈ Pmappable \ {pm}} (2)
�

Definition 12: The successor force succf is calculated like
the self force (Eq. 1). Successor forces are calculated for
processes ps ∈ Psucc that have not been mapped before. The
processes in Psucc have a data communication dm,s ∈ D with
the currently mapped process pm.

Psucc = {ps | ps ∈ P \ {Pmapped ∪ Pmappable} :

∃da,s ∈ D : pa ∈ Pmapped ∪ {pm}} (3)
�

The total force tf is the summation of all self forces sf ,
all successor forces succf and all predecessor forces predf ,
where pm is the process currently mapped on a core c of
the MPSoC architecture, pa ∈ Pmapped is a process already
mapped on a core, ps is a process a successor force is exerted
on (Eq. 3) and pp is a process a predecessor force is exerted
on (Eq. 2).

Definition 13: The total force tf is defined as follows:

tf (pm, c) =
∑

∀di,j∈Da

∑
∀ri,j∈Vr(Ri,j)

sf (ri,j)+

∑
∀di,j∈Ds

∑
∀ri,j∈Vr(Ri,j)

succf (ri,j)+

∑
∀di,j∈Dp

∑
∀ri,j∈Vr(Ri,j)

predf (ri,j)

Where the sets Da, Ds and Dp are defined as follows.
Da ={d | da,m, dm,a ∈ D : pa ∈ Pmapped}
Ds ={d | ds,m, dm,s ∈ D : ps ∈ Psucc}
Dp ={d | dp,m, dm,p ∈ D : pp ∈ Ppred, pa ∈ Pmapped} �

B. Algorithm
The smFDM algorithm computes the mapping map : P →

C of the processes of the EAPCG onto the cores of the
EARCG. Therefore the mappable processes are iteratively
mapped onto the free cores of the architecture. smFDM tries
to reduce the concurrency of communications on all links of
the architecture as well as the concurrency for the access to
the off-chip memory. The mapping of a process to a core that
results in the lowest communication concurrency on the links
and the lowest access concurrency to the off-chip memory is
chosen as mapping for that process.

In Fig. 1 the pseudo code for the smFDM algorithm can be
found. In the initial step (lines 2 to 4 in Fig. 1) a heuristics
for the mapping of the first process is used. Afterwards the

Algorithm 1 smFDM

1: begin
2: map first process pfirst on core cfirst
3: Cfree = C \ {cfirst}
4: Pmapped = {pfirst}
5: while P \ Pmapped �= ∅ do
6: compute Pmappable
7: for all pm ∈ Pmappable do
8: compute Cdev
9: for all cm ∈ Cdev do

10: map pm on cm
11: compute all valid routes
12: compute distribution graph
13: end for
14: end for
15: compute all total forces
16: choose mapping pmap onto cmap with smallest total force
17: update distribution graph
18: Cfree = Cfree \ {cmap}
19: Pmapped = Pmapped ∪ {pmap}
20: end while
21: end begin

Figure 1: Algorithm for smFDM

used core cfirst is removed from the set of free cores Cfree
as well as the mapped process pfirst is inserted into the set
of already mapped processes Pmapped.

In the next steps (lines 5 to 20 in Fig. 1) the remain-
ing processes are iteratively mapped onto free cores of the
MPSoC architecture until all processes are mapped. First
the set Pmappable of all mappable processes for the current
iteration of smFDM are computed. For each mappable process
pm ∈ Pmappable the set Cdev ⊆ Cfree, containing all cores
cn with the shortest communication distance for a process
pm and cores with a specified deviation from the shortest
communication distance, is computed. The cores in the set
Cdev are sorted ascending to the communication distance,
starting with the shortest communication distance. The details
on the calculation of the set Cdev are out of scope of this paper
due to the page limitation, but can be found in [18] [17]. Then
the process pm is iteratively mapped onto each free core in
the set Cdev . For each mapping all valid routes are computed
using the algorithm in Fig. 2.

Algorithm 2 Valid Routes

1: begin
2: for all dm,a do
3: if datam,a > cache(cm) then
4: compute valid routes Rmem,m from mem (cm) to cm
5: end if
6: compute valid routes Rm,a between cm and ca
7: if datam,a > cache(ca) then
8: compute valid routes Ra,mem from ca to mem (ca)
9: end if

10: end for
11: for all da,m do
12: if dataa,m > cache(ca) then
13: compute valid routes Rmem,a from mem (ca) to ca
14: end if
15: compute valid routes Ra,m between ca and cm
16: if dataa,m > cache(cm) then
17: compute valid routes Rm,mem from cm to mem (cm)
18: end if
19: end for
20: end begin

Figure 2: Algorithm for computation of valid routes

The number of timeslots is calculated based on the duration
of each single communication. The duration of a commu-
nication is calculated using the amount of data transmitted
and the bandwidth of the links used. The point in time
a communication is started is calculated using a max-plus
formulation [6]. If the sending process of a communication
received all subsequent communication instances from directly

precedent processes, the communication data can be sent.
For the valid routes and timeslots the distribution graph is
computed.

After all routes for the processes pm ∈ Pmappable are
computed, the self forces, successor forces, predecessor forces
and the total forces for the assignment of a process to a core
and thereby a data communication to one of the valid routes
are computed. The mapping with the smallest total force is
chosen. For that mapping the distribution graph is updated.
The mapped process is inserted into the set Pmapped of mapped
processes and the used core is removed from the set Cfree of
the free cores.

smFDM can further be used for mapping software processes
on heterogeneous MPSoC architectures. For this purpose the
mapping algorithm has to be adapted slightly. The algorithm
needs to maintain different lists for the different kinds of
free cores (e.g. DSP, GPU, ...). The algorithm then uses the
corresponding list of free cores on that a process can be
executed for the calculation (lines 8 to 9 Fig. 1).

IV. RESULTS

As homogeneous MPSoC architecture we used the Tilera
TILEPro64 processor [22] placed on a TILExpressPro-64
Card [23] for obtaining the results. The chosen architecture
is highly suitable for streaming applications processing data
in a computation pipeline. The industrial application from the
automotive domain we used for obtaining the results is par-
allelized using concurrent processes and pipelining. Therefore
this applications can benefit from the advantages of the Tilera
architecture.

A. System Architecture
The Tilera TILEPro64 architecture shown in Fig. 3a consists

of 64 identical tiles arranged in a regular 8×8 mesh topology.
Each tile consists of a processor, 16 kB L1 cache, 64 kB
L2 cache and a router. Some of the tiles are reserved for
special purpose functionality like I/O or the ethernet interface.
The reserved tiles are shaded red in Fig. 3a. As the Tilera
TILEPro64 architecture does not support native floating point
operations, floating point operations are emulated using fixed
point operations instead. For communication the TILEPro64
architecture has six packet-based communication networks.

• STN Static Network
• UDN User Dynamic Network
• TDN Tile Dynamic Network
• MDN Memory Dynamic Network
• IDN I/O Dynamic Network
• CDN Coherence Dynamic Network

Only the STN and the UDN are accessible for the program-
mer, the other communication networks are managed by the
processor itself. The UDN is used for communication between
the tiles, the MDN is used for the communication between the
tiles and the off-chip memory. The 64 tiles are divided in four
quadrants (top-left, top-right, bottom-left, bottom-right). The
cores in these quadrants use the corresponding off-chip DDR
memory bank for shared memory communication.

The router transmits the data received from the local
processor or from other routers using dimensional ordered
XY -routing. XY -routing transmits packets first in the X
direction and then in Y direction until the packet reaches the
destination. For each cycle 32 bit data are transmitted and
the switching frequency of the communication network is 700
MHz. Therefore the bandwidth between two routers is about
2.6 GBytes per second.

B. Application
For obtaining the experimental results we used an applica-

tion from the automotive domain, a stereo camera based depth
map computation as it is typically used in advanced driver
assistance systems like predictive brake and adaptive cruise
control for object recognition. Latency is a very crucial factor
because of safety-relevant hard real-time constraints which
have to be fulfilled by the object recognition.

DDR 2

match 3

pre 2

pre 3

match 4

match 5

capture

filter 2

match 8

match 9match 7

match 6

match 2

1matchfilter 1

filter 3

disp 1

disp 2

disp 3rect 1

rect 2

rect 3

res 1

res 2

res 3

pre 1

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

P
C

Ie
 0

DDR 0 DDR 1

X
A

U
I 0

G
B

E
F

le
xI

O
 1

X
A

U
I 1P

C
Ie

 1
F

le
xI

O
 0

R
S

h
im

DDR 3

(a) BWCM of processes on cores

network load
 2.5
 2

 1.5
 1

 0.5

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

ne
tw

or
k

lo
ad

 in
 p

er
ce

nt

(b) Network load of the UDN for BWCM

network load
 6
 4
 2

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

ne
tw

or
k

lo
ad

 in
 p

er
ce

nt

(c) Network load of the MDN for BWCM

DDR 2

capture

disp 2

filter 2

filter 3

disp 3

match 4

match 5

match 8

match 7

pre 3

match 3

rect 3

res 3 pre 2

match 9

match 6

res 2

1match

match 2filter 1

disp 1 pre 1

res 1

rect 1

rect 2

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7

P
C
Ie

 0

DDR 0 DDR 1

X
A

U
I 0

G
B

E
F
le
xI

O
 1

X
A

U
I 1P

C
Ie

 1
F
le
xI

O
 0

R
S
h
im

DDR 3

(d) smFDM of processes on cores

network load
 3
 2
 1

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

ne
tw

or
k

lo
ad

 in
 p

er
ce

nt

(e) Network load of the UDN for smFDM

network load
 6
 4
 2

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1

 2
 3

 4
 5

 6
 7

switches

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

ne
tw

or
k

lo
ad

 in
 p

er
ce

nt

(f) Network load of the MDN for smFDM

Figure 3: Different mapping alternatives and network load for the stereo depth map computation

The stereo depth map computation uses images taken from
two ethernet cameras with a resolution of 656 × 492 pixels.
For the rectify, resize, preprocess, filter and display stages
three concurrent processes were used. For the match stage
nine concurrent processes are used and for the capture stage
one process is used. The corresponding EAPCG with the data
communication used for mapping is depicted in Fig. 4.

200 kB 123 kB
123 kB

200 kB 123 kB 123 kB200 kB

200 kB 123 kB
123 kB

205 kB 246 kB

246 kB205 kB

246 kB205 kB

match 7

match 8

match 9

pre 3res 3rect 3

match 4

match 5

match 6

rect 2 res 2 pre 2

1match

match 2

match 3

rect 1 res 1 pre 1 filter 1 disp 1

filter 3 disp 3

disp 2filter 2capture

Figure 4: EAPCG of depth map computation
The concurrent processes of the depth map computation use

buffered channels for packet-based data communication over
the user dynamic network (UDN) of the Tilera TILEPro64
architecture. Due to the fact that all communication data of the
EAPCG (Fig. 4) are larger than the local caches of all cores,
the communication between the concurrent processes mapped
on theses cores are shared memory communication using the
memory dynamic network (MDN) of the Tilera TILEPro64
architecture.

C. Results
We used the presented approach for mapping the processes

of the EACPG shown in Fig. 4 onto the Tilera TILEPro64
architecture. As the Tilera TILEPro64 architecture only sup-
ports the XY -routing algorithm this was considered during
the computation of the valid routes Vr (Ri,j).

In Fig. 3 two different mapping alternatives for the pro-
cesses of the depth map computation are shown. The first
alternative (Fig. 3a) is gained using the bandwidth-constrained
mapping (BWCM) presented in [15]. The processes are placed

corresponding to their bandwidth requirements. Due to the
fact that implementations of the mapping algorithms discussed
in section II are not freely available and that details of the
algorithms are missing in the corresponding papers, we used
the BWCM mapping for comparison, because it could be
implemented on the details in [15]. In Fig. 3d the mapping
is done using the presented shared memory aware force-
directed mapping (smFDM) with a deviation dev = −1.
Here the average distance between communicating processes
is minimized and conflicting communication instances are
reduced.

The network loads of the UDN and the MDN for the
different mapping alternatives for the stereo depth map com-
putation, determined using the profiling capability of the Tilera
Multicore Development Environment, are shown in Fig. 3e, 3f,
3b and 3c. Fig. 3b and Fig. 3c show the network load for the
links of the UDN and the MDN for the mapping alternative
determined using the BWCM algorithm. It can be seen that
the network load for the links is nearly two times higher than
the network load of the links in the UDN and the MDN for the
mapping alternative determined using the presented smFDM
algorithm. This is due to the fact that smFDM reduces the
amount of conflicting communications on a link by distributing
the communications over different link in the communication
infrastructure.

For the results shown in Fig. 5a to 5c the Tilera default
mapping (TDM), a possible worst-case mapping (WCM), the
BWCM, the FDM [18], the smFDM with different values for
the deviation dev (line 8 in Fig. 1), and eight synthetic random
mappings (RM1 - RM8) were used. The results are based
on time measurements on the Tilera TILEPro64 architecture
using special purpose registers containing the cycle count of
the cores.

In Fig. 5a the results for the total system performance of the
stereo depth map computation for the different mappings are
shown. As it can be seen the overall frame rate is maximal for
the mapping that was determined using smFDM. The frame
rate can be increased in contrast to BWCM by 22%. The
justification for this is that smFDM maps the processes in such
a way that conflicting communication instances and memory
access conflicts are reduced. Therefore the overall performance

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

RM1
RM2

RM3
RM4

RM5
RM6

RM7
RM8

TDM
W

CM
BW

CM
FDM

smFDM0

smFDM1

smFDM2

smFDM3

smFDM4

smFDM5

smFDM6

smFDM7

smFDM8

smFDM9

smFDM10

smFDM11

fp
s

(a) Frames per second

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

RM1
RM2

RM3
RM4

RM5
RM6

RM7
RM8

TDM
W

CM
BW

CM
FDM

smFDM0

smFDM1

smFDM2

smFDM3

smFDM4

smFDM5

smFDM6

smFDM7

smFDM8

smFDM9

smFDM10

smFDM11

la
te

nc
y

in
 m

s

(b) Average latency

 0

 1

 2

 3

RM1
RM2

RM3
RM4

RM5
RM6

RM7
RM8

TDM
W

CM
BW

CM
FDM

smFDM0

smFDM1

smFDM2

smFDM3

smFDM4

smFDM5

smFDM6

smFDM7

smFDM8

smFDM9

smFDM10

smFDM11

av
er

ag
e

ne
tw

or
k

lo
ad

 in
 %

(c) Average network

Figure 5: System performance for the different mapping alternatives of the stereo depth map computation

of the system is enhanced. As the stereo depth map com-
putation uses a lot of floating point operations and floating
point is emulated by the Tilera TILEPro64 architecture using
fixed point operations, the frame rate is not very high. This
is negligible because the absolute differences between the
frame rates are of interest. The new Tilera Tile-Gx8000 [21]
architecture support native floating point operations.

Fig. 5b shows that the average latency can be reduced when
the smFDM is used for mapping the processes onto the cores
of the Tilera architecture. The latency reduction is achieved
by reducing conflicting communication and memory access
conflicts by distributing the communication uniformly across
the two communication networks. In contrast to BWCM the
average latency for the stereo depth map computation can be
reduced by 35%.

In Fig. 5c it can be seen that the average network load of
the communication network can be decreased by 65% when
smFDM is used.

V. CONCLUSION

In this paper we presented a novel approach for an au-
tomated mapping of software processes on homogeneous
MPSoC architectures, taking shared memory communication
as well as the routing algorithm into account. The presented
approach can increase the overall system performance by
mapping the processes in such a way that communication
conflicts and memory access conflicts are reduced or even
avoided.

The developed shared memory aware force-directed map-
ping (smFDM) algorithm is the first approach taking

• the route communication instances are routed through the
network,

• and shared memory communication,
in conjunction with each other into account during the map-
ping of software processes onto the cores of a homogenous
NoC-based MPSoC architecture.

The argumentation that the overall system performance can
be increased is demonstrated by the application of the smFDM
algorithm to the processes of a depth map computation for a
stereo camera system. The presented approach was compared
to the BWCM algorithm presented in [15]. The presented
results show that the smFDM can reduce the latency and
increase the throughput while reducing the network load in
comparison to BWCM.

Our next steps are the extension of the smFDM algorithm
for taking the computational characteristics of the processes
into account. Additionally we are working on extension for
mapping more than one process onto a core of the MPSoC
architecture by using schedulability analysis. Furthermore we
are working on an extension taking cache coherency into
account.

REFERENCES

[1] AbsInt Angewandte Informatik GmbH, “aiT WCET Analyzer,” www.
absint.com/ait/.

[2] A. K. Allam and J. Ramanujam, “Modified Force-Directed Scheduling
for Peak and Average Power Optimization using Multiple Supply-
Voltages,” in ICICDT ’06: Proceedings of the 2006 IEEE International
Conference on Integrated Circuit Design and Technology, 2006.

[3] L. Benini and G. D. Micheli, “Network on Chips: A New SoC
Paradigm,” IEEE Computer, vol. 35, no. 1, 2002.

[4] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini,
and G. D. Micheli, “NoC Synthesis Flow for Customized Domain Spe-
cific Multiprocessor Systems-on-Chip,” IEEE Transactions on Parallel
and Distributed Systems, vol. 16, no. 2, 2005.

[5] E. Bolotin, A. Morgenshtein, I. Cidon, R. Ginosar, and A. Kolodny,
“Automatic Hardware-Efficient SoC Integration by QoS Network on
Chip,” in ICECS ’04: Proceedings of the 2004 IEEE International
Conference on Electronics, Circuits and Systems, 2004.

[6] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems. Springer Science and Business Media Inc., 1999.

[7] G. Chen, F. Li, S. S.W., and K. M., “Application Mapping for Chip Mul-
tiprocessors,” in DAC ’08: Proceedings of the 45th annual conference
on Design automation, 2008.

[8] C. J. Glass and L. M. Ni, “The Turn Model for Adaptive Routing,” in
ISCA ’92: Proceedings of the 19th annual international symposium on
Computer architecture.

[9] S. Gupta and S. Katkoori, “Force-Directed Scheduling for Dynamic
Power Optimization,” in ISVLSI ’02: Proceedings of the IEEE Computer
Society Annual Symposium on VLSI, 2002.

[10] J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures,” in
DATE ’03: Proceedings of the conference on Design, Automation and
Test in Europe, 2003.

[11] J. Huang, C. Buckl, A. Raabe, and A. Knoll, “Energy-Aware Task
Allocation for Network-on-Chip Based Heterogeneous Multiprocessor
Systems,” in PDP ’11: Proceedings of the 2011 International Confer-
ence on Parallel, Distributed and Network-Based Computing, 2011.

[12] X. Jin, N. Guan, Q. Deng, and W. Yi, “Memory Access Aware Map-
ping for Networks-on-Chip,” in RTCSA ’11: Proceedings of the 2011
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, 2011.

[13] Y. Liu, Y. Ruan, Z. Lai, and W. Jing, “Energy and Thermal Aware
Mapping for Mesh-based NoC Architectures using Multi-objective Ant
Colony Algorithm,” in ICCRD ’11: Proceedings of the 2011 Interna-
tional Conference on Computer Research and Development, 2011.

[14] S. Murali, L. Benini, and G. D. Micheli, “Mapping and Physical
Planning of Networks-on-Chip Architectures with Quality-of-Service
Guarantees,” in ASP-DAC ’05: Proceedings of the 2005 Asia and South
Pacific Design Automation Conference, 2005.

[15] S. Murali and G. D. Micheli, “Bandwidth-Constrained Mapping of Cores
onto NoC Architectures,” in DATE ’04: Proceedings of the conference
on Design, automation and test in Europe, 2004.

[16] S. Murali and G. D. Micheli, “SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs,” in DAC ’04: Proceedings
of the 41st annual conference on Design automation, 2004.

[17] T. Schönwald, A. Viehl, O. Bringmann, and W. Rosenstiel, “Distance-
Constrained Force-Directed Process Mapping for MPSoC Architec-
tures,” in Proceedings of the International Conference on Digital System
Design (DSD), 2012.

[18] T. Schönwald, A. Viehl, O. Bringmann, and W. Rosenstiel, “Opti-
mized Software Mapping for Advanced Driver Assistance Systems,” in
Proceedings of the International Symposium on Industrial Embedded
Systems (SIES), 2012.

[19] B. Sethuraman and R. Vemuri, “A Force-directed Approach for Fast
Generation of Efficient Multi-Port NoC Architectures,” in VLSID ’07:
Proceedings of the 20th International Conference on VLSI Design, 2007.

[20] A. Siebenborn, A. Viehl, O. Bringmann, and W. Rosenstiel, “Control-
Flow Aware Communication and Conflict Analysis of Parallel Pro-
cesses,” in ASP-DAC ’07: Proceedings of the 12th Asia and South Pacific
Design Automation Conference, 2007.

[21] Tilera Corporation, “Tilera TILE-Gx8000,” http://www.tilera.com/
products/processors/TILE-Gx-8000.

[22] Tilera Corporation, “Tilera TILEPro64,” www.tilera.com/products/
processors/TILEPRO64.

[23] Tilera Corporation, “Tilera TILExpressPro-64 Card,” www.tilera.com/
products/platforms/TILExpressPro64card.

[24] X. Wang, M. Yang, Y. Jiang, and P. Liu, “Power-Aware Mapping for
Network-on-Chip Architectures under Bandwidth and Latency Con-
straints,” in EM-Com ’09: Proceedings of the 4th International Con-
ference on Embedded and Multimedia Computing, 2009.

