
Advances in Asynchronous logic:

from Principles to GALS & NoC,

Recent Industry Applications,

and Commercial CAD tools

Alex Yakovlev

Newcastle University

Newcastle, UK

Alex.Yakovlev@newcastle.ac.uk

Pascal Vivet

CEA, LETI, Minatec Campus

Grenoble, France

Pascal.Vivet@cea.fr

Marc Renaudin

TIEMPO

Montbonnot, France

Marc.Renaudin@tiempo-ic.com

Abstract— The growing variability and complexity of advanced

CMOS technologies makes the physical design of clocked logic in

large Systems-on-Chip more and more challenging.

Asynchronous logic has been studied for many years and become

an attractive solution for a broad range of applications, from

massively parallel multi-media systems to systems with ultra-low

power & low-noise constraints, like cryptography, energy

autonomous systems, and sensor-network nodes. The objective of

this embedded tutorial is to give a comprehensive and recent

overview of asynchronous logic. The tutorial will cover the basic

principles and advantages of asynchronous logic, some insights

on new research challenges, and will present the GALS scheme as

an intermediate design style with recent results in asynchronous

Network-on-Chip for future Many Core architectures. Regarding

industrial acceptance, recent asynchronous logic applications

within the microelectronics industry will be presented, with a

main focus on the commercial CAD tools available today.

Keywords—component; asynchronous design, handshake

circuits, GALS, CAD flow

I. INTRODUCTION

The growing variability and complexity of advanced
CMOS technologies makes the physical design of clocked
logic in multi-core Systems-on-Chip (SoCs) extremely
challenging and costly. The main issues for such systems,
which carry on scaling with the Moore’s law, are concerned
with achieving timing closure in the face of PVT variations, IR
drops on power lines, synchronization issues for different clock
domains and so on. On the other end of the spectrum of CMOS
are many problems in the realm of more-than-Moore, i.e.
developments in mixed signal systems such as systems with
energy harvesting sources, RFID etc., where power and timing
conditions are harsh and require logic to be robust to them.
Clearly, IC designers begin to realize that reliance on the use of
a single global clock no longer guarantees economic and
reliable solutions. The question is therefore arising, whether it
is worth to switch to clockless or asynchronous systems, and if

so, what types of asynchronous logic design techniques would
be most appropriate.

Asynchronous logic is not a new paradigm, it has been
studied for many years and become an attractive solution for a
broad range of applications, from massively parallel multi-
media systems to systems with ultra-low power and low-noise
constraints, like cryptography, energy autonomous systems,
and sensor-network nodes. While in the past asynchronous
logic design methods were developed in relative isolation, they
tended to follow fairly purist approaches, such where an entire
system would be seen to be built without clocking, using delay-
insensitive or speed-independent circuit theory. The reality has
proven that those approaches, albeit theoretically elegant,
haven’t been picked up by industry for various reasons, and
most prominently for the lack of connections with real-life
industrial design and test practices, starting from the
description languages, flexible design tools and ending with the
accepted validation procedures. More recent views of the
asynchronous design experts are much more in line with real-
life, and this is what our position in this tutorial, whose
objective is to give a comprehensive and recent overview of
asynchronous logic and its modern day status. One of such
present day trends for introducing asynchrony into system
design is through a more evolutionary approach, called
“globally asynchronous, locally synchronous” (GALS) design,
which uses asynchronous principles to build interfaces between
locally clocked data-processing islands, to combine the
advantages of both aspects.

The tutorial is organized as follows. Section II will discuss
the main principles and advantages of asynchronous logic.
Section III will present the GALS scheme as an intermediate
design style. Section IV will follow with recent results in
asynchronous Networks-on-Chip for future Many Core
architectures. Section V will focus on a modern industrial
design flow from Tiempo with its own synthesis tools. Section
VI will cover recent applications and CAD perspectives within
the microelectronics industry.

978-3-9815370-0-0/DATE13/©2013 EDAA

II. ASYNCHRONOUS DESIGN PRINCIPLES

A. Design Principles

This section will outline the key principles lying behind
most of the existing asynchronous design methods.

Asynchronous handshaking. When data is passed between
logic blocks two aspects of timing are most important. One of
them concerns the conditions that determine the moment of
time when the sender knows that the receiver has received the
previous item, so it can send the next item. The other aspect is
for the receiver to know that the data on the information lines is
valid as opposed to being in transit (some bits have changed
while other bits are still changing their state). In synchronous
circuits both aspects are resolved with the help of the clock
pulse. In asynchronous circuits, the situation is different. The
first aspect is resolved by the use of handshake protocols,
where two signals, request and acknowledgement are used to
transmit switching events between the sender and receiver, as
shown in Fig.1. These req-ack events form communication
tokens a useful abstraction for asynchronous system design.
Three main types of signaling are often used for handshakes
[1]: (i) four-phase, or level-based, or Return-to-Zero (RTZ); (ii)
two-phase, or transition-based, or non-Return-to-Zero (NRZ),
and (iii) pulse-based. The advantage of the four-phased method
is a relative simplicity of the implementation logic, while the
two-phase signaling has less communication overhead than the
four-phase protocol with more complex logic to implement.
The pulse-based approach combines the advantages of the
previous two schemes, however at the cost of requiring extra
care with the formation of pulses, as some of the transitions on
the wires are unacknowledged.

Figure 1. Handshake signaling: req-ack pair

(a); four-phase (return to zero, RTZ) protocol (b).

Delay-insensitive encoding. The second aspect of timing is
concerned with the validity of data on the information lines.
Without having a clock, the validity of the data should be
derived from the causal relations between data lines [1]. A
simple way, the so called bundled data method, uses the
assumption that the data value must transition strictly before
the edge on the request signal. In this way, the validity tag is
provided by the request signal, which is analogous to the clock.
While the bundled data approach often enables reuse of
datapaths from synchronous implementations (hence benefit
from using results of commercial logic synthesis tools), the
timing constraints between data and control may undermine the
robustness of circuits, for example under severe PVT variation.
Hence the use of delay-insensitive (DI) codes, where the
validity of data is directly embedded in its encoding. The
simplest form of DI encoding is dual-rail. It relies on the use of
two wires for each bit and when combined with a four-phase
signaling protocol also requires a NULL state (spacer) when
both wires are in the zero state, as shown in Fig 2, where the
transmission of a sequence of logical 1 and 0 is shown. Other

DI codes can be formed, for example, those based on m-of-n
codes (having valid codewords with exactly m bits that are
equal to 1 out of the total n wires) [2]. Two examples of DI m-
of-n codes are shown that are commonly used in recent NoCs:
1-of-4 (0001=> 00, 0010=>01, 0100=>10, 1000=>11); 2-of-7
(1100000, 1010000, …, 0000011 – in total 21 combinations,
which can encode 4 bits of data plus 5 control tokens).

Figure 2. Data encoding in dual rail

Completion detection. In the absence of the clock, the
deriving of the validity of data on inputs as well as signaling
the completion of transients inside logic blocks can be done by
using special pieces of hardware dedicated solely to completion
detection. For bundled data representation the completion is
indicated by a special matched delay, whose value must be
greater than the worst-case delay in the single-rail logic block.
For DI signaling, such as dual-rail, special circuitry is added to
propagate information about the transient completion, as
illustrated in the implementation of a completion detection tree
shown in Fig. 3. This tree consists of a row of OR gates
followed by a multi-input C-element, which can be constructed
either as a tree of 2-input C-elements or using trees of simple
gates for multi-input AND and OR and a 2-input C-element at
the end. The need for completion logic at the output of the
dual-rail logic, as opposed to using ‘shortcuts’ via matched
delays, effectively supports the notion of causal
acknowledgement, described in the following paragraph.

Figure 3. Completion detection for dual-rail logic

Causal acknowledgement. In synchronous circuits or when
using the bundled data method the correctness of timing
conditions is determined by assumptions about relative delays
(in case of clock, between the worst case paths and clock
period). For asynchronous operation that relies on the explicit
indication of the transients between the circuit gates, that is
called causal acknowledgement. According to this principle,
every transition on inputs or the output of each gate is
acknowledged, or indicated, by some other signal transition. To
illustrate this effect, consider the circuit shown in Fig. 4(a). The
circuit diagram shows a speed-independent or quasi-delay-
insensitive (QDI) implementation of the behavior of a two-way
C-element, whose specification is given in the signal transition
graph shown on the right. The refined behavior of this circuit,
at the level of all gates, is shown in Fig. 4(b), which clearly

shows that the cause-effect relation is guaranteed for all
transitions regardless of the delays of all gates. Signal transition
graphs (STGs) are generally used to specify asynchronous
control logic [3]. There are tools to perform synthesis of
control logic from STGs, the most widely used such tool is
Petrify [3].

Figure 4. C-element implementation in simple gates with full indication

of signal transitions and its signal tranistion graph (a);

its refined signal-transition graph (b)

Full indication and early evaluation. Related to the notion of
causal acknowledgement and indicatability is the property of
causality between signals inside the circuit, which has its
implication on the implementation of logic operators. For
example, when using dual-rail encoding one can think of a
strongly-indicating QDI implementation of a two input logical
AND, shown on the left of Fig. 5 (this implementation is also
known as DIMS [2], for “directly indicating min-term
synthesis”) and a weakly-indicating implementation,
sometimes also known as an implementation “with early
propagation” (shown on the right). The tradeoffs between
robustness and efficiency in these two options for two-input
AND are quite obvious.

Figure 5. Strongly indicating and weakly indicating

("with early propagation") implementationss of logical AND.

Time comparison. The last important principle is about the
need for explicit logic to perform the so-called “time
comparison”, which exhibits itself either in the form of
synchronization or arbitration. A synchronizer is a device
which interfaces a circuit with its own clock to an input whose
signal transitions are produced outside the clock domain, and
thus being asynchronous to the circuit. Using a simple flip-flop
as a synchronizer is prone to failures because when its data
input (used as an asynchronous request or other validity tag)
and clock input change close to each other, the set-up condition
for the flip-flop is violated and its output may enter a
metastable state, between 0 and 1, and stay there longer than
the clock period. This may cause a malfunctioning in the circuit

where the metstable state may be interpreted as 0 in one place
and 1 in another. More about metastability, synchronization
and the design of synchronizers can be found in [4].

Figure 6. Two-way arbiter (mutex) with metastability resolver

Another form of time comparison is for asynchronous
arbitration [4], which is for example required for resolving
various forms of conflict in systems, including arbitration for
common resources between mutually asynchronous clients. A
two-way arbiter (also called mutex) is illustrated in Fig. 6. It
can be used to determine the order of arrival between two
mutually concurrent requests req1 and req2. The circuit issues
only one grant ack1 or ack2 at a time. Since the circuit uses an
SR latch the digital part of the mutex may enter a metastable
state. However, the analogue part, called metastability resolver,
prevents its propagation to the ack outputs. Only when the latch
leaves the metastable state one of the outputs ack1 or ack2 goes
to 1.Two way mutexes are used in building GALS interfaces
and complex arbiters in NoC routers.

B. Main advantages and drawbacks

Researchers have always been excited by asynchronous
design and motivated by their ability to work on average not
worst case delays; lower power consumption (automatic fine-
grain “clock” gating; automatic instantaneous stand-by at
arbitrary granularity in time and function; distributed localized
control; more architectural options/freedom; more freedom to
scale the supply voltage); modularity; lower EMI and smoother
Idd (the local “clocks” tend to tick at random points in time);
low sensitivity to PVT variations (due to inherent
indicatability); secure chips (white noise current spectrum).

So why hasn’t asynchronous logic been adopted in the
past? Some of the reasons are due to overheads (area, speed,
power) in control and handshaking, dual-rail and completion
detection costs. However, these are less of an issue now due to
the counterarguments in favour. The most prominent now are
actually the reasons associated with the design and test issues.
Namely: the variety of styles and variants to go and one can
easily get confused which is better; lack of practical CAD tools
as the tools tend to be quite specific to particular design styles
and design niches; complexity of timing and performance
models; difficulty with sign-off (for particular frequency
requirements). Last but not least, the hardness to test
asynchronous circuits using conventional testing methods and
equipment is another obstacle.

Despite these drawbacks, the situation is gradually
changing and as the following sections demonstrate, the design
methods and tools gradually mature and industry is certainly
much less averse to this discipline because the pluses are
gradually outweighing minuses.

III. GLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS

A. GALS Design Main Principles

The Globally Asynchronous Locally Synchronous (GALS)
scheme has been introduced as early as 1984, by Daniel
Chapiro. A GALS system (Figure 7.) consists of a number of
complex digital blocks operating synchronously. Those blocks
are usually developed using standard synchronous CAD tools
and design flow. However, the operation of the blocks is not
mutually synchronized, hence the name “locally synchronous”.
These locally synchronous blocks communicate with each
other asynchronously: at top level, the system is asynchronous.

In the literature, the “GALS” term stands for any design
style between fully synchronous design using unrelated clock
frequencies – the GALS term is often used by the industry
today to implement multi-synchronous large SoCs – to various
forms of asynchronous communication schemes between the
synchronous islands. The communication topologies can be
anything from point-to-point communications to structured
interconnects, like bus hierarchy, rings, or Network-on-Chip.
For asynchronous style, a common approach is to add a so
called "asynchronous wrapper" that provides an interface from
the synchronous to the asynchronous environment to every
locally synchronous block.

Figure 7. GALS architecture template

The main advantage of GALS is to provide modular and
scalable architecture. GALS is a way to structure system level
communication, such as those in Network-on-Chips. Regarding
physical design and timing optimization, global clocking is not
feasible anymore due to long wires and high frequencies.
GALS is a way to provide structured pipelined interconnect:
top level long wire delays are handled through asynchronous
signalling and pipelines, with high level protocol semantics. As
a result, local synchronous islands are smaller IPs, thus
allowing smaller and independent clock trees, with smaller
clock skews. GALS is also a natural enabler for Low Power.
By fully decoupling communication from computation, power
management techniques such as Dynamic Voltage and
Frequency Scaling, DVFS) can be applied to GALS where
synchronous IPs are independent voltage and frequency
islands. Lastly, GALS design brings also Low Noise. By
decoupling the frequency domains, the GALS architecture will
generate smaller noise with a set of smaller multi-harmonics
instead of a single large-noise harmonic. This can be beneficial
for crypto applications for instance.

Nevertheless, all these often advocated advantages of a
GALS template must no hide various issues and drawbacks.
When designing a GALS system, the main issue is the design
of reliable GALS interfaces in order to handle the so-called
metastability problem, which may occur between the
synchronous and asynchronous logic domains [5]. The GALS
design style can be classified into two main forms: (i) a full
clock cycle is required to wait for metastability to resolve; such
a technique is adopted in multi-synchronous GALS design by
using a two flip-flop synchronizer, likewise using mixed
synchronization FIFOs ; ii) a single flip-flop but with a delayed
clock; this is the initial unsynchronous machine from Chapiro
which has evolved in the pausible or stretchable clock concepts
[8]. In both cases, the GALS interfacing logic must provide
high performance with high throughput and low latency. The
two following sections present the design principles of these
two design styles.

B. FIFO based synchronization

For SoC level synchronization, a two flip-flop (2FF)
synchronizer is simple to design, but a back pressure protocol
is required to handle sporadic and bursty traffic with associated
full/empty states. Then, a simple 2FF synchronizer would
present a large performance overhead with 4 clock cycles
throughput (at least) for any token round trip; which is
unacceptable cost at system level. The classical solution is to
use a synchronization FIFO to hide synchronization and allow
parallel read and write.

Figure 8. Dual Clock FIFO principles

As presented in Figure 8. , a dual clock FIFO allows
concurrent read and write using independent read and write
clock domains, and synchronization of read/write FIFO
counters with respective opposite clocks to compute the
empty/full FIFO status. Since the FIFO pointers cross timing
domains, it is required to use an adequate encoding to ensure
proper synchronization and detection of FIFO empty/full states.
For this, Gray encoding is classically used in multi-
synchronous FIFOs. With a Hamming distance of one, the
Gray-encoded FIFO counters only change one digit by read or
write iteration, thus providing correct multi-bit
synchronization. Gray encoding leads to complex logic, since
counter increment need translation from/to binary, and is
mostly limited to 2^N FIFO sizes, with an N-bit Gray counter.

For mixed-mode asynchronous/synchronous FIFOs to be
used in a GALS scheme, similar FIFO strategy applies but one
FIFO side is transformed or wrapped to behave with an
asynchronous protocol; and different pointer encoding can be
used to replace costly Gray codes. Various FIFO encoding and

architecture have been studied in the recent years. Most of
these FIFOs use token based encoding instead of Gray code.
Chelcea [6] has proposed mix-mode synchronization FIFOs,
using a 1-hot token-based encoding implemented using
precharge logic, providing efficient but - partly - full custom
design. Sheibanyrad [11] has proposed a bubble encoding for
FIFO design targetting a GALS NoC architecture. More
recently, Thonnart [7] has proposed to use Johnson encoding,
providing also a Hamming distance of 1 as for Gray code, a
less dense code but not restricted to 2^N values, allowing to
have efficient small FIFOs (depth 5 or 6).

C. Pausible Clock Design

Another solution for cross-timing domain resynchronization
is to use the so-called pausible clocking. The basic idea is to
stretch the clock cycle when a transfer occurs between
synchronous and asynchronous domains until the transfer is
complete, to avoid any metastable state and allow safe data
latching. As presented in Figure 9. , the locally synchronous
block is clocked by a local clock generator and communicates
with external world using asynchronous handshake channels
(implemented usually by the bundle-data 4-phase protocol).
The IP is wrapped by specific port controllers which request
the clock generator to suspend the next clock edge until
incoming/outgoing transfer is completed, to allow safe data
transfer.

Figure 9. IP Self Timed Wrapper [9]

Various pausible clock schemes have been proposed in the
literature [8]. A comprehensive GALS design flow based on
pausible clocking has been developed by ETH Lab with
various port controllers (poll type, demand type), various
interconnection topologies, an associated test architecture, and
a complete design flow [9]. Nevertheless, such an approach
suffers from various design issues. The port controllers are
specified as asynchronous finite state machines (AFSM), using
a burst-mode description. The port controllers are implemented
using an AFSM synthesis tool, but care must be taken to avoid
any logic remapping during logic synthesis and place & route,
to guarantee hazard-free asynchronous logic. A more tricky
issue concerns clock tree insertion time. In preliminary works,
the clock tree insertion time of the synchronous IP was limited
to match a delay race between clock pause path and data
latching in the port controller being clocked by the generated
clock. That was leading to small clock tree insertion time (half
the clock period), thus limiting the size of the synchronous IP.
This clock tree limitation has been overcome in recent work,
but with more tricky design, and still providing a low data

transfer throughput (less than 0.5 word per clock cycle) [10].
Pausible clocking exhibits also other system level limitations:
(i) the Local Clock Generator design is a low-cost feature to
offer Dynamic Frequency Scaling (DFS), but since it is based
on a programmable delay line that can be implemented in full
std-cell, or could be more sophisticated, it is usually still
inaccurate to guarantee a target frequency; (ii) lastly, by
pausing the clock edge for each data transfer, the transfer
throughput is limited, thus reducing the system performance by
not ensuring a stable and regular clock generation.

D. Recent GALS designs and Conclusion

The most accomplished GALS circuit design techniques
using Pausible Clock, with associated circuit results, have been
developed by ETH and IHP labs. The ETH lab have developed
various circuits [9], targeting a crypto-application with the AES
algorithm, and also studied various topologies (ring, bus,
crossbar). Thanks to clock tree partitioning, compared to pure
synchronous design, the GALS version presents lower EMI,
which was an advantage for the crypto-application, while
presenting similar performances (speed, area, power).

More recently, the IHP lab have developed [10] a complete
design methodology, and a baseband OFDM TX circuit, with 6
GALS IP blocks and 16 GALS links, fabricated and measured
in a 40nm CMOS technology. A fair comparison with a
synchronous version of the same OFDM BB TX design
exhibits a 5% area gain and 6% power consumption reduction
for the GALS version running at 160MHz. These gains are
obtained thanks to GALS partitioning, smaller clock tree, and
gain in clock tree power. Nevertheless, the proposed design
techniques still require lots of expertise for too minor gains.

Figure 10. GALS design technique comparison

Finally, when comparing the two main GALS design
techniques (Figure 10.), pausible clocking is more adapted for
low power, low performance application, and requires more
design expertise, while FIFO based synchronization will target
high performance application with guaranteed throughput, but
presenting higher latency and area costs. In both cases, in order
to hide the inherent design complexity regarding timing
analysis and associated verification, these GALS interface
blocks (pausible clock generator & port controller, or re-
synchronization FIFO) can be designed as hard macros that can
be easily reused at system level. In conclusion, the main
benefits of GALS will not be only obtained from circuit design
techniques but most of all at system level thanks to modular
and scalable GALS design, allowing local DVFS for further
power consumption system level optimization [14].

IV. ASYNCHRONOUS NETWORK-ON-CHIP

A. Main principles

Networks-on-Chip (NoC) have been introduced as an
alternative to more traditional bus-based architectures, to give a
modular and scalable communication architecture based on
packet switching. With a clear separation between computation
and communication, the NoC architecture perfectly fits the
GALS paradigm (Figure 11.), where NoC units are
implemented as synchronous units, with independent clock
domains, while the NoC infrastructure can be implemented in
fully asynchronous logic.

IP1

Clk1

IP2

Clk2

IP3

Clk3

IP4

Clk4

IP5

Clk5

IP6

Clk6

IP7

Clk7

IP8

Clk8

IP9

Clk9

Figure 11. GALS Network-on-Chip template

Regarding clocking strategy, the NoC may be implemented
using synchronous logic, but due to timing constraints for long
wire communication, single-clock synchronous design is not
feasible (clock skew on large topologies, margins, etc.), a
certain level of de-synchronization is often used. This can be
done using standard multi-synchronous design, source-
synchronous design, or with meso-chronous clocking. Such
synchronous NoC implementations are feasible, but present
large latency overhead, due to synchronization cost at each
router hop, even when using optimized mesochronous design
[11], when compared to a fully asynchronous NoC.

A more elegant solution consists in implementing NoC
routers and links using asynchronous logic and handshake
channels. Many asynchronous NoC have been proposed in the
literature, using various asynchronous design techniques:

• Bundle-data asynchronous logic, like in MANGO,
QNOC, which use standard 4-phase protocols, or more
recently [12] using a two-phase Mousetrap protocol, to
increase link throughput ;

• Quasi-Delay-Insensitive (QDI) asynchronous logic,
like HERMES-A using dual rail, ANOC using 1-of-4
DI code for lower power, or CHAIN using more
complex 2-of-7 DI code for code density and additional
power reduction, to provide robust NoC routers and
links insensitive to timing variations ;

• Mixed design (internal router using bundle data logic
while long NoC links are implemented using QDI
logic), like in ASPIN [11], to benefit of both
advantages : smaller logic in the routers, robustness on
the long NoC links, but requiring additional conversion
logic.

B. NoC Building Block Design

An asynchronous NoC is composed of asynchronous
routers, aimed to route and arbitrate packets in the topology,
and NoC GALS interfaces that are responsible for bridging the
timing domains between the asynchronous router and the
synchronous units. These NoC GALS interfaces can be either
implemented using a FIFO-based synchronizer [7] or using a
pausible clock GALS interface [14]. Due to performance
constraints, FIFO-based GALS interfaces will be preferred for
asynchronous NOC, as explained in section III.

Asynchronous 4-rail pipeline stage

Router

1

Router

2

L0

L.ack

L1
L2
L3

Figure 12. Asynchronous NoC link pipeline stage

Lastly, the NoC is composed of asynchronous long wire
NoC links that can be implemented using various encodings:
bundle-data, which requires timing margin constraints to be
met on long wires, or using QDI asynchronous logic for design
robustness and easier physical design. In order to increase NoC
link performances, it is often required to pipeline the long link
wires. Compared to synchronous retiming in pipelines, pipeline
retiming can also be done using asynchronous logic, yet more
easily and efficiently. A long NoC link shown in Figure 12. is
pipelined; it uses a 4-phase 1-of-4 QDI encoding, by adding a
half-buffer pipeline stage (C-elements and a NOR gate). As a
result, the wire length is divided by two per stage, the
throughput is multiplied by 2, with a cycle time being 4 times
this new wire length due to 4 phase protocol, while the forward
latency is preserved: the inverters being replaced by C-element.
This can be done as often as needed according to the NoC link
length and properly optimized using place & route tools [16].
Compared to synchronous retiming, asynchronous pipeline
does not add extra clock cycles along the NoC links.

C. Opportunities for Power Reduction Design Techniques

In asynchronous Network-on-Chip, as for GALS, the main
system level advantages will come from additional power
reduction design techniques. In the NoC routers, a possibility is
to benefit from the robustness and locality of asynchronous
logic to automatically detect NoC traffic activity and use this
information to power down and save leakage when NoC
routers are Idle [14].

OUT NorthIN North

IN Res

OUT South IN South

IN

West

OUT

West

OUT
East

IN

East

OUT Res

Activity
Control
counts

data in&out

Voltage

Control
Vhigh/Vlow

Switch

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

LS

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

L
S

LS
LS

LS
LS

LS
LS

LS
LS

Vhigh

Vnode (high or low)

Figure 13. NoC router with Activity Detection

Activity detection on the incoming and outgoing NoC links
is performed using channel monitors. The channel monitor
drives the voltage regulator, which is composed of a simple
power switch, offering a normal mode and a low power mode
(Figure 13.). This is a fully autonomous and robust detection
mechanism, without additional software control and with
minimal latency cost (2 ns wake-up). In Idle mode, the leakage
reduction is a factor of 4, while the router is still functional
providing a low power mode (1/4 the throughput, 1/2 the
energy). Such a scheme may be implemented using
synchronous logic in a NOC router, but would not be as
efficient, due to extra cost for clocking and wake-up control.

Figure 14. GALS NoC unit template for DVFS [14]

For NoC units, as discussed in section III for any generic
GALS scheme, the main idea is to implement independent
frequency and power domain synchronous islands, to achieve
Dynamic Voltage and Frequency Scaling (DVFS). As
presented in Figure 14. , a given synchronous IP core of the
NoC architecture can be wrapped in a template architecture,
with its Network-Interface for handling NoC traffic, a Local
Power Manager to control, by software, the various Power
Modes, a Test wrapper for testability, a GALS interface for
interfacing synchronous and asynchronous domains, a Local
Clock Generator for DFS, and finally a Power supply units
providing voltage selection and leakage control for DVS. The
GALS NoC template allows decoupling of the various
architecture services, such as NoC communication, power
management, clock generation, re-synchronization stage, all
locally at IP level. In many-core architectures, such a DVFS
template can then be exploited for power optimization
according to application constraints [14][15].

D. Asynchronous NoC results

A synchronous vs. asynchronous comparison of the same
NoC in a 65nm technology is presented in Figure 15. [13].
ANOC achieves low power (* measured on a real application),
for half the latency, for the same throughput, but with some
area cost due to QDI logic. A recent Design Flow based on
standard-cells and using Place & Route tools can achieve more
aggressive performances for QDI asynchronous logic [16].

Figure 15. Asynchronous vs. Synchronous NoC router comparison

V. INTRODUCTION TO TIEMPO ASYNCHRONOUS CIRCUIT

SYNTHESIS AND DESIGN FLOW

The Tiempo asynchronous circuit design flow is based on a
unique and specific synthesis tool called ACC (Asynchronous
Circuit Compiler). ACC performs fully-automated synthesis of
asynchronous circuits starting from a standard hardware
description language, SystemVerilog. Indeed, TLM-like
descriptions in SystemVerilog are transformed into gate-level
netlists in Verilog. ACC maps the circuits on standard cell
libraries augmented with asynchronous cells.

In terms of flow (Figure 16.), ACC is the only different
tool, and it is made compliant and interoperable to standard
design flows based on industry-standard tools. SystemVerilog
models can be simulated with any HDL simulators, enabling
the verification of mixed asynchronous/synchronous designs.
ACC provides a set of sync-async and async-sync interfaces to
ease mixing synchronous and asynchronous designs into a
single SoC. The implementation of the asynchronous netlists is
supported by industry-standard P&R, STA and LVS/DRC
checker tools.

RTL Synthesis

Asynchronous-

synchronous
Interfaces

Tiempo tools

Standard tools

Specification

Standard

Cell Library

Tiempo

Asynchronous
Cells

ACC

Verilog Gate-level

Asynchronous part

SystemVerilog

Asynchronous part

Verilog/VHDL RTL

Synchronous part

Verilog Gate-level

Synchronous part

STA

Co-Simulation
Verification

Methodologies

Place & Route

Verilog, VHDL,

SystemVerilog,

SystemC,

Testbenches

Figure 16. Tiempo asynchronous Circuits Design Flow.

A. Tiempo Design Flow Description

1) Modeling
Asynchronous circuit models are written in un-timed

Transaction Level Modeling (TLM), using the standard IEEE-
1800 SystemVerilog language. Using this format provides a
seamless integration of Tiempo clockless technology into
verification platforms like Synopsys VCS

TM
, Mentor Graphics

Questa
TM

, Cadence NCsim
TM

 or others, and allows the designer
to access any required debug tools to find out cause of possible
design mistakes.

Channels represent the basic medium for communication
between asynchronous design entities and processes. A channel
allows point-to-point communication between two processes,
where each communication through a channel involves a token
exchange between the two processes, via a “handshake”.
Handshaking protocols can be of two kinds: push or pull [1].
Each mode defines which one of the two processes involved in
the token exchange is the initiator of the handshake: the one
writing data to the channel or the one reading them. Channels
are modeled as SystemVerilog interfaces. Tiempo developed
SystemVerilog definition files and macros to predefine an
interface (i.e., channel type) for each of the SystemVerilog data

types (bit, byte, integer, etc…) as well as for user-defined types
(e.g. typedef or enumerated type). Channel communications are
modeled as read and write operations using methods
automatically created with each channel type. Those operations
can be blocking or non-blocking.

Tiempo defined the language to provide the designers with
the key tools necessary to build efficient asynchronous circuits
for their applications. Indeed, the language is such that it
enables the designers to adopt the right architecture styles for
their applications, including pipelined, data-flow, parallel,
sequential, etc… Hence, design objects such as modules or
components are available to model concurrency and hierarchy
(SystemVerilog Modules), asynchronous communicating
processes are available to model procedural and concurrent
behaviors (SystemVerilog Processes), and communicating
channels are available to make modules and processes
communicate and synchronize between each other
(SystemVerilog Interfaces).

Further information with regards to Tiempo SystemVerilog
coding style can be found in [22], in which a simple FSM-ALU
structure and its testbench are detailed.

2) Synthesis
The ACC synthesis tool is seamlessly integrated into

standard design flows. Indeed, ACC interoperability with
commercial CAD tools is made effective using the standard file
formats most of the tools are using to exchange information
between each other (Figure 17.). In addition, ACC provides a
standard TCL interface using industry-standard names for the
different commands.

Static

Timing
Analysis

ACC

Place
& Route

SystemVerilog

Asynch Block

Sign-off

��

read_sdc
write_sdc

SDC Constraints

on async block

w/sync interface

SDC Constraints on async

gate-level netlist w/sync

interface

Verilog Gate-level

Asynh block netlist

read_sdc

write_netlist

analyze

elaborate

compile

Area report including

distribution across
hierarchy, usage per cells

report_area

report_timing Timing report including

comprehensive info

through handshake cycle

Standard
Cell Library

Tiempo
Asynchronous

Cells

read_lib

set target_lib

write_sdf Timing information to

perform gate-level logical

simulation with timing

write_sdf

Figure 17. ACC interaction with the design flow tools.

The input to the tool is as follows. The HDL description is
in SystemVerilog. The targeted technology is specified using
the standard library format (.lib file). A set of standard cells
commonly used for synchronous circuits is provided to the tool
as well as a set of asynchronous cells, necessary for the
synthesis of efficient delay insensitive circuits. Finally, design
constraints are specified using the standard design constraint
format (.sdc file). In addition to the standard sdc language,
some commands have been added in order to accurately and
efficiently constrain asynchronous circuits. As an example, it is
very common in an asynchronous design to have many parts
running at very different speeds. The new commands provide a
means to control the constraints applied to different modules
and/or handshaking communications.

At the output, ACC generates the circuit netlist in Verilog
format (.v file). ACC also generates timing information using
the standard delay format (.sdf file). Last, but not least, the tool
generates an sdc file, compiling the input design constraints
and the constraints generated by the synthesis process.

3) Place and route
Standard place and route tools can be used to implement the

netlist generated by ACC. Since there is no clock at all there is
no need to perform a clock tree synthesis and the associated
timing closure. However, timing driven place and route has to
be done in order to respect a given performance target. This
step is made possible using the “sdc” constraint file generated
by ACC. Timing constraints are expressed as a set
set_max_delay commands annotating the handshaking cycles
of the design [23]. This enables the P&R tool to accurately
optimize the asynchronous logic paths involved in the
handshaking communications, taking into account the local
timing characteristics of the asynchronous netlist. This step is
for asynchronous circuits what optimizing the critical paths
between flip-flops is for a synchronous circuit. The only
exception here is that there are no functional issues since the
asynchronous design is delay insensitive, whereas in a
synchronous circuit the timing constraints must be fulfilled, not
only to respect the timing performance target, but also to
guarantee the functionally correct behavior.

4) Verification

For functional verification, transaction viewers of standard
simulators can be used to give a high level view of the
communication involved in the asynchronous design, through
those channels [22]. The transaction view of the system is
particularly convenient as it hides the low-level implementation
of those channels, and gathers only the necessary information
in a convenient format. Using this higher level view, one can
represent the channel state (whether active or inactive), the start
and end time of each channel operation, and finally the relevant
attributes characterizing it, such as the occurrence of the
operation or the token value at a given time. As an example,
illustrated in Figure 18. , Mentor Graphics Questa

TM

transactions support the simulation and debugging of an
asynchronous design by detailing the sequences of token
exchanges between the different system modules in the design,
whether they are in the control-path or data-path, providing the
necessary fields for proper data monitoring and verification,
and giving a clear picture of the capacity and utilization of the
different channels in the system.

For timing, dynamic verification is performed at the gate
level running a standard simulator using the Verilog netlist
along with the delay information provided by the “sdf” file.
Such a logical simulation with timing enables an accurate
analysis of the timing behavior of asynchronous circuits and
their dependency with respect to data. Static timing verification
is done running standard sign-off tools like Synopsys
PrimeTime

TM
, using the Verilog netlist, before or after

placement and routing, the “sdc” constraint file, and the back-
annotation “sdf” or “spef” files.

Physical verifications after place and route are performed
using standard Extraction, LVS and DRC tools.

Figure 18. Typical view of tokens flowing in a viewer [22].

Regarding formal verification, there is no tool yet enabling
checking the equivalence between the SystemVerilog model
and the Verilog netlist. Today, extensive dynamic simulations
are performed, using a unique test-bench and checking for code
and gate coverage, in order to show the functional correctness.

Layout equivalency checking (LEC) is possible using
standard tools, to verify netlists before and after place and
route.

B. Design Examples

Tiempo’s asynchronous delay insensitive technology is
successfully applied to designing integrated circuits
implementing secured transactions such as smartcard for
banking or ticketing, ePassport, or standalone circuit for DRM
or NFC secure elements. Tiempo products deliver a new
security paradigm against hardware attacks as well as
exceptional performance in ultra-low and/or variable power
environments (secured contactless transactions). Hence, the
TESIC platform developed by Tiempo is a fully delay
insensitive integrated circuit including a microcontroller, three
crypto-processor cores, and several dedicated blocks (Figure
19.). An FPGA emulation of TESIC is also available for
software prototyping, thanks to the ACC tool, which not only
targets ASIC but also FPGA technologies.

Figure 19. TESIC platform for secured transactions.

Finally, the most recent major application of Tiempo design
technology and flow is the design of variability-tolerant circuits
on advanced processes (32 nm to 14 nm). The circuits
generated by ACC have the fundamental property of being
delay insensitive. This feature makes them robust with respect
to any effect impacting the timing (such as process, voltage or
temperature variation), and easy to design since process/ library
timing information can be inaccurate or even absent (no timing
closure design phase needed). Moreover, it enables them to run
at maximum speed under a wide range of operating conditions,
hence accurately monitoring the switching speed of devices
and gate networks. All these key and unprecedented features
have been proven by the design, fabrication and
characterization on a 32 nm process of Tiempo unique
monitoring chip (Fig. 20) that allows faster advanced process
performance characterization [24].

TAM16
µC

RAM

GPIO

ROM

Serial_In/Out

RS232
Decoder

TIEMPO
Monitoring Chip

Figure 20. MTAM16, Tiempo monitoring chip for advanced processes.

Tiempo is the first company to commercialize a complete
flow enabling the design of delay insensitive asynchronous
circuits. Its unique synthesis tool called ACC, extensively uses
standard languages and formats in order to make it compliant
and interoperable with existing commercial CAD tools. It is
successfully applied to the design of products in the domains of
secured integrated circuits and variability-tolerant circuits
fabricated using advanced processes.

VI. RECENT INDUSTRY EXAMPLES AND CAD PERSPECTIVES

A. Asynchronous Design in the Industry

Fulcrum, now part of INTEL, is designing Gigabit
Ethernet Crossbars. Fulcrum is targeting high speed design,
based on QDI precharge logic, the so-called PCHB template
[17]. This aggressive asynchronous design style achieves high
performance by using deep logic pipelining, specific precharge
cells, and full custom layout. An automated asynchronous flow
has been developed [18]. For more relaxed part of the design,
synchronous design is used, thus using a GALS scheme.

Achronix, is designing fast FPGAs. As any FPGA, the
architecture template is based on interconnected LUTs, but the
FPGA is implemented using high speed asynchronous QDI
precharge logic. As any FPGA, it can map synchronous RTL,
using ad-hoc FPGA mapping tools. As for Fulcrum, the main
asynchronous logic advantage is high performance and ease of
full custom design thanks to QDI logic robustness.

Handshake Solutions, (initially Philips technology is now back

in NXP), developed a complete flow, with the Haste language,
associated synthesis tool, and test methodology, targeting
bundle-data handshake circuits. The flow has been extensively
used for various markets: pagers, automotive, smartcard, e-

passport, game consoles, etc. The main advantage of
asynchronous logic is regarding low power and low noise.

Octasic, is designing DSP for Audio and Multimedia
applications. The DSP architecture is based on parallel
synchronous sub-units, working in an interlocked manner,
where synchronization is implemented using asynchronous
bundle-data logic. The main advantage of asynchronous logic
is regarding low power and modular and scalable architecture.

Tiempo, has a complete design flow presented above to
design variability-tolerant QDI asynchronous circuits.
Variability may come from the energy source as it is the case
for contactless secured platforms for banking, ticketing, or
passport applications. In this field QDI circuits’ properties to
counter hardware attacks are also exploited. Variability may
also come from the fabrication process, especially advanced
processes, where Tiempo circuits show extremely high
robustness with respect to process, temperature and voltage
variations, and run at maximum speed, thus enabling process
performance monitoring.

To sum up, several companies have adopted asynchronous
design methodology (some disappeared: Theseus, Silistix,
Elastix). Companies never claim asynchronous logic as an
objective, only a way to achieve differentiation: QDI logic for
high performance, low power under variability constraints,
especially process and voltage (e.g. subthreshold designs), and
bundle data for low-power/low-noise.

B. CAD tool status and perspectives

One of the main limitations of asynchronous design
concerned the lack of asynchronous CAD tools. In previous
years, many CAD tools have been developed, such as Petrify
[3], Minimalist [1] or others, but these tools only address low
complexity asynchronous controllers, limited to tens or
hundreds of gates. In order to address system level design, a
language-based approach must be adopted for asynchronous
design, to achieve productivity similar to RTL abstraction for
synchronous design. Various languages for asynchronous logic
have been proposed, which fit the asynchronous handshake
channel semantics, like CSP/CHP, Tangram/Haste, Balsa [1].
Associated asynchronous design styles and corresponding
synthesis tools have been developed. Nevertheless, these
languages are too specific, and their adoption by industry is
difficult. The Tiempo design flow, as presented section V,
being based on a standard System Verilog language extended
with an asynchronous channel System Verilog library is a good
trade-off, as input to a dedicated asynchronous synthesis flow.
A similar approach with Verilog was developed in [18].

Regarding cell libraries, asynchronous design requires
specific cells, such as C-element, arbitration cells (Section II),
or more specific cells (like pre-charge logic cells). C-element
can be designed from a basic foundry library. But for efficient
design, it is mandatory to develop a specific cell library (about
50 cells usually), that will then be supported by other tools
(Timing Analysis, Place & Route) [16] [18]. Better support of
these specific cells by foundry libraries and by standard tools
would be beneficial to wider usage of asynchronous logic.

For performance analysis, even if current timing analysis
tools can be used at a cell or pipeline level, performance
analysis and optimization of asynchronous logic is still an
advanced research topic, lacking industrial CAD tools [19][20].

VII. CONCLUSION AND PERSPECTIVES

Asynchronous logic design has a long history of research
innovation. Current developments in nanoscale technologies
start to open doors and give way for asynchronous logic into
industrial design practice, where several companies have
already demonstrated its advantages in real products and
services. This tutorial shows that such routes are likely to lead
further via GALS and NoC architectural paradigms. Other
paradigms will certainly be emerging in the near future with the
rise of interest in energy-harvesting electronics, wireless sensor
networks and mixed-criticality systems. Due to the lack of
space, we could not address all of them here. To facilitate the
progress in design more research efforts are required in
developing CAD tools. Tiempo and its unique QDI-based
synthesis flow, closely linked with the accepted languages and
tools, is a strong motivating factor.

REFERENCES

[1] J. Sparsø and S.B. Furber, editors. “Principles of Asynchronous Circuit Design”,

Kluwer Academic Publishers, 2001.

[2] T. Verhoeff. “Delay-Insensitive Codes - an Overview”. Distributed Computing,

3(1):1-8, 1988.

[3] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Logic

Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag, 2002.

[4] D.J. Kinniment, “Synchronization and Arbitration in Digital Systems”, Wiley and

Sons, 2007

[5] R. Ginosar, “Fourteen Ways to Fool Your Synchronizer”, Proceedings of

ASYNC’2003, pp. 89-96, May 2003.

[6] T. Chelcea and S.M. Nowick, ‘‘Robust Interfaces for Mixed-Timing Systems,’’

IEEE Trans. VLSI Systems, vol. 12, no. 8, Aug. 2004, pp. 857-873.

[7] Y. Thonnart, E. Beigné, P. Vivet, “Design and Implementation of a GALS Adapter

for ANoC based Architectures”, Proceedings ASYNC’2009, pp. 13-22.

[8] R. Mullins, S. Moore, “Demystifying Data-Driven and Pausible Clocking Schemes”,

in Proc. of ASYNC’07, pp 175-184, March 2007.

[9] F. Gürkaynak, S. Oetiker, H. Kaeslin, N. Felber, W. Fichtner, “GALS at ETH

Zurich: Sucess or Failure ?”, Proc of ASYNC’2006, pp 150-159.

[10] Xin Fan, M. Krstic, E. Grass, B. Sanders, C. Heer, “Exploring pausible clocking

based GALS design for 40-nm system integration”, DATE’2012, pp. 1118 – 1121.

[11] A. Sheibanyrad & all, “Multisynchronous and Fully Asynchronous NoCs for GALS

Architectures”, IEEE Design & Test of Computers 2009, pp. 572 – 580.

[12] M.N. Horak, S. Nowick, M. Carlberg, U. Vishkin, “A Low-Overhead Asynchronous

Interconnection Network for GALS Chip Multiprocessors”, NOCS’ 2010, pp. 43 50.

[13] Y. Thonnart, P. Vivet, F. Clermidy, “A Fully Asynchronous Low-Power Framework

for GALS NoC Integration”, Proceedings of DATE’2010, March 2010.

[14] E. Beigné et al., “An Asynchronous Power Aware and Adaptive NoC based

Circuit”, IEEE Journal Of Solid State Circuits, April 2009, vol.44, pp.1167-1177.

[15] Herbert, S.; Marculescu, D., “Analysis of dynamic voltage/frequency scaling in

chip-multiprocessors”, ISLPED’2007, pp. 38-43.

[16] Y. Thonnart, E. Beigné, P. Vivet, “A Pseudo-Synchronous Implementation Flow for

WCHB QDI Asynchronous Circuits”, Proceedings of ASYNC’2012, Mai 2012.

[17] A.M. Lines, "Pipelined asynchronous circuits", Master's thesis, California Institute

of Technology, 1995.

[18] P.A. Beerel, G.D. Dimou, A.M. Lines, "Proteus: An ASIC Flow for GHz Asynch-

ronous Designs," IEEE Design & Test of Computers, vol.28, no.5, pp.36-51, 2011.

[19] M. Najibi, P. A. Beerel, “Performance Bounds of Asynchronous Circuits with

Mode-Based Conditional Behavior “, Proc. of ASYNC’2012.

[20] J. Hansen, M. Singh, “A Fast Hierarchical Approach to Resource Sharing in

Pipelined Asynchronous Systems “, Proc. of ASYNC’2012.

[21] Tiempo White Paper #1, “Tiempo asynchronous Technology introduction”,

http://www.tiempo-ic.com/company/technology.html.

[22] Tiempo White Paper #2, “Introduction to SystemVerilog Asynchronous Modeling”,

http://www.tiempo-ic.com/company/technology.html.
[23] N. Leblond, “How transactions viewing accelerates debug of asynchronous

SystemVerilog designs”, Verification Horizons, Feb. 2011, Vol. 7, N°. 1.

[24] N. Leblond, “How to Reach High Performance with Tiempo Clockless De-signs

Using PrimeTime and ICC”, SyNopsys User Group 2010, Austin, Texas.

[25] Marc Renaudin, “Asynchronous Design Improves Performance Process

Monitoring”, Published in Issue of Chip Design Magazine, September 2012.

